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Calculus and Analytical Geometry

1 Core Topics

The course covers:
Functions, Domain and Range. Introduction to limits:
Limits and Continuity, Techniques of funding limits, In-
determinate forms of limits, Introduction to functions:
Continuous and discontinuous functions and their appli-
cations, Differential calculus: Concept and idea of differ-
entiation, Geometrical and Physical meaning of deriva-
tives, Rules of differentiation, Techniques of differentia-
tion, Rates of change, Tangents and Normal lines, Chain
rule, implicit differentiation, linear approximation, Ap-
plications of differentiation: Extreme value functions,
Mean value theorems, Maxima and Minima of a function
for single-variable, Concavity. Integral calculus: Con-
cept and idea of Integration, Indefinite Integrals, Tech-
niques of integration, Riemann sums and Definite Inte-
grals, Applications of definite integrals, Improper inte-
gral, Applications of Integration; Area under the curve.
Book recommended for this course is Calculus
by Thomas 13th edition.

1.1 Definition of a Function

A function f from a set D to a set Y is a rule that
assigns a unique value f(x) in Y to each x in D.

� Input: x is the independent variable.

� Output: y = f(x) is the dependent variable.

1.2 Domain and Range

� Domain: The set D of all possible input values.

� Range: The set of all f(x) values as x varies
throughout D.

� In Calculus, domain and range are often sets of
real numbers.

1.3 Examples of Domain and Range

1. y = x2: Domain (−∞,∞), Range [0,∞).

2. y = 1
x : Domain (−∞, 0)∪(0,∞), Range (−∞, 0)∪

(0,∞).

3. y =
√
x: Domain [0,∞), Range [0,∞).

4. y =
√
4− x: Domain (−∞, 4], Range [0,∞).

5. y = x2−4
x−2 = x+ 2: Domain (−∞,∞).

6. y =
√
1− x2: Domain [−1, 1], Range [0, 1].

1.4 Vertical Line Test

A function f can have only one value f(x) for each x in
its domain. Therefore, no vertical line can intersect the
graph of a function more than once.

� A circle is not the graph of a function.

� y =
√
1− x2 (upper semicircle) and y =

−
√
1− x2 (lower semicircle) are functions.
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1.5 Even and Odd Functions

� Even Function: f(−x) = f(x). Symmetric
about the y-axis. Example: y = x2, y = x4.

� Odd Function: f(−x) = −f(x). Symmetric
about the origin. Example: y = x, y = x3

1.6 Step Functions

� Least Integer Function (Ceiling): Denoted by
⌈x⌉. Smallest integer greater than or equal to x.

� Greatest Integer Function (Floor): Denoted
by ⌊x⌋. Greatest integer less than or equal to x.
Examples: ⌊2.4⌋ = 2, ⌊1.9⌋ = 1.

1.7 Increasing and Decreasing Func-
tions

Let f be defined on an interval I with x1, x2 ∈ I:

1. Increasing: If f(x2) > f(x1) whenever x1 < x2.

2. Decreasing: If f(x2) < f(x1) whenever x1 < x2.

1.8 Everyday Life Uses of Calculus

� Physics: Integration is used to calculate the cen-
ter of mass and center of gravity.

� Computer Graphics: Uses Linear Algebra and
Analytic Geometry.

� Scientific Computing: Computer Algebra Sys-
tems compute integrals and derivatives symboli-
cally or numerically.

2 Common Functions

2.1 Power Functions

A function f(x) = xa, where a is a constant, is called a
power function.

2.1.1 (a) a = n (A Positive Integer)

For n = 1, 2, 3, 4, 5, the functions are y = x, y = x2, y =
x3, y = x4, y = x5.

� As the power n gets larger, the curves tend to
flatten towards the x-axis on the interval (−1, 1)
and rise more steeply for |x| > 1.

� Even-powered functions: Decreasing on
(−∞, 0] and increasing on [0,∞).

� Odd-powered functions: Increasing over the
entire real line (−∞,∞).

2.1.2 (b) a = −1 and a = −2

� f(x) = x−1 = 1
x : Domain x ̸= 0, Range y ̸=

0. Symmetric about the origin; decreasing on
(−∞, 0) and (0,∞).

� g(x) = x−2 = 1
x2 : Domain x ̸= 0, Range

y > 0. Symmetric about the y-axis; increasing
on (−∞, 0) and decreasing on (0,∞).
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2.1.3 (c) a = 1
2 ,

1
3 ,

3
2 ,

2
3

� y =
√
x = x1/2: Domain [0,∞), Range [0,∞).

� y = 3
√
x = x1/3: Defined over all real x. Domain

(−∞,∞), Range (−∞,∞).

� y = x2/3 = (x1/3)2: Domain (−∞,∞), Range
[0,∞).

2.2 Polynomials

A function p is a polynomial if:

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n is a nonnegative integer and a0, a1, . . . , an are
real constants (coefficients).

� Domain: All polynomials have the domain
(−∞,∞).

� Degree: If an ̸= 0, then n is the degree of the
polynomial.

� Quadratic: Degree 2, p(x) = ax2 + bx+ c.

� Cubic: Degree 3, p(x) = ax3 + bx2 + cx+ d.

2.3 Linear Functions

A function of the form f(x) = mx+b is a linear function.

� If b = 0, the line passes through the origin.

� If m = 0, it is a constant function.

� If m = 1 and b = 0, f(x) = x is the identity
function.

2.4 Rational and Algebraic Functions

� Rational Function: A ratio of two polynomials,

f(x) = P (x)
Q(x) where Q(x) ̸= 0.

� Algebraic Function: Any function constructed
from polynomials using algebraic operations (ad-
dition, subtraction, multiplication, division, and
taking roots).

2.5 Transcendental Functions

These functions are not algebraic and include:

� Trigonometric Functions: e.g., f(x) =
sinx, f(x) = cosx.

� Exponential Functions: f(x) = ax (where a >
0, a ̸= 1). Range is always (0,∞).

� Logarithmic Functions: f(x) = loga x, which
are the inverse of exponential functions.

� Example: The Catenary is a transcendental func-
tion.
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3 Sum, Differences, Products,
and Quotients

Like numbers, functions can be added, subtracted, mul-
tiplied, and divided to produce new functions (except
where the denominator is zero).
If f and g are functions, then for every x that belongs
to the domain of both f and g (i.e., x ∈ D(f) ∩D(g)),
we define the following:

� (f + g)(x) = f(x) + g(x)

� (f − g)(x) = f(x)− g(x)

� (fg)(x) = f(x)g(x)

At any point in D(f) ∩ D(g) where g(x) ̸= 0, we can
define the quotient:(

f

g

)
(x) =

f(x)

g(x)

Functions can also be multiplied by constants. If c is a
real number, then:

(cf)(x) = cf(x)

Example: Given f(x) =
√
x and g(x) =

√
1− x:

� D(f) = [0,∞)

� D(g) = (−∞, 1]

� Common domain: D(f) ∩ D(g) = [0,∞) ∩
(−∞, 1] = [0, 1]

� (f + g)(x) =
√
x+

√
1− x, Domain: [0, 1]

� (f − g)(x) =
√
x−

√
1− x, Domain: [0, 1]

� (fg)(x) =
√

x(1− x), Domain: [0, 1]

�

(
f
g

)
(x) =

√
x

1−x , Domain: [0, 1) (exclude x = 1

to avoid division by zero)

4 Composite Functions

Composition is another way of combining functions.
Definition: If f and g are functions, the composite
function f ◦ g (f composed with g) is defined by:

(f ◦ g)(x) = f(g(x))

Example: If f(x) =
√
x and g(x) = x+ 1, find:

1. (f ◦ g)(x) = f(g(x)) =
√
x+ 1, Domain: [−1,∞)

2. (g ◦ f)(x) = g(f(x)) =
√
x+ 1, Domain: [0,∞)

3. (f ◦ f)(x) = f(f(x)) =
√√

x = x1/4, Domain:
[0,∞)

4. (g◦g)(x) = g(g(x)) = (x+1)+1 = x+2, Domain:
(−∞,∞)
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5 Shifting a Graph of a Function

5.1 Vertical Shifts

� y = f(x) + k shifts the graph up k units (k > 0).

� y = f(x)−k shifts the graph down k units (k > 0).

5.2 Horizontal Shifts

� y = f(x+ h) shifts the graph left h units (h > 0).

� y = f(x−h) shifts the graph right h units (h > 0).

6 Scaling and Reflecting Formu-
las

6.1 Scaling (for c > 1)

� y = cf(x): Stretches the graph vertically by a
factor c.

� y = 1
cf(x): Compresses the graph vertically by

factor c.

� y = f(cx): Compresses the graph horizontally by
factor c.

� y = f(x/c): Stretches the graph horizontally by
factor c.

6.2 Reflections

� y = −f(x): Reflects the graph across the x-axis.

� y = f(−x): Reflects the graph across the y-axis.

7 Limit of a Function

7.1 Definition

Let f be a function. If as x approaches a from both
left and right sides of a, f(x) approaches to a special
number L, then L is called the limit as x approaches a:

lim
x→a

f(x) = L

7.2 Example

Find the limit of f(x) = x2−4
x−2 . As x approaches 2:

� f(1.999) = 3.99

� f(2.001) = 4.001

The limit appears to be 4.

8 Informal Description of the
Limit of a Function

For the function f(x) = x2−1
x−1 , the function is defined

for all real numbers x except x = 1. For x ̸= 1, we can
simplify the formula by factoring:

f(x) =
(x− 1)(x+ 1)

x− 1
= x+ 1 for x ̸= 1

Even though f is not defined at x = 1, the function has
a limit of 2 as x approaches 1.
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9 Limits of Identity and Con-
stant Functions

1. If f is the identity function f(x) = x, then for any
value of c:

lim
x→c

f(x) = lim
x→c

x = c

2. If f is the constant function f(x) = k, then for
any value c:

lim
x→c

f(x) = lim
x→c

k = k

10 Examples of Functions with
No Limit

A function may not have a limit at a particular point
for several reasons:

� Jump Discontinuity: The unit step function
U(x) has no limit at x = 0 because it jumps from
0 (for x < 0) to 1 (for x > 0).

� Infinite Growth: The function g(x) = 1
x has no

limit as x → 0 because its values grow arbitrarily
large in absolute value.

� Oscillation: The function f(x) = sin(1/x) has no
limit as x → 0 because its values oscillate between
+1 and −1 infinitely often as it approaches zero.

11 The Limit Laws

If L,M, c and k are real numbers and limx→c f(x) = L
and limx→c g(x) = M , then:

1. Sum Rule: limx→c(f(x) + g(x)) = L+M

2. Difference Rule: limx→c(f(x)− g(x)) = L−M

3. Constant Multiple Rule: limx→c(k · f(x)) =
k · L

4. Product Rule: limx→c(f(x) · g(x)) = L ·M

5. Quotient Rule: limx→c
f(x)
g(x) = L

M ,M ̸= 0

6. Power Rule: limx→c[f(x)]
n = Ln, n a positive

integer

7. Root Rule: limx→c
n
√
f(x) = n

√
L, n a positive

integer

12 Limits of Polynomials

If P (x) = anx
n + an−1x

n−1 + · · ·+ a0, then:

lim
x→c

P (x) = P (c) = anc
n + an−1c

n−1 + · · ·+ a0
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13 Exercises and Infinite Limits

13.1 Exercise 2.4

1. True or False Statements based on a graph
(implied):

(a) limx→−1+ f(x) = 1 (True)

(b) limx→0− f(x) = 1 (False)

(c) limx→0− f(x) = 0 (True)

(d) limx→0− f(x) = limx→0+ f(x) (True)

3. Piecewise Function: Let f(x) be defined as:

f(x) =

{
3− x x < 2
x
2 + 1 x > 2

(a) Find limits as x → 2:

� Right-hand limit: limx→2+ f(x) = 2
2 + 1 = 2

� Left-hand limit: limx→2− f(x) = 3− 2 = 1

(b) Does limx→2 f(x) exist? No, the limit does not
exist because limx→2+ f(x) ̸= limx→2− f(x).
(c) Limit at x = 4: limx→4− f(x) = 4

2 + 1 = 3.

13.2 Sandwich Theorem (Squeeze The-
orem)

Theorem: Suppose that g(x) ≤ f(x) ≤ h(x) for all x
in some open interval containing c (except possibly at
x = c) and that:

lim
x→c

g(x) = lim
x→c

h(x) = L

Then, limx→c f(x) = L.

Example: Given 1− x2

4 ≤ u(x) ≤ 1 + x2

2 for all x ̸= 0.
Find limx→0 u(x).

� Limit of lower bound: limx→0(1− x2

4 ) = 1

� Limit of upper bound: limx→0(1 +
x2

2 ) = 1

By the Sandwich Theorem, limx→0 u(x) = 1.

13.3 Limits Involving Infinity

Finite Limits as x → ±∞: The symbol ∞ does not
represent a real number. We use ∞ to describe the
behavior of a function when the values in its domain or
range outgrow all finite bounds.
Rules:

1. limx→±∞ k = k (where k is constant)

2. limx→±∞
1
x = 0

3. limx→±∞
1
xn = 0 (for positive integer n)

Example: Evaluate limx→∞
5x2+8x−3

3x2+2 . Divide numer-
ator and denominator by the highest power of x (which
is x2):

lim
x→∞

5 + 8
x − 3

x2

3 + 2
x2

=
5 + 0− 0

3 + 0
=

5

3

Example: Evaluate limx→∞
11x+2
2x3−1 . Divide by x3:

lim
x→∞

11
x2 + 2

x3

2− 1
x3

=
0 + 0

2− 0
= 0
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13.4 Infinite Limits

Example: Find limx→∞(
√
x6 + 5x3−x3). Multiply by

the conjugate:

= lim
x→∞

(
√

x6 + 5x3 − x3) ·
√
x6 + 5x3 + x3

√
x6 + 5x3 + x3

= lim
x→∞

(x6 + 5x3)− x6

√
x6 + 5x3 + x3

= lim
x→∞

5x3√
x6(1 + 5

x3 ) + x3

= lim
x→∞

5x3

x3
√
1 + 5

x3 + x3

= lim
x→∞

5√
1 + 5

x3 + 1
=

5√
1 + 0 + 1

=
5

2

13.5 Asymptotes

Horizontal Asymptote: A line y = b is a horizontal
asymptote of the graph of a function y = f(x) if either:

lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b

Vertical Asymptote: A line x = a is a vertical asymp-
tote if limx→a± f(x) = ±∞.

14 Limits at Infinity

We consider the behavior of functions as x approaches
positive or negative infinity.

14.1 Basic Limits

lim
x→−∞

1

x
= 0

lim
x→+∞

1

x
= 0

In general, for any positive integer n:

lim
x→±∞

1

xn
= 0

14.2 Laws of Limits at Infinity

Behaviors involving infinity:

� ∞+∞ = ∞

� As x → ∞, x2 → ∞.

� As x → ∞, −x2 → −∞.

15 Examples: Limits of Rational
Functions

15.1 Example 1: Equal Degrees

Evaluate limx→∞
x2+1

x2+2x+1 .
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Divide numerator and denominator by the highest
power of x in the denominator (x2):

lim
x→∞

x2 + 1

x2 + 2x+ 1
= lim

x→∞

x2

x2 + 1
x2

x2

x2 + 2x
x2 + 1

x2

= lim
x→∞

1 + 1
x2

1 + 2
x + 1

x2

=
1 + 0

1 + 0 + 0
= 1

15.2 Example 2: Higher Degree in De-
nominator

Evaluate limx→∞
x2+1

x3+3x+1 .

Divide by x3:

lim
x→∞

1
x + 1

x3

1 + 3
x2 + 1

x3

=
0 + 0

1 + 0 + 0
= 0

Since the limit is 0, y = 0 is a horizontal asymptote.

15.3 Example 3: Higher Degree in Nu-
merator

Evaluate limx→∞
x3+1
x2+1 .

Divide by x2:

lim
x→∞

x3

x2 + 1
x2

x2

x2 + 1
x2

= lim
x→∞

x+ 1
x2

1 + 1
x2

=
∞+ 0

1 + 0
= ∞

16 Limits Involving Radicals

Evaluate limx→−∞
√
x2+2
3x−6 .

Recall that
√
x2 = |x|. Since x → −∞, we have |x| =

−x (or x < 0). We divide the numerator by
√
x2 and

the denominator by −|x| (which is effectively dividing
by the same magnitude, respecting signs):

lim
x→−∞

√
x2 + 2

3x− 6
= lim

x→−∞

√
x2+2√
x2

3x

−
√
x2

− 6

−
√
x2

(Using x = −
√
x2 for x < 0)

= lim
x→−∞

√
1 + 2

x2

3x
−(−x) −

6
−x

= lim
x→−∞

√
1 + 2

x2

3− 6
x

(Simplification step based on sign)
Alternatively, dividing by x (where x = −|x|):

= lim
x→−∞

√
x2+2

−
√
x2

3x
x − 6

x

=
−
√
1 + 0

3− 0
= −1

3

Thus, y = −1/3 is a horizontal asymptote.
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17 Asymptotes

An asymptote of a function is a curve or a line such that
the distance between the function and the line tends to
zero as they tend to infinity.

17.1 Types of Asymptotes

1. Horizontal Asymptotes

2. Vertical Asymptotes

3. Oblique (Slant) or Curvilinear Asymptotes

17.2 Horizontal Asymptote Example

For y = 1
x :

lim
x→∞

1

x
= 0, lim

x→−∞

1

x
= 0

Therefore, y = 0 is a horizontal asymptote.

17.3 Vertical Asymptote Example

Consider f(x) = x−1
x2−1 . Simplifying the expression (for

x ̸= 1):

f(x) =
x− 1

(x− 1)(x+ 1)
=

1

x+ 1

The denominator is zero at x = −1. Thus, x = −1 is a
vertical asymptote.

17.4 Domain and Range Example

For a function like y = 1
x−3 + 7:

� Vertical Asymptote: x = 3

� Domain: D = (−∞, 3) ∪ (3,∞)

� Range: R = (−∞, 7)∪(7,∞) (assuming horizontal
asymptote shift)

18 Oblique and Curvilinear
Asymptotes

18.1 Oblique Asymptotes

Consider the function f(x) = x2+1
x+1 . By performing long

division:

f(x) =
x2 + 1

x+ 1
= x− 1 +

2

x+ 1

As x → ∞, the term 2
x+1 → 0. Therefore, the line

y = x− 1 is an oblique asymptote.

18.2 Curvilinear Asymptotes

Consider the function f(x) = x3+1
x+2 . By performing long

division (x3 + 1 divided by x+ 2):

f(x) = x2 − 2x+ 4− 7

x+ 2

As x → ∞, the fraction approaches 0. Therefore, the
parabola y = x2 − 2x+ 4 is a curvilinear asymptote.
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18.3 Limit at Infinity Example

Evaluate limx→∞
x3+x2+1
5x4+2x+1 . Divide numerator and de-

nominator by the highest power of x in the denominator
(x4):

lim
x→∞

1
x + 1

x2 + 1
x4

5 + 2
x3 + 1

x4

=
0

5
= 0

19 Continuity

19.1 Continuity at a Point

Definition: A function f is continuous at a point x = a
if the following three conditions are met:

1. f(a) is defined.

2. limx→a f(x) exists.

3. limx→a f(x) = f(a).

19.2 Example: Discontinuity

Check the continuity of the function at x = 3:

g(x) =

{
x2−9
x−3 , x ̸= 3

5, x = 3

Solution:

1. Value of function: g(3) = 5.

2. Limit as x → 3:

lim
x→3

g(x) = lim
x→3

x2 − 9

x− 3

= lim
x→3

(x− 3)(x+ 3)

x− 3

= lim
x→3

(x+ 3) = 6

3. Conclusion: Since limx→3 g(x) ̸= g(3) (6 ̸= 5), the
function g(x) is discontinuous at x = 3.

20 Continuity of a Polynomial

20.1 Example: Absolute Value

Check the continuity of f(x) = |x|.

|x| =


−x, x < 0

0, x = 0

x, x > 0

The function is continuous on (−∞, 0) and (0,∞) be-
cause it behaves like a polynomial. At x = 0:

� f(0) = 0

� limx→0 f(x) = 0

Since the limit equals the function value, f is continuous
at x = 0. Thus, it is continuous everywhere.

21 Continuity on an Interval

A function f is continuous on a closed interval [a, b] if it
is continuous at every point in (a, b) and:

� limx→a+ f(x) = f(a) (Right continuous at a)

� limx→b− f(x) = f(b) (Left continuous at b)
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21.1 Example

Check the continuity of f(x) =
√
9− x2 on [−3, 3].

1. Let c be an arbitrary point in (−3, 3).

lim
x→c

f(x) = lim
x→c

√
9− x2 =

√
9− c2 = f(c)

So, f is continuous on the open interval (−3, 3).

2. At endpoints:

� At x = −3: limx→−3+
√
9− x2 = 0 = f(−3).

� At x = 3: limx→3−
√
9− x2 = 0 = f(3).

Therefore, f(x) is continuous on [−3, 3].

22 Exercise 2.6 Solutions

22.1 Q.9: Sandwich Theorem

Evaluate limx→∞
sin 2x

x . We know that for all real num-
bers:

−1 ≤ sin 2x ≤ 1

Divide inequality by x (for x > 0):

− 1

x
≤ sin 2x

x
≤ 1

x

Since limx→∞(− 1
x ) = 0 and limx→∞( 1x ) = 0, by the

Sandwich Theorem:

lim
x→∞

sin 2x

x
= 0

22.2 Q.13

Evaluate limx→∞
2x+3
5x+7 .

lim
x→∞

x(2 + 3
x )

x(5 + 7
x )

=
2 + 0

5 + 0
=

2

5

22.3 Q.21

Evaluate limx→∞
3x4+5x2−1
6x3−7x+3 . Divide by x3:

lim
x→∞

3x+ 5
x − 1

x3

6− 7
x2 + 3

x3

=
∞
6

= ∞

22.4 Q.23

Evaluate limx→∞

√
8x2−3
2x2+x .√

lim
x→∞

x2(8− 3
x2 )

x2(2 + 1
x )

=

√
8

2
=

√
4 = 2

23 Slope of a Line

The slope of a line is defined as the rise over the run:

m =
rise

run
=

y2 − y1
x2 − x1
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24 Secant Line

A secant line is a line joining any two points on a curve.
Consider a curve y = f(x) and two points P (x, f(x))
and Q(x + h, f(x + h)). The slope of the secant line
(msec) represents the average rate of change:

msec =
f(x+ h)− f(x)

h

25 Tangent Line

As the point Q approaches P (i.e., h → 0), the secant
line becomes the tangent line. The slope of the tangent
line (mtan) is the limit of the secant slope:

mtan = lim
h→0

f(x+ h)− f(x)

h

This limit is also known as the derivative of f at x,
denoted by dy

dx or f ′(x).

26 Examples: Definition of
Derivative

26.1 Example 1: f(x) = x2

Find the derivative with respect to x using the defini-
tion.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

h(2x+ h)

h

= lim
h→0

(2x+ h) = 2x

26.2 Example 2: f(x) =
√
x

f ′(x) = lim
h→0

√
x+ h−

√
x

h

= lim
h→0

√
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

(x+ h)− x

h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x
=

1

2
√
x
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26.3 Example 3: Instantaneous Velocity

Consider a particle whose position is given by S(t) =
1 + 5t− 2t2. Find the instantaneous velocity v(t).

v(t) = lim
h→0

S(t+ h)− S(t)

h

= lim
h→0

[1 + 5(t+ h)− 2(t+ h)2]− [1 + 5t− 2t2]

h

= lim
h→0

1 + 5t+ 5h− 2(t2 + h2 + 2th)− 1− 5t+ 2t2

h

= lim
h→0

5h− 2h2 − 4th

h

= lim
h→0

(5− 2h− 4t) = 5− 4t

27 Finding the equation* of the
Tangent Line

To find the tangent line to y = f(x) at a point x = x1:

1. Evaluate y1 = f(x1) to get the point of tangency
(x1, y1).

2. Find f ′(x) and evaluate m = f ′(x1) to get the
slope.

3. Substitutem, x1, and y1 into the point-slope form:

y − y1 = m(x− x1)

27.1 Example 4

Find the tangent line of f(x) = 2x2 − 3 at (2, 5).

1. Point is given: (2, 5). Check: f(2) = 2(4)− 3 = 5.

2. Find f ′(x):

f ′(x) = lim
h→0

[2(x+ h)2 − 3]− [2x2 − 3]

h

= lim
h→0

2(x2 + 2xh+ h2)− 3− 2x2 + 3

h

= lim
h→0

4xh+ 2h2

h
= 4x

Slope at x = 2: m = f ′(2) = 4(2) = 8.

3. equation*:

y − 5 = 8(x− 2) =⇒ y = 8x− 11

27.2 Example 5

Find the tangent line for y = x+3
1−x at x = −2.

1. Find y1: y(−2) = −2+3
1−(−2) =

1
3 . Point: (−2, 1/3).

2. Find derivative (using definition):

y′(x) = lim
h→0

x+h+3
1−(x+h) −

x+3
1−x

h

= lim
h→0

(x+ h+ 3)(1− x)− (x+ 3)(1− x− h)

h(1− x− h)(1− x)

= . . . (simplifying numerator) . . .

= lim
h→0

4h

h(1− x− h)(1− x)
=

4

(1− x)2

Slope at x = −2: m = 4
(1−(−2))2 = 4

32 = 4
9 .

3. equation*:

y − 1

3
=

4

9
(x+ 2)
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28 Differentiation Rules

28.1 Derivative of a Constant

If f is a constant function f(x) = c, then:

d

dx
(c) = 0

28.2 Power Rule

If n is a positive integer (holds for real numbers where
defined):

d

dx
(xn) = nxn−1

Examples:

� y = xπ =⇒ dy
dx = πxπ−1

� y = x1/3 =⇒ dy
dx = 1

3x
1/3−1 = 1

3x
−2/3

28.3 Constant Multiple Rule

If u is a differentiable function of x and c is a constant:

d

dx
(cu) = c

du

dx

Example: y = 4x8 =⇒ dy
dx = 4(8x7) = 32x7.

28.4 Sum Rule

If u and v are differentiable functions:

d

dx
(u+ v) =

du

dx
+

dv

dx

Example: y = 2x6 + x−9

dy

dx
=

d

dx
(2x6) +

d

dx
(x−9) = 12x5 − 9x−10

29 Derivative of Logarithmic
Functions

29.1 Basic Formulas

1. Limit definition of e:

lim
v→0

(1 + v)
1
v = e

2. Natural Logarithm:

d

dx
(lnx) =

1

x

3. General Logarithmic Function (logb x):

d

dx
(logb x) =

d

dx

[
lnx

ln b

]
=

1

ln b
· 1
x
=

1

x ln b

4. Chain Rule for Natural Logarithm:

d

dx
[lnu] =

1

u
· du
dx

5. Chain Rule for General Logarithm:

d

dx
[logb u] =

1

u ln b
· du
dx
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29.2 Examples

1. Find d
dx [ln(x

2 + 1)]:

d

dx
[ln(x2 + 1)] =

1

x2 + 1
· d

dx
(x2 + 1)

=
1

x2 + 1
· (2x)

=
2x

x2 + 1

2. Find d
dx

[
ln
(

x2 sin x√
1+x

)]
: First, simplify using loga-

rithmic properties:

y = ln

(
x2 sinx

(1 + x)1/2

)
= ln(x2) + ln(sinx)− ln((1 + x)1/2)

= 2 lnx+ ln(sinx)− 1

2
ln(1 + x)

Now, differentiate:

dy

dx
= 2

(
1

x

)
+

1

sinx
(cosx)− 1

2(1 + x)
(1)

=
2

x
+ cotx− 1

2(1 + x)

30 Derivative of ln |x|
To find the derivative of f(x) = ln |x| where x ̸= 0:
Case 1: x > 0

|x| = x =⇒ d

dx
(lnx) =

1

x

Case 2: x < 0

|x| = −x =⇒ d

dx
(ln(−x)) =

1

−x
· d
dx

(−x) =
1

−x
·(−1) =

1

x

Conclusion:

d

dx
[ln |x|] = 1

x
, x ̸= 0

31 Logarithmic Differentiation
Example

Find the derivative of y = x2 3
√
7x−14

(1+x2)4 .

Take the natural log of both sides:

ln y = ln

(
x2(7x− 14)1/3

(1 + x2)4

)
ln y = ln(x2) + ln((7x− 14)1/3)− ln((1 + x2)4)

ln y = 2 lnx+
1

3
ln(7x− 14)− 4 ln(1 + x2)

Differentiate both sides with respect to x:

1

y

dy

dx
=

2

x
+

1

3(7x− 14)
(7)− 4

1 + x2
(2x)

1

y

dy

dx
=

2

x
+

7

21(x− 2)
− 8x

1 + x2

1

y

dy

dx
=

2

x
+

1

3(x− 2)
− 8x

1 + x2

Multiply by y to solve for dy
dx :

dy

dx
=

[
x2 3

√
7x− 14

(1 + x2)4

](
2

x
+

1

3x− 6
− 8x

1 + x2

)
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32 Derivatives of Exponential
Functions

32.1 Formulas

1. Base b: d
dx [b

x] = bx ln b

2. Base e: d
dx [e

x] = ex

3. Chain Rule (Base b): d
dx [b

u] = bu ln b · du
dx

4. Chain Rule (Base e): d
dx [e

u] = eu · du
dx

32.2 Examples

�
d
dx [2

x] = 2x ln 2

�
d
dx [e

cos x] = ecos x · d
dx (cosx) = ecos x(− sinx) =

− sinx ecos x

32.3 Variable Base and Exponent

Find dy
dx for y = (x2 + 1)sin x.

Take ln of both sides:

ln y = ln((x2 + 1)sin x)

ln y = sinx · ln(x2 + 1)

Differentiate implicitly:

1

y

dy

dx
=

d

dx
[sinx · ln(x2 + 1)]

1

y

dy

dx
= sinx · 1

x2 + 1
(2x) + ln(x2 + 1) · (cosx)

dy

dx
= y

[
2x sinx

x2 + 1
+ cosx ln(x2 + 1)

]
dy

dx
= (x2 + 1)sin x

[
2x sinx

x2 + 1
+ cosx ln(x2 + 1)

]

33 Derivatives of Inverse
Trigonometric Functions

33.1 Formulas

d

dx
[sin−1 u] =

1√
1− u2

du

dx

d

dx
[cos−1 u] = − 1√

1− u2

du

dx

d

dx
[tan−1 u] =

1

1 + u2

du

dx
d

dx
[cot−1 u] = − 1

1 + u2

du

dx
d

dx
[sec−1 u] =

1

|u|
√
u2 − 1

du

dx

d

dx
[csc−1 u] = − 1

|u|
√
u2 − 1

du

dx

©www.RanaMaths.com Page Number 18

33.2 Example

Find dy
dx for y = sec−1(ex).

dy

dx
=

1

|ex|
√
(ex)2 − 1

· d

dx
(ex)

=
1

ex
√
e2x − 1

· ex

=
1√

e2x − 1

34 Lecture 15: Linearization and
Differentials

34.1 Linearization

If f is differentiable at x = a, then the approximating
function:

L(x) = f(a) + f ′(a)(x− a)

is the linearization of f at a. The approximation f(x) ≈
L(x) is the standard linear approximation of f at a. The
point x = a is the center of the approximation.

34.1.1 Examples

1. Local Linearization of Square Root

(a) Find the local linearization of f(x) =
√
x at a = 1.

(b) Use the linearization to approximate
√
1.1.

Solution:

(a) Find the derivative and value at a = 1:

f(x) =
√
x =⇒ f(1) = 1

f ′(x) =
1

2
√
x

=⇒ f ′(1) =
1

2
√
1
=

1

2

Construct the linearization function:

L(x) = f(1) + f ′(1)(x− 1) = 1 +
1

2
(x− 1)

(b) Approximate
√
1.1:

√
1.1 ≈ L(1.1) = 1+

1

2
(1.1−1) = 1+

1

2
(0.1) = 1.05

(Actual value ≈ 1.0488)

2. Linearization of Sine Find the linearization of
f(x) = sinx at a = 0 and approximate sin(2◦).
Solution:

f(x) = sinx =⇒ f(0) = 0

f ′(x) = cosx =⇒ f ′(0) = 1

Linearization:

L(x) = 0 + 1(x− 0) =⇒ L(x) = x

To approximate sin(2◦), first convert degrees to radians:

2◦ = 2× π

180
≈ 0.0349 radians

Approximation:

sin(2◦) ≈ L(0.0349) = 0.0349
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34.2 Differentials

Let y = f(x) be a differentiable function. The differen-
tial dx is an independent variable. The differential dy is
defined as:

dy = f ′(x)dx

34.2.1 Examples

1. Relationship between dy and dx For y = x2, find
dy at x = 1.

dy = 2xdx =⇒ at x = 1, dy = 2dx

2. Comparing ∆y and dy Given y =
√
x:

(a) Find ∆y and dy.

(b) Evaluate ∆y and dy at x = 4 with ∆x = dx = 3.

Solution:

(a) Formulas:

∆y = f(x+∆x)− f(x) =
√
x+∆x−

√
x

dy = f ′(x)dx =
1

2
√
x
dx

(b) Evaluate at x = 4,∆x = 3:

∆y =
√
4 + 3−

√
4 =

√
7− 2 ≈ 2.65− 2 = 0.65

dy =
1

2
√
4
(3) =

3

4
= 0.75

34.3 Error in Differential Approxima-
tion

� True change: ∆f = f(a+∆x)− f(a)

� Differential estimate: df = f ′(a)∆x

� Approximation error: |∆f − df |

As dx → 0, the error ϵ → 0.

35 Related Rates

The problem of finding a rate of change from other
known rates of change is called a related rates problem.

35.1 Examples

1. Spherical Balloon Volume V = 4
3πr

3. Differenti-
ate with respect to time t:

dV

dt
= 4πr2

dr

dt

2. Area of a Circle Area A = πr2. equation* relating
rates:

dA

dt
= 2πr

dr

dt

3. Linear Relation Given y = 5x and dx
dt = 2. Find

dy
dt .

dy

dt
= 5

dx

dt
= 5(2) = 10

4. Multi-variable equation* Given r+ s2 + v3 = 12,
dr
dt = 4, and ds

dt = −3. Find dv
dt when r = 3, s = 1, and

v = 2.
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Solution: Differentiate the equation* with respect to t:

dr

dt
+ 2s

ds

dt
+ 3v2

dv

dt
= 0

Substitute known values:

4 + 2(1)(−3) + 3(2)2
dv

dt
= 0

4− 6 + 12
dv

dt
= 0

−2 + 12
dv

dt
= 0

12
dv

dt
= 2 =⇒ dv

dt
=

1

6

5. Volume of a Cylinder Volume V = πr2h. How is
dV
dt related to dh

dt and dr
dt ?

(a) r is constant:

dV

dt
= πr2

dh

dt

(b) h is constant:

dV

dt
= 2πrh

dr

dt

(c) Neither is constant (Product Rule):

dV

dt
= π

(
r2

dh

dt
+ h · 2r dr

dt

)
= πr2

dh

dt
+ 2πrh

dr

dt

36 Related Rates

36.1 Question 6

Given x = y3 − y and dy
dt = 5. What is dx

dt when y = 2?
Solution: Differentiating x with respect to t:

dx

dt
= (3y2 − 1)

dy

dt

Substitute y = 2 and dy
dt = 5:

dx

dt
= [3(2)2 − 1](5)

= (12− 1)(5)

= 11(5) = 55

Note: The lecture note calculation shows 3(2)2(5)−5 =
60− 5 = 55.

36.2 Question 11

The edge length x of a cube decreases at the rate of 5
m/min. When x = 3m, at what rate does the cube’s (a)
surface area and (b) volume change?
Given: dx

dt = −5 m/min.
(a) Surface Area Change The surface area of a cube
is S = 6x2.

dS

dt
= 12x

dx

dt

At x = 3 :
dS

dt
= 12(3)(−5)

= −180 m2/min
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(b) Volume Change The volume of a cube is V = x3.

dV

dt
= 3x2 dx

dt

At x = 3 :
dV

dt
= 3(3)2(−5)

= 3(9)(−5)

= −135 m3/min

36.3 Question 29: Hemispherical Bowl

Water is draining from a hemispherical bowl of radius
13 m at the rate of 6 m3/min. The volume of water in a
spherical bowl is given by V = π

3 y
2(3R− y), where y is

the depth of the water and R is the radius of the bowl.
Given:

� R = 13 m

�
dV
dt = −6 m3/min

(a) Rate of change of water level Find dy
dt when

y = 8 m.
Differentiate the volume formula with respect to t:

V =
π

3
(3Ry2 − y3)

dV

dt
=

π

3

[
6Ry

dy

dt
− 3y2

dy

dt

]
dV

dt
= π(2Ry − y2)

dy

dt

Solve for dy
dt :

dy

dt
=

1

π(2Ry − y2)

dV

dt

Substitute R = 13, y = 8, and dV
dt = −6:

dy

dt
=

−6

π[2(13)(8)− (8)2]

=
−6

π[208− 64]

=
−6

144π
= − 1

24π
m/min

(b) Rate of change of the radius of the water
surface Let r be the radius of the water surface. From
the geometry of the sphere (Pythagorean theorem on
the cross-section):

R2 = r2 + (R− y)2

Substitute R = 13:

169 = r2 + (13− y)2

r2 = 169− (169− 26y + y2)

r2 = 26y − y2

r =
√
26y − y2

(c) Find dr
dt when y = 8 Differentiate r with respect

to t:

dr

dt
=

d

dt
(26y − y2)1/2

=
1

2
(26y − y2)−1/2(26− 2y)

dy

dt

=
13− y√
26y − y2

dy

dt
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Substitute y = 8 and dy
dt = − 1

24π :

dr

dt
=

13− 8√
26(8)− 64

(
− 1

24π

)
=

5√
208− 64

(
− 1

24π

)
=

5√
144

(
− 1

24π

)
=

5

12

(
− 1

24π

)
= − 5

288π
m/min

37 Points of Non-differentiability

A function fails to be differentiable at a point for the
following reasons:

1. Discontinuity

2. Corner

3. Points of Vertical Tangency

4. Cusp

37.1 Corner

Example: f(x) = |x|. Using the definition of the deriva-
tive at x = 0:

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

Since |x| = x for x ≥ 0 and |x| = −x for x < 0:
Left-hand derivative:

f ′(0−) = lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

−h

h
= −1

Right-hand derivative:

f ′(0+) = lim
h→0+

h

h
= 1

Since the left and right limits are not equal, f(x) is not
differentiable at x = 0.

37.2 Points of Vertical Tangency

We say that a continuous curve y = f(x) has a vertical
tangent at x if:

lim
h→0

f(x+ h)− f(x)

h
= ∞ or −∞

This means the slope of the tangent line becomes unde-
fined (vertical).
Example: Consider y = x1/3. Find the derivative at
x = 0:

f ′(0) = lim
h→0

(0 + h)1/3 − 01/3

h

= lim
h→0

h1/3

h

= lim
h→0

1

h2/3
= ∞
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37.3 Cusp

A cusp occurs when the derivative approaches ∞ from
one side and −∞ from the other.
Example: Consider y = x2/3. Find the derivative at
x = 0:

f ′(0) = lim
h→0

(0 + h)2/3 − 02/3

h

= lim
h→0

h2/3

h
= lim

h→0

1

h1/3

Analyzing the limits from both sides:

� Right-hand limit: limh→0+
1

h1/3 = +∞

� Left-hand limit: limh→0−
1

h1/3 = −∞

Thus, there is a cusp at x = 0.

38 Extreme Values of Functions

38.1 Definitions

Let f be a function with domain D. Then f has an
absolute maximum value on D at a point c if:

f(x) ≤ f(c) for all x in D

And an absolute minimum value at c if:

f(x) ≥ f(c) for all x in D

Minimum and maximum values are called extreme val-
ues. Maxima and minima are also referred to as global
maxima or minima.

38.2 Examples

1. y = x2 on (−∞,∞):

� No absolute maximum.

� Absolute minimum of 0 at x = 0.

2. y = x2 on [0, 2]:

� Absolute maximum of 4 at x = 2.

� Absolute minimum of 0 at x = 0.

3. y = x2 on (0, 2]:

� Absolute maximum of 4 at x = 2.

� No absolute minimum (since x = 0 is not in-
cluded).

4. y = x2 on (0, 2):

� No absolute maximum.

� No absolute minimum.

39 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f at-
tains both an absolute maximum value M and an abso-
lute minimum value m in [a, b]. That is, there are num-
bers x1 and x2 in [a, b] with f(x1) = m and f(x2) = M
such that:

m ≤ f(x) ≤ M for every other x in [a, b]
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40 Local Extreme Values

Definition: A function f has a local maximum value at
a point c within its domainD if f(x) ≤ f(c) for all x ∈ D
lying in some open interval containing c. Similarly, f has
a local minimum value at c if f(x) ≥ f(c) for all x in an
open interval containing c.

40.1 The First Derivative Theorem for
Local Extreme Values

If f has a local maximum or minimum value at an in-
terior point c of its domain, and if f ′ is defined at c,
then:

f ′(c) = 0

41 Critical Point

An interior point of the domain of a function f where
f ′ is zero or undefined is a critical point of f .

41.1 Examples

1. Find all critical points of f(x) = x3 − 3x+ 1.

f ′(x) = 3x2 − 3 = 0

3(x2 − 1) = 0

3(x+ 1)(x− 1) = 0

x = 1, x = −1

2. Find all critical points of f(x) = 3x5/3 − 15x2/3.

f ′(x) = 3

(
5

3

)
x2/3 − 15

(
2

3

)
x−1/3

= 5x2/3 − 10x−1/3

= 5x−1/3(x− 2) =
5(x− 2)

x1/3

� f ′(x) = 0 if x = 2.

� f ′(x) is undefined if x = 0.

Thus, x = 0 and x = 2 are critical points.

42 Rolle’s Theorem

Suppose that y = f(x) is continuous over the closed
interval [a, b] and differentiable at every point of its in-
terior (a, b). If f(a) = f(b), then there is at least one
number c in (a, b) at which f ′(c) = 0.

42.1 Example

f(x) = x2 − 5x+ 6 on [2, 3].

� f(2) = 4− 10 + 6 = 0

� f(3) = 9− 15 + 6 = 0

� f(a) = f(b), so Rolle’s Theorem applies.

Find c:

f ′(x) = 2x− 5

f ′(c) = 0 =⇒ 2c− 5 = 0 =⇒ c =
5

2
= 2.5

Since 2.5 ∈ (2, 3), the theorem is verified.
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43 Mean Value Theorem

Suppose y = f(x) is continuous over a closed interval
[a, b] and differentiable on the interval (a, b). Then there
is at least one point c in (a, b) at which:

f ′(c) =
f(b)− f(a)

b− a

43.1 Example

Find c for f(x) on [0, 2] such that the tangent is parallel
to the secant line passing through (0, 0) and (2, 4). (
implied f(x) = x2 )

Slope m =
4− 0

2− 0
= 2

f ′(x) = 2x =⇒ f ′(c) = 2c

2c = 2 =⇒ c = 1

44 Monotonic Functions and
First Derivative Test

Corollary: Suppose that f is continuous on [a, b] and
differentiable on (a, b).

� If f ′(x) > 0 at each point x ∈ (a, b), then f is
increasing on [a, b].

� If f ′(x) < 0 at each point x ∈ (a, b), then f is
decreasing on [a, b].

44.1 Examples

1. Find intervals of increase/decrease for f(x) =
x2 − 4x+ 3.

f ′(x) = 2x− 4 = 2(x− 2)

� f ′(x) ≥ 0 if x > 2 (Increasing on [2,∞))

� f ′(x) < 0 if x < 2 (Decreasing on (−∞, 2])

2. Find intervals for f(x) = x3. f ′(x) = 3x2. Since
3x2 ≥ 0 for all x, f is increasing on (−∞,∞).
3. Find intervals for f(x) = 3x4 + 4x3 − 12x2 + 21.

f ′(x) = 12x3 + 12x2 − 24x

= 12x(x2 + x− 2)

= 12x(x+ 2)(x− 1)

Critical points: x = 0, x = −2, x = 1. Testing intervals:

� x < −2: (−)(−)(−) =⇒ Decreasing on (−∞,−2)

� −2 < x < 0: (−)(+)(−) =⇒ Increasing on
(−2, 0)

� 0 < x < 1: (+)(+)(−) =⇒ Decreasing on (0, 1)

� x > 1: (+)(+)(+) =⇒ Increasing on (1,∞)
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45 Curve Sketching

45.1 Procedure

To sketch the graph of a function y = f(x), follow these
steps:

1. Identify the domain of the function.

2. Find the derivatives y′ and y′′.

3. Find the critical points of f (where f ′(x) = 0 or
is undefined) and identify the behavior at each.

4. Find intervals where the curve is increasing or de-
creasing.

5. Find points of inflection and determine the con-
cavity (f ′′ > 0 concave up, f ′′ < 0 concave down).

6. Identify asymptotes that may exist (vertical, hor-
izontal, or oblique).

7. Plot key points, such as intercepts and the points
found in steps 3-5, and sketch the curve together
with any asymptotes.

45.2 Example 1: Polynomial Function

Sketch the graph of f(x) = x4 − 4x3 + 10.
1. Domain: (−∞,∞)
2. Derivatives:

f ′(x) = 4x3 − 12x2

f ′′(x) = 12x2 − 24x

3. Critical Points: Set f ′(x) = 0:

4x3 − 12x2 = 0

4x2(x− 3) = 0

Critical points are x = 0 and x = 3.
4. Intervals of Increase/Decrease:

� (−∞, 0): Test x = −1 =⇒ f ′(−1) = −4 − 12 =
−16 < 0 (Decreasing)

� (0, 3): Test x = 1 =⇒ f ′(1) = 4 − 12 = −8 < 0
(Decreasing)

� (3,∞): Test x = 4 =⇒ f ′(4) = 4(64)− 12(16) >
0 (Increasing)

Conclusion:

� No relative extremum at x = 0 (sign does not
change).

� Relative minimum at x = 3. Value f(3) = 81 −
108 + 10 = −17.

5. Concavity and Inflection Points: Set f ′′(x) = 0:

12x2 − 24x = 0

12x(x− 2) = 0

Possible inflection points at x = 0 and x = 2.

� (−∞, 0): Test x = −1 =⇒ f ′′(−1) = 12+24 > 0
(Concave Up)
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� (0, 2): Test x = 1 =⇒ f ′′(1) = 12 − 24 < 0
(Concave Down)

� (2,∞): Test x = 3 =⇒ f ′′(3) > 0 (Concave Up)

Inflection points are at x = 0 (y = 10) and x = 2
(y = 16− 32 + 10 = −6).

45.3 Example 2: General Shape from
Derivative

Sketch the general shape knowing y′ = 2 + x− x2.
Critical Points:

2 + x− x2 = 0

(2− x)(1 + x) = 0 =⇒ x = 2, x = −1

Intervals:

� (−∞,−1): y′ < 0 (Decreasing)

� (−1, 2): y′ > 0 (Increasing)

� (2,∞): y′ < 0 (Decreasing)

Local minimum at x = −1, Local maximum at x = 2.
Concavity: y′′ = 1− 2x. Inflection point at x = 1/2.

� x < 1/2: y′′ > 0 (Concave Up)

� x > 1/2: y′′ < 0 (Concave Down)

46 Plotting Rational Functions

46.1 Example 3

Sketch the graph of f(x) = x2+4
2x .

1. Domain: (−∞, 0) ∪ (0,∞)
2. Derivatives: Rewrite as f(x) = x

2 +
2
x = 1

2x+2x−1.

f ′(x) =
1

2
− 2

x2
=

x2 − 4

2x2

f ′′(x) =
4

x3

3. Critical Points: f ′(x) = 0 =⇒ x2 − 4 = 0 =⇒
x = ±2.

� At x = −2: f ′(−3) > 0 (Inc), f ′(−1) < 0 (Dec)
=⇒ Relative Max.

� At x = 2: f ′(1) < 0 (Dec), f ′(3) > 0 (Inc) =⇒
Relative Min.

4. Concavity:

� x < 0: f ′′(x) < 0 (Concave Down)

� x > 0: f ′′(x) > 0 (Concave Up)

5. Asymptotes:

� Vertical Asymptote: x = 0.

� Oblique Asymptote: y = x
2 (since f(x) = x

2 + 2
x

and 2
x → 0 as x → ∞).
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46.2 Example 4

Sketch y = −x2−2
x2−1 = 2−x2

x2−1 .
1. Domain: R \ {−1, 1}
2. Derivatives:

y′ =
−2x

(x2 − 1)2

y′′ =
2(3x2 + 1)

(x2 − 1)3

3. Analysis:

� Critical Point: x = 0. y′(0) = 0.

� Test: For x < 0, y′ > 0 (Increasing). For x > 0,
y′ < 0 (Decreasing).

� Extremum: Local Maximum at (0,−2).

4. Asymptotes:

� Vertical Asymptotes: x = 1, x = −1.

� Horizontal Asymptote: y = −1 (limit as x → ∞).

47 Second Derivative Test for
Local Extrema

1. If f ′(c) = 0 and f ′′(c) < 0, then f has a local
maximum at x = c.

2. If f ′(c) = 0 and f ′′(c) > 0, then f has a local
minimum at x = c.

3. If f ′(c) = 0 and f ′′(c) = 0, then the test fails.

47.1 Example

Find the local extrema of f(x) = 3x5 − 5x3.
Solution: Find derivatives:

f ′(x) = 15x4 − 15x2

f ′′(x) = 60x3 − 30x

Find critical points (f ′(x) = 0):

15x4 − 15x2 = 0

15x2(x2 − 1) = 0

15x2(x− 1)(x+ 1) = 0

Critical points are x = 0, x = 1, x = −1.
Testing Critical Points:

� At x = −1:

f ′′(−1) = 60(−1)3−30(−1) = −60+30 = −30 < 0

Local Maximum.

� At x = 1:

f ′′(1) = 60(1)3 − 30(1) = 60− 30 = 30 > 0

Local Minimum.

� At x = 0:
f ′′(0) = 0

Test Inconclusive. (First derivative test would
show f decreases on both sides, so no extremum).
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48 Indeterminate Forms and
L’Hopital’s Rule

48.1 Introduction

John Bernoulli discovered a rule for calculating limits
of fractions whose numerators and denominators both
approach zero. The rule is known as L’Hopital’s Rule.
Theorem: Suppose f(a) = 0 and g(a) = 0, and that f
and g are differentiable on an open interval I containing
a. Then:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided the limit on the right exists.

48.2 Examples (0/0 Form)

1. Evaluate limx→0
3x−sin x

x . Substitution gives 0/0.
Apply L’Hopital’s Rule:

lim
x→0

3− cosx

1
= 3− 1 = 2

2. Evaluate limx→0

√
1+x−1
x . Substitution gives 0/0.

Apply Rule:

lim
x→0

1
2
√
1+x

1
=

1

2

3. Evaluate limx→0
x−sin x

x3 . Substitution gives 0/0.

lim
x→0

1− cosx

3x2
=

(
0

0

)
lim
x→0

sinx

6x
=

(
0

0

)
lim
x→0

cosx

6
=

1

6

48.3 Indeterminate Forms (∞/∞,∞ ·
0,∞−∞)

L’Hopital’s Rule also applies if lim f(x) = ±∞ and
lim g(x) = ±∞.
Examples: 1. Evaluate limx→∞

x
ex . Form ∞/∞.

lim
x→∞

1

ex
= 0

2. Evaluate limx→0+ x lnx. Form 0 · (−∞). Rewrite
as ln x

1/x (Form −∞/∞):

lim
x→0+

lnx

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0

3. Evaluate limx→0(
1
x−

1
sin x ). Form ∞−∞. Combine

fractions:

lim
x→0

sinx− x

x sinx

(
0

0

)
Apply Rule:

lim
x→0

cosx− 1

x cosx+ sinx

(
0

0

)
Apply Rule again:

lim
x→0

− sinx

−x sinx+ cosx+ cosx
=

0

0 + 1 + 1
= 0
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49 Applied Optimization

49.1 Example 1: Sum and Product

Find two numbers whose sum is 60 and whose product
is a maximum.
Solution: Let x and y be the two numbers.

Sum: S = x+ y = 60 =⇒ y = 60− x

Product: P = xy

Substitute y into the product equation*:

P (x) = x(60− x)

P (x) = 60x− x2

To find the maximum, find the derivative and set it to
zero:

P ′(x) = 60− 2x = 0

2x = 60 =⇒ x = 30

Find y:
y = 60− 30 = 30

Maximum Product: P = (30)(30) = 900.

49.2 Example 2: Difference and Prod-
uct

Find two numbers whose difference is 40 and whose
product is a minimum.
Solution: Let x and y be the numbers.

Difference: d = y − x = 40 =⇒ y = 40 + x

Product: P = xy

Substitute y:

P (x) = x(40 + x) = 40x+ x2

Find critical point:

P ′(x) = 40 + 2x = 0

2x = −40 =⇒ x = −20

Find y:
y = 40 + (−20) = 20

Minimum Product: P = (−20)(20) = −400.

49.3 Exercise Q:10 - Rectangular Tank

A 1125 ft3 open-top rectangular tank with a square base
x ft on a side and y ft deep is to be built with its top
flush with the ground to catch runoff water. The costs
associated with the tank involve not only the material
from which the tank is made but also the cost of exca-
vation.
Given Information (inferred from standard opti-
mization problems of this type):

� Volume V = x2y = 1125.

� Minimize Cost (Material + Excavation).
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(Note: The full cost function details are cut off in the
provided text, but the setup usually involves minimizing
surface area or a weighted cost function subject to the
volume constraint).
General Setup: Constraint: y = 1125

x2 . Surface Area
(Open Top): A = x2 + 4xy. Substitute y:

A(x) = x2 + 4x

(
1125

x2

)
= x2 +

4500

x

To minimize, differentiate:

A′(x) = 2x−4500

x2
= 0 =⇒ 2x3 = 4500 =⇒ x3 = 2250

(Solution continues based on specific cost parameters if
they were distinct from area).

50 Newton’s Method

Newton’s method is a technique to approximate the
roots of a real-valued function f(x) = 0.

50.1 Derivation

Given a function y = f(x) and an initial guess xn. The
equation* of the tangent line at (xn, f(xn)) is:

y − f(xn) = f ′(xn)(x− xn)

To find the next approximation xn+1, we find where this
tangent line crosses the x-axis (set y = 0 and solve for
x):

0− f(xn) = f ′(xn)(x− xn)

− f(xn)

f ′(xn)
= x− xn

x = xn − f(xn)

f ′(xn)

Thus, the iterative formula is:

xn+1 = xn − f(xn)

f ′(xn)
, provided f ′(xn) ̸= 0

50.2 Example 1

Find the positive root of the equation* f(x) = x2 − 2 =
0.

f(x) = x2 − 2

f ′(x) = 2x

Formula: xn+1 = xn − x2
n−2
2xn

.
Let initial guess x0 = 1.

� Iteration 1:

x1 = 1− 12 − 2

2(1)
= 1− −1

2
= 1.5

� Iteration 2:

x2 = 1.5− (1.5)2 − 2

2(1.5)
= 1.5−2.25− 2

3
= 1.5−0.25

3
≈ 1.4167
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50.3 Example 2

Find the x-coordinate of the point where the curve y =
x3 − x crosses the horizontal line y = 1. equation* to
solve: x3 − x = 1 =⇒ x3 − x− 1 = 0.

f(x) = x3 − x− 1

f ′(x) = 3x2 − 1

Formula: xn+1 = xn − x3
n−xn−1
3x2

n−1 .

Let guess x0 = 1.5.

� Iteration 1:

x1 = 1.5− (1.5)3 − 1.5− 1

3(1.5)2 − 1

= 1.5− 3.375− 2.5

6.75− 1
= 1.5− 0.875

5.75
≈ 1.3478

51 Antiderivatives

51.1 Definition

A function F (x) is an antiderivative of f(x) if F ′(x) =
f(x) for all x in the domain. The general antiderivative
is denoted by: ∫

f(x) dx = F (x) + C

where C is an arbitrary constant.

51.2 Power Rule for Integration∫
xn dx =

xn+1

n+ 1
+ C, n ̸= −1

51.3 Examples

1. Find the general antiderivative of f(x) = x2.∫
x2 dx =

x3

3
+ C

2. Find the antiderivative of f(x) = 1
x3 = x−3.∫

x−3 dx =
x−2

−2
+ C = − 1

2x2
+ C

3. Find the general antiderivative of f(x) = sinx.∫
sinx dx = − cosx+ C

52 Initial Value Problems

A differential equation* dy
dx = f(x) with an initial con-

dition y(x0) = y0 is called an initial value problem.

52.1 Example

Find the curve y = f(x) whose derivative is dy
dx = 3x2−1

and which passes through the point (1, 4).

1. Integrate to find the general solution:

y =

∫
(3x2 − 1) dx = x3 − x+ C
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2. Apply initial condition y(1) = 4:

4 = (1)3 − (1) + C =⇒ 4 = 0 + C =⇒ C = 4

3. Particular Solution:

y = x3 − x+ 4

52.2 Physics Application

Derive the equation* of position s for a body moving
with constant acceleration a, initial velocity v0, and ini-
tial position s0.

d2s

dt2
= a

ds

dt
=

∫
a dt = at+ C1

At t = 0, velocity is v0, so C1 = v0. Thus, v(t) = at+v0.

s(t) =

∫
(at+ v0) dt =

1

2
at2 + v0t+ C2

At t = 0, position is s0, so C2 = s0.

s(t) =
1

2
at2 + v0t+ s0

53 Absolute Extrema on Closed
Intervals

53.1 Example 1

Find the absolute values of the function f(x) = 4x3 −
39x2 + 90x+ 2 on [1, 6].
Solution: Find the derivative and critical points:

f ′(x) = 12x2 − 78x+ 90 = 0

6(2x2 − 13x+ 15) = 0

2x2 − 13x+ 15 = 0

2x2 − 10x− 3x+ 15 = 0

2x(x− 5)− 3(x− 5) = 0

(2x− 3)(x− 5) = 0

Critical points: x = 3
2 = 1.5 and x = 5.

Evaluate f(x) at critical points and endpoints
{1, 1.5, 5, 6}:

� f(1) = 4(1)3−39(1)2+90(1)+2 = 4−39+90+2 =
57

� f(1.5) = 62.75

� f(5) = −23

� f(6) = 2 (Wait, checking calculation: 4(216) −
39(36) + 90(6) + 2 = 864− 1404 + 540 + 2 = 2)

Conclusion:

� Absolute Maximum: 62.75 at x = 1.5

� Absolute Minimum: −23 at x = 5
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53.2 Example 2

Find the absolute extrema of g(t) = 8t− t4 on [−2, 1].
Solution:

g′(t) = 8− 4t3

Set g′(t) = 0:

4t3 = 8

t3 = 2 =⇒ t =
3
√
2 ≈ 1.26

The critical point t = 3
√
2 is not in the interval [−2, 1].

Evaluate at endpoints:

� g(−2) = 8(−2)− (−2)4 = −16− 16 = −32 (Mini-
mum)

� g(1) = 8(1)− (1)4 = 7 (Maximum)

54 Local Extrema

54.1 Example 1

Identify local maximum and minimum values of f(x) =
x2 − 4x.
Solution:

f ′(x) = 2x− 4 = 2(x− 2)

Critical point at x = 2.

� For x < 2, f ′(x) < 0 (Decreasing)

� For x > 2, f ′(x) > 0 (Increasing)

Local minimum at x = 2. Value: f(2) = (2)2 − 4(2) =
4− 8 = −4.

54.2 Example 2

Find local extrema for f(x) = 2x3 + 3x2 − 12x.
Solution:

f ′(x) = 6x2 + 6x− 12

= 6(x2 + x− 2)

= 6(x+ 2)(x− 1)

Critical points: x = −2 and x = 1.
Test intervals:

� At x = −2: Local Maximum.

� At x = 1: Local Minimum.

Evaluate:

f(−2) = 2(−2)3+3(−2)2−12(−2) = −16+12+24 = 20

54.3 Example 3 (Trigonometric)

Find extrema for f(x) = sin 2x on [0, π].
Solution:

f ′(x) = 2 cos 2x

Set f ′(x) = 0:

cos 2x = 0 =⇒ 2x =
π

2
,
3π

2
=⇒ x =

π

4
,
3π

4

� At x = π/4: Local Maximum.

� At x = 3π/4: Local Minimum.
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55 Concavity and Inflection
Points

55.1 Definition

� Concave Up: f ′ is increasing (f ′′ > 0) on an
open interval I.

� Concave Down: f ′ is decreasing (f ′′ < 0) on an
open interval I.

� Inflection Point: A point where the concavity
changes.

55.2 Example 4

Analyze concavity for f(x) = x3 − 9x2 + 7x.
Solution:

f ′(x) = 3x2 − 18x+ 7

f ′′(x) = 6x− 18

Set f ′′(x) = 0 =⇒ 6(x− 3) = 0 =⇒ x = 3.

� x < 3: f ′′ < 0 (Concave Down on (−∞, 3)).

� x > 3: f ′′ > 0 (Concave Up on (3,∞)).

Inflection point at x = 3:

f(3) = 33 − 9(3)2 + 7(3) = 27− 81 + 21 = −33

Point: (3,−33).

55.3 Example 5

Analyze concavity for f(x) = x4 + 4x3 + 1.
Solution:

f ′(x) = 4x3 + 12x2

f ′′(x) = 12x2 + 24x

Set f ′′(x) = 0:

12x(x+ 2) = 0 =⇒ x = 0, x = −2

Sign Chart for f ′′:

� (−∞,−2): f ′′ > 0 (Concave Up).

� (−2, 0): f ′′ < 0 (Concave Down).

� (0,∞): f ′′ > 0 (Concave Up).

Inflection points at:

� x = 0 =⇒ f(0) = 1. Point (0, 1).

� x = −2 =⇒ f(−2) = 16 − 32 + 1 = −15. Point
(−2,−15).

56 Second Derivative Test for
Local Extrema

1. If f ′(c) = 0 and f ′′(c) < 0, then f has a local
maximum at c.

2. If f ′(c) = 0 and f ′′(c) > 0, then f has a local
minimum at c.
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56.1 Example 6

Find local extrema for f(x) = 2x3 − 12x2.
Solution:

f ′(x) = 6x2 − 24x = 6x(x− 4)

f ′′(x) = 12x− 24

Critical points: x = 0, x = 4.

� At x = 0: f ′′(0) = −24 < 0 =⇒ Local Max.

� At x = 4: f ′′(4) = 48 − 24 = 24 > 0 =⇒ Local
Min.

56.2 Example 7

Find local extrema for f(x) = 4x3 − 6x2 − 24x+ 1.
Solution:

f ′(x) = 12x2 − 12x− 24 = 12(x2 − x− 2) = 12(x− 2)(x+ 1)

f ′′(x) = 24x− 12

Critical points: x = 2, x = −1.

� At x = −1: f ′′(−1) = −24 − 12 = −36 < 0 =⇒
Local Max.

� At x = 2: f ′′(2) = 48 − 12 = 36 > 0 =⇒ Local
Min.

57 5.3 The Definite Integral

57.1 Definitions

The symbol
∫
is the integral sign. The function f(x) is

the integrand, x is the variable of integration, a is the
lower limit of integration, and b is the upper limit of
integration.

58 Properties of Definite Inte-
grals

58.1 Rules Satisfied by Definite Inte-
grals

1. Order of Integration:∫ a

b

f(x) dx = −
∫ b

a

f(x) dx

2. Zero Width Interval:∫ a

a

f(x) dx = 0

3. Constant Multiple:∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx

4. Sum and Difference:∫ b

a

(f(x)± g(x)) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx
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5. Additivity: If f is integrable on the three inter-
vals determined by a, b, and c:∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

6. Max-Min Inequality: If f has a maximum value
max f and minimum value min f on [a, b], then:

min f · (b− a) ≤
∫ b

a

f(x) dx ≤ max f · (b− a)

7. Domination:

� If f(x) ≥ g(x) on [a, b], then
∫ b

a
f(x) dx ≥∫ b

a
g(x) dx.

� If f(x) ≥ 0 on [a, b], then
∫ b

a
f(x) dx ≥ 0.

59 Examples

59.1 Example: Additivity

Given
∫ 1

−1
f(x) dx = −2 and

∫ 4

1
f(x) dx = 5. Evaluate∫ 4

−1
f(x) dx.∫ 4

−1

f(x) dx =

∫ 1

−1

f(x) dx+

∫ 4

1

f(x) dx

= −2 + 5 = 3

59.2 Example: Max-Min Inequality

Show that
∫ 1

0

√
1 + cosx dx ≤

√
2.

Solution: We know that
∫ b

a
f(x) dx ≤ max f · (b − a).

The maximum value of
√
1 + cosx on [0, 1] occurs at

x = 0 (since cosine decreases on [0, 1]).

max f =
√
1 + cos 0 =

√
1 + 1 =

√
2

Therefore:∫ 1

0

√
1 + cosx dx ≤

√
2 · (1− 0) =

√
2

59.3 Average Value

The average value of a continuous function on [a, b] is
defined as:

av(f) =
1

b− a

∫ b

a

f(x) dx

60 Exercises 5.3

60.1 Question 10

Given:
∫ 9

1
f(x) dx = −1,

∫ 9

7
f(x) dx = 5,

∫ 9

7
h(x) dx =

4.
(a) Find

∫ 9

1
−2f(x) dx.

−2

∫ 9

1

f(x) dx = −2(−1) = 2

(b) Find
∫ 9

7
[f(x) + h(x)] dx.∫ 9

7

f(x) dx+

∫ 9

7

h(x) dx = 5 + 4 = 9
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(c) Find
∫ 7

1
f(x) dx.∫ 9

1

f(x) dx =

∫ 7

1

f(x) dx+

∫ 9

7

f(x) dx

−1 =

∫ 7

1

f(x) dx+ 5 =⇒
∫ 7

1

f(x) dx = −6

60.2 Question 41

Evaluate
∫ 1

3
7 dx.∫ 1

3

7 dx = [7x]13 = 7(1)− 7(3) = 7− 21 = −14

60.3 Question 55

Find the average value of f(x) = x2 − 1 on [0,
√
3].

av(f) =
1√
3− 0

∫ √
3

0

(x2 − 1) dx

=
1√
3

[
x3

3
− x

]√3

0

=
1√
3

[(
(
√
3)3

3
−

√
3

)
− 0

]

=
1√
3

[
3
√
3

3
−

√
3

]

=
1√
3
[
√
3−

√
3] = 0

60.4 Question 72

Maximize: For what values of a and b is the integral∫ b

a
(x−x2) dx maximized? To maximize the integral, we

integrate over the interval where the integrand is non-
negative.

x− x2 ≥ 0 =⇒ x(1− x) ≥ 0

This holds for 0 ≤ x ≤ 1. Thus, a = 0 and b = 1.
Minimize: For what values of a and b is the integral∫ b

a
(x4 − 2x2) dx minimized? We integrate over the in-

terval where the integrand is negative.

x4 − 2x2 ≤ 0

x2(x2 − 2) ≤ 0

Since x2 ≥ 0, we need x2 − 2 ≤ 0 =⇒ x2 ≤ 2 =⇒
−
√
2 ≤ x ≤

√
2. Thus, a = −

√
2 and b =

√
2.

61 5.4 The Fundamental Theo-
rem of Calculus

Theorem (Mean Value Theorem for Definite In-
tegrals): If f is continuous on [a, b], then at some point
c in [a, b]:

f(c) =
1

b− a

∫ b

a

f(x) dx

Theorem (Part 1): If f is continuous on [a, b], then
F (x) =

∫ x

a
f(t) dt is continuous on [a, b] and differen-

tiable on (a, b).
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62 5.5 Indefinite Integrals and
Substitution Method

62.1 Indefinite Integrals

The indefinite integral is defined as:∫
f(x) dx = F (x) + C

62.2 Properties of Indefinite Integrals

Suppose that F (x) and G(x) are antiderivatives of f(x)
and g(x) respectively, and that k is a constant. Then:

1. Constant Multiple Rule: A constant factor can
be moved through an integral sign.∫

kf(x) dx = k

∫
f(x) dx = kF (x) + C

2. Sum Rule: An antiderivative of a sum is the sum
of the antiderivatives.

∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx

= F (x) +G(x) + C

3. Difference Rule:∫
[f(x)− g(x)] dx =

∫
f(x) dx−

∫
g(x) dx

= F (x)−G(x) + C

62.3 Examples

1. Evaluate
∫
4 cosx dx:

4

∫
cosx dx = 4 sinx+ C

2. Evaluate
∫
(x+ x2) dx:∫

x dx+

∫
x2 dx =

x2

2
+

x3

3
+ C

3. Evaluate
∫

cos x
sin2 x

dx: Rewrite using trigonometric
identities:∫

1

sinx
· cosx
sinx

dx =

∫
cscx cotx dx

= − cscx+ C

62.4 Substitution Method

If u = g(x) is a differentiable function whose range is an
interval I, and f is continuous on I, then:∫

f(g(x))g′(x) dx =

∫
f(u) du

62.4.1 Examples of Substitution

1. Evaluate
∫
(x2 + 1)2 · 2x dx: Let u = x2 + 1, then

du = 2x dx.∫
u2 du =

u3

3
+ C =

(x2 + 1)3

3
+ C
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2. Evaluate
∫
cos(7x + 5) dx: Let u = 7x + 5, then

du = 7 dx =⇒ dx = 1
7 du.∫

cosu · 1
7
du =

1

7
sinu+ C =

1

7
sin(7x+ 5) + C

3. Evaluate
∫
x2 sin(x3) dx: Let u = x3, then du =

3x2 dx =⇒ x2 dx = 1
3 du.∫

sinu · 1
3
du = −1

3
cosu+ C = −1

3
cos(x3) + C

4. Evaluate
∫

2z
3√z2+1

dz: Let u = z2 + 1, then du =

2z dz. ∫
1

u1/3
du =

∫
u−1/3 du

=
u2/3

2/3
+ C =

3

2
(z2 + 1)2/3 + C

63 5.6 Definite Integral Substitu-
tions

63.1 Formula∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du

63.2 Examples

1. Evaluate
∫ 1

−1
3x2

√
x3 + 1 dx: Let u = x3 + 1.

� du = 3x2 dx

� Lower limit: x = −1 =⇒ u = (−1)3 + 1 = 0

� Upper limit: x = 1 =⇒ u = (1)3 + 1 = 2

∫ 2

0

√
u du =

∫ 2

0

u1/2 du

=

[
2

3
u3/2

]2
0

=
2

3
(23/2 − 0) =

2

3
(2
√
2) =

4
√
2

3

2. Evaluate
∫ 2

0
x(x2 + 1)3 dx: Let u = x2 + 1 =⇒

du = 2x dx =⇒ x dx = 1
2 du.

� x = 0 =⇒ u = 1

� x = 2 =⇒ u = 5

∫ 5

1

u3 · 1
2
du =

1

2

[
u4

4

]5
1

=
1

8
(54 − 14) =

1

8
(625− 1) =

624

8
= 78

64 Improper Integrals: (1st
Kind)

Integrals with infinite limits of integration are improper
integrals of Type I.
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1. If f(x) is continuous on [a,∞), then:∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

2. If f(x) is continuous on (−∞, b], then:∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx

3. If f(x) is continuous on (−∞,∞), then:∫ ∞

−∞
f(x) dx =

∫ c

−∞
f(x) dx+

∫ ∞

c

f(x) dx

In each case, if the limit is finite, we say that the im-
proper integral converges and the limit is the value
of the improper integral. If the limit fails to exist, the
improper integral diverges.

65 Examples

65.1 Example 1

Is the area under the curve y = ln x
x2 from x = 1 to x = ∞

finite? If so, what is the value?
Solution: ∫ ∞

1

lnx

x2
dx = lim

b→∞

∫ b

1

lnx

x2
dx

Using integration by parts: Let u = lnx =⇒ du =
1
xdx. Let dv = x−2dx =⇒ v = − 1

x .

∫
lnx

x2
dx = − lnx

x
−
∫

− 1

x
· 1
x
dx

= − lnx

x
+

∫
x−2 dx

= − lnx

x
− 1

x

Evaluating limits:

lim
b→∞

[
− lnx

x
− 1

x

]b
1

= lim
b→∞

(
− ln b

b
− 1

b

)
−
(
− ln 1

1
− 1

1

)
= (0− 0)− (0− 1) = 1

(Note: limb→∞
ln b
b = 0 by L’Hopital’s Rule). Thus, the

integral converges to 1.

65.2 Example 2

Evaluate
∫∞
−∞

dx
1+x2 .

Solution:∫ ∞

−∞

dx

1 + x2
=

∫ 0

−∞

dx

1 + x2
+

∫ ∞

0

dx

1 + x2

Evaluating the first part:∫ 0

−∞

dx

1 + x2
= lim

a→−∞
[tan−1 x]0a

= tan−1(0)− lim
a→−∞

tan−1(a)

= 0−
(
−π

2

)
=

π

2
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Evaluating the second part:∫ ∞

0

dx

1 + x2
= lim

b→∞
[tan−1 x]b0

=
π

2
− 0 =

π

2

Total Integral = π
2 + π

2 = π.

66 Improper Integrals: (2nd
Kind)

Integrals of functions with vertical asymptotes (infinite
discontinuity) within the limits of integration.

1. If f(x) is continuous on (a, b] and discontinuous at
a: ∫ b

a

f(x) dx = lim
c→a+

∫ b

c

f(x) dx

2. If f(x) is continuous on [a, b) and discontinuous at
b: ∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx

3. If f is discontinuous at c where a < c < b:∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

66.1 Examples

1. Evaluate
∫ 3

0
dx

(x−1)2/3
: Vertical asymptote at x = 1.∫ 3

0

dx

(x− 1)2/3
=

∫ 1

0

dx

(x− 1)2/3
+

∫ 3

1

dx

(x− 1)2/3

Evaluate first part:

lim
b→1−

∫ b

0

(x− 1)−2/3 dx = lim
b→1−

[3(x− 1)1/3]b0

= 3(0)− 3(−1)1/3 = 3

Evaluate second part:

lim
c→1+

∫ 3

c

(x− 1)−2/3 dx = lim
c→1+

[3(x− 1)1/3]3c

= 3(2)1/3 − 3(0) = 3
3
√
2

Total = 3 + 3 3
√
2.

2. Evaluate
∫ 1

0
1√

1−x2
dx: Discontinuity at x = 1.

lim
b→1−

∫ b

0

1√
1− x2

dx = lim
b→1−

[sin−1 x]b0

= sin−1(1)− sin−1(0)

=
π

2
− 0 =

π

2

67 Convergence Tests

67.1 Limit Comparison Test (LCT)

If f(x) and g(x) are positive continuous functions on
[a,∞), and if:

lim
x→∞

f(x)

g(x)
= L, 0 < L < ∞

then
∫∞
a

f(x) dx and
∫∞
a

g(x) dx both converge or both
diverge.
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67.2 Example

Show that
∫∞
1

dx
1+x2 converges by comparison with∫∞

1
1
x2 dx.

lim
x→∞

f(x)

g(x)
= lim

x→∞

1
1+x2

1
x2

= lim
x→∞

x2

1 + x2
= 1

Since L = 1 (finite and positive) and
∫∞
1

1
x2 dx converges

(p = 2 > 1), the integral
∫∞
1

dx
1+x2 also converges.

67.3 Example

Investigate convergence of
∫∞
1

1−e−x

x dx using g(x) = 1
x .

lim
x→∞

1− e−x

x
· x
1
= lim

x→∞
(1− e−x) = 1− 0 = 1

Since
∫∞
1

1
x dx diverges (harmonic), the given integral

diverges.

68 Integral Formulas

1.
∫
k dx = kx+ C

2.
∫
xn dx = xn+1

n+1 + C, n ̸= −1

3.
∫

dx
x = ln |x|+ C

4.
∫
ex dx = ex + C

5.
∫
ax dx = ax

ln a + C, a > 0, a ̸= 1

6.
∫
sinx dx = − cosx+ C

7.
∫
cosx dx = sinx+ C

8.
∫
sec2 x dx = tanx+ C

9.
∫
csc2 x dx = − cotx+ C

10.
∫
secx tanx dx = secx+ C

11.
∫
cscx cotx dx = − cscx+ C

12.
∫
tanx dx = ln | secx|+ C

13.
∫
cotx dx = ln | sinx|+ C

14.
∫
secx dx = ln | secx+ tanx|+ C

15.
∫
cscx dx = ln | cscx− cotx|+ C

16.
∫
sinhx dx = coshx+ C

17.
∫
coshx dx = sinhx+ C

18.
∫

dx√
a2−x2

= sin−1
(
x
a

)
+ C

19.
∫

dx
a2+x2 = 1

a tan−1
(
x
a

)
+ C

20.
∫

dx
x
√
x2−a2

= 1
a sec−1

∣∣x
a

∣∣+ C

21.
∫

dx√
a2+x2

= sinh−1
(
x
a

)
+ C

22.
∫

dx√
x2−a2

= cosh−1
(
x
a

)
+ C

©www.RanaMaths.com Page Number 44

69 Integration by Parts

Formula: ∫
u dv = uv −

∫
v du

69.1 Examples

1. Evaluate
∫
x cosx dx: Let u = x =⇒ du = dx.

Let dv = cosx dx =⇒ v = sinx.∫
x cosx dx = x sinx−

∫
sinx dx

= x sinx− (− cosx) + C

= x sinx+ cosx+ C

2. Evaluate
∫
lnx dx: Let u = lnx =⇒ du = 1

x dx.
Let dv = dx =⇒ v = x.∫

lnx dx = x lnx−
∫

x

(
1

x

)
dx

= x lnx−
∫

dx = x lnx− x+ C

3. Evaluate
∫
x2ex dx: Let u = x2 =⇒ du = 2x dx.

Let dv = ex dx =⇒ v = ex.∫
x2ex dx = x2ex −

∫
2xex dx = x2ex − 2

∫
xex dx

Apply integration by parts again for
∫
xex dx: Let u =

x =⇒ du = dx. Let dv = ex dx =⇒ v = ex.∫
xex dx = xex −

∫
ex dx = xex − ex

Substitute back:∫
x2ex dx = x2ex−2(xex−ex)+C = x2ex−2xex+2ex+C

4. Evaluate
∫
ex cosx dx: Let I =

∫
ex cosx dx. Let

u = cosx =⇒ du = − sinx dx. Let dv = ex dx =⇒
v = ex.

I = ex cosx−
∫

ex(− sinx) dx = ex cosx+

∫
ex sinx dx

Apply parts again for
∫
ex sinx dx: Let u = sinx =⇒

du = cosx dx. Let dv = ex dx =⇒ v = ex.∫
ex sinx dx = ex sinx−

∫
ex cosx dx = ex sinx− I

Substitute back into original equation*:

I = ex cosx+ (ex sinx− I)

2I = ex(cosx+ sinx)

I =
ex

2
(cosx+ sinx) + C

69.2 Tabular Method

Used for integrals like
∫
xneax dx or

∫
xn sin(ax) dx.

Example:
∫
x2ex dx

Derivatives of u Integrals of dv
x2 ex

2x ex

2 ex

0 ex

Multiply diagonals with alternating signs (+, -, +, ...):∫
x2ex dx = +(x2)(ex)− (2x)(ex) + (2)(ex) + C

= ex(x2 − 2x+ 2) + C
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70 Integrating Products of Sines
and Cosines

70.1 Procedure

To evaluate integrals of the form
∫
sinm x cosn x dx:

1. If n is odd:

� Split a factor of cosx.

� Use the identity cos2 x = 1− sin2 x.

� Substitute u = sinx.

2. If m is odd:

� Split a factor of sinx.

� Use the identity sin2 x = 1− cos2 x.

� Substitute u = cosx.

3. If m and n are both even:

� Use the relevant identities to reduce the pow-
ers:

sin2 x =
1− cos 2x

2
, cos2 x =

1 + cos 2x

2

70.2 Examples

1. Evaluate
∫
sin4 x cos5 x dx: Since n = 5 is odd:∫

sin4 x cos5 x dx =

∫
sin4 x(cos2 x)2 cosx dx

=

∫
sin4 x(1− sin2 x)2 cosx dx

Let u = sinx, du = cosx dx:

=

∫
u4(1− u2)2 du

=

∫
u4(1− 2u2 + u4) du

=

∫
(u4 − 2u6 + u8) du

=
u5

5
− 2u7

7
+

u9

9
+ C

=
sin5 x

5
− 2 sin7 x

7
+

sin9 x

9
+ C

2. Evaluate
∫
sin3 x cos2 x dx: Since m = 3 is odd:∫

sin3 x cos2 x dx =

∫
sin2 x cos2 x sinx dx

=

∫
(1− cos2 x) cos2 x sinx dx

Let u = cosx, du = − sinx dx:

=

∫
(1− u2)u2(−du)

=

∫
(u4 − u2) du

=
u5

5
− u3

3
+ C

=
cos5 x

5
− cos3 x

3
+ C
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3. Evaluate
∫
sin2 x cos4 x dx: Since both powers are

even: ∫
sin2 x cos4 x dx

=

∫
sin2 x(cos2 x)2 dx

=

∫ (
1− cos 2x

2

)(
1 + cos 2x

2

)2

dx

=
1

8

∫
(1− cos 2x)(1 + 2 cos 2x+ cos2 2x) dx

(Note: Expansion and further integration would follow
using standard methods for even powers).

71 Integrating Products of Tan-
gents and Secants

71.1 Procedure

To evaluate integrals of the form
∫
tanm x secn x dx:

1. If n is even:

� Split a factor of sec2 x.

� Use identity sec2 x = tan2 x+ 1.

� Substitute u = tanx.

2. If m is odd:

� Split a factor of secx tanx.

� Use identity tan2 x = sec2 x− 1.

� Substitute u = secx.

3. If n is odd and m is even:

� Use integration by parts or reduction formu-
las.

71.2 Examples

1. Evaluate
∫
tan2 x sec4 x dx: Since n = 4 is even:∫

tan2 x sec2 x sec2 x dx =

∫
tan2 x(1 + tan2 x) sec2 x dx

Let u = tanx, du = sec2 x dx:

=

∫
u2(1 + u2) du

=

∫
(u2 + u4) du

=
u3

3
+

u5

5
+ C

=
tan3 x

3
+

tan5 x

5
+ C

2. Evaluate
∫
tan2 x secx dx:∫

(sec2 x− 1) secx dx =

∫
(sec3 x− secx) dx

Using reduction formula for
∫
sec3 x dx:∫

sec3 x dx =
1

2
secx tanx+

1

2
ln | secx+ tanx|
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Therefore:∫
sec3 x dx−

∫
secx dx

=

(
1

2
secx tanx+

1

2
ln | secx+ tanx|

)
− ln | secx+ tanx|

=
1

2
secx tanx− 1

2
ln | secx+ tanx|+ C

72 Trigonometric Substitution

72.1 Substitution Method

Expression Substitution Simplification√
a2 − x2 x = a sin θ a2 − a2 sin2 θ = a2 cos2 θ√
a2 + x2 x = a tan θ a2 + a2 tan2 θ = a2 sec2 θ√
x2 − a2 x = a sec θ a2 sec2 θ − a2 = a2 tan2 θ

72.2 Examples

1. Evaluate
∫

dx
x2

√
4−x2

: Let x = 2 sin θ =⇒ dx =

2 cos θ dθ.∫
dx

x2
√
4− x2

=

∫
2 cos θ dθ

4 sin2 θ
√
4− 4 sin2 θ

=

∫
2 cos θ dθ

4 sin2 θ · 2 cos θ

=
1

4

∫
1

sin2 θ
dθ

=
1

4

∫
csc2 θ dθ

= −1

4
cot θ + C

Substitute back: sin θ = x
2 . From the right triangle,

adjacent side is
√
4− x2. So cot θ =

√
4−x2

x .

= −
√
4− x2

4x
+ C

2. Find the arc length of the curve y = x2

2 from

x = 0 to x = 1: Formula: L =
∫ b

a

√
1 + (y′)2 dx.

y′ = x =⇒ (y′)2 = x2

L =

∫ 1

0

√
1 + x2 dx

Let x = tan θ =⇒ dx = sec2 θ dθ. Limits:

� x = 0 =⇒ θ = 0

� x = 1 =⇒ θ = π
4∫ π/4

0

√
1 + tan2 θ sec2 θ dθ =

∫ π/4

0

sec θ · sec2 θ dθ

=

∫ π/4

0

sec3 θ dθ

Using reduction formula or integration by parts:

=

[
1

2
sec θ tan θ +

1

2
ln | sec θ + tan θ|

]π/4
0

=
1

2
[
√
2(1) + ln(

√
2 + 1)]− 1

2
[1(0) + ln(1)]

=
1

2
[
√
2 + ln(

√
2 + 1)] ≈ 1.148
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3. Evaluate
∫

dx
x
√
x2−25

for x ≥ 5: Let x = 5 sec θ =⇒
dx = 5 sec θ tan θ dθ.∫

5 sec θ tan θ dθ

5 sec θ
√
25 sec2 θ − 25

=

∫
5 sec θ tan θ dθ

5 sec θ · 5 tan θ

=
1

5

∫
dθ

=
1

5
θ + C

Since x = 5 sec θ =⇒ sec θ = x
5 =⇒ θ = sec−1

(
x
5

)
.

=
1

5
sec−1

(x
5

)
+ C

This pdf is for personal use only.


