Calculus and Analytical Geometry

1 Core Topics

The course covers:

Functions, Domain and Range. Introduction to limits:
Limits and Continuity, Techniques of funding limits, In-
determinate forms of limits, Introduction to functions:
Continuous and discontinuous functions and their appli-
cations, Differential calculus: Concept and idea of differ-
entiation, Geometrical and Physical meaning of deriva-
tives, Rules of differentiation, Techniques of differentia-
tion, Rates of change, Tangents and Normal lines, Chain
rule, implicit differentiation, linear approximation, Ap-
plications of differentiation: Extreme value functions,
Mean value theorems, Maxima and Minima of a function
for single-variable, Concavity. Integral calculus: Con-
cept and idea of Integration, Indefinite Integrals, Tech-
niques of integration, Riemann sums and Definite Inte-
grals, Applications of definite integrals, Improper inte-
gral, Applications of Integration; Area under the curve.
Book recommended for this course is Calculus
by Thomas 13" edition.

1.1 Definition of a Function

A function f from a set D to a set Y is a rule that
assigns a unique value f(z) in Y to each z in D.

e Input: z is the independent variable.

e Output: y = f(x) is the dependent variable.

1.2 Domain and Range

e Domain: The set D of all possible input values.

e Range: The set of all f(x) values as x varies
throughout D.

e In Calculus, domain and range are often sets’ of
real numbers.

1.3 Examples of Domain and Range

2

. y = z*: Domain (=60, c0); Range [0, c0).
2. y = 1: Domain (—00,0)U(0,00), Range (—o0,0)U
(0,00).

3. y = v/z: Domain [0, 00), Range [0, 00).
4. y = /4 — z: Domain (—o0,4], Range [0, c0).

5. y= I;%; = 2 + 2: Domain (—o0, 00).

6. y = v1 — 22 Domain [—1, 1], Range [0, 1].

1.4 Vertical Line Test

A function f can have only one value f(z) for each x in
its domain. Therefore, no vertical line can intersect the
graph of a function more than once.

e A circle is not the graph of a function.

ey = +1—2a2 (upper semicircle) and y =
—+/1 — 22 (lower semicircle) are functions.
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1.5 Even and Odd Functions

e Even Function: f(—z) = f(x). Symmetric
about the y-axis. Example: y = 22, y = z*.

e Odd Function: f(—z) = —f(z). Symmetric
about the origin. Example: y = z, y = 23

1.6 Step Functions

¢ Least Integer Function (Ceiling): Denoted by
[2]. Smallest integer greater than or equal to x.

¢ Greatest Integer Function (Floor): Denoted
by |x]. Greatest integer less than or equal to x.
Examples: |2.4] =2, 1.9] =1

1.7 Increasing and Decreasing Func-
tions

Let f be defined on an interval I with x1, x5 € I:
1. Increasing: If f(z3) > f(z1) whenever z; < xs.

2. Decreasing: If f(x2) < f(z1) whenever 1 < x5.

1.8 Everyday Life Uses of Calculus

e Physics: Integration is used to calculate the cen-
ter of mass and center of gravity.

o Computer Graphics: Uses Linear Algebra and
Analytic Geometry.

e Scientific Computing: Computer Algebra Sys-
tems compute integrals and derivatives symboli-
cally or numerically.

2 Common Functions

2.1 Power Functions

A function f(z) = 2, where a is a constant, is called a
power function.

2.1.1 (a) a =n (A Positive Integer)

For n = 1,2,3,4,5, the functions are y = z,y = 2%,y =
2y =aty=a’
e As the power n gets larger, the curves tend to
flatten towards the z-axis on the interval (—1,1)
and rise more steeply for |z| > 1.

e Even-powered functions: Decreasing on
(=00, 0] and increasing on [0, c0).

e Odd-powered functions: Increasing over the
entire real line (—o00, 00).

2.1.2 (b)a=-1and a=-2
(r) = 7' = L. Domain z # 0, Range y #

f v
0. Symmetrlc about the origin; decreasing on
(—

00,0) and (0, c0).

$2
> 0. Symmetric about the y-axis; increasing
(

—00,0) and decreasing on (0, 00).

e g(z) = 272 = L: Domain =z # 0, Range
Y
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2.1.3 (c)a=3,%.3,3

vz = 2'/2: Domain [0, 00), Range [0, c0).

= {/x = 2'/3: Defined over all real 2. Domain
—00,00), Range (—o00, 00).

—_—~e

= 22/3 = (2Y/3)%2: Domain (—oco,00), Range
, 00).

A

2.2 Polynomials

A function p is a polynomial if:
p(l‘) = afnmn + a7t—1xn71 +--taxr+ao

where n is a nonnegative integer and ag, a1, ...,a, are
real constants (coefficients).

e Domain: All polynomials have the domain
(—00, 00).

e Degree: If a, # 0, then n is the degree of the
polynomial.

e Quadratic: Degree 2, p(z) = az? + bz + c.

e Cubic: Degree 3, p(z) = az® + bz? + cx + d.

2.3 Linear Functions
A function of the form f(x) = ma+b is a linear function.
e If b = 0, the line passes through the origin.
e If m =0, it is a constant function.
elf m =1and b =0, f(z) = = is the identity
function.
2.4 Rational and Algebraic Functions

¢ Rational Function: A ratio of two polynomials,
flz) = gg; where Q(z) # 0.

e Algebraic Function: Any function constructed
from polynomials using algebraic operations (ad-
dition, subtraction, multiplication, division, and
taking roots).

2.5 Transcendental Functions

These functions are not algebraic and include:

e Trigonometric Functions: e.g., f(z) =
sinz, f(x) = cosx.

e Exponential Functions: f(x) = a* (where a >
0,a # 1). Range is always (0, 00).

e Logarithmic Functions: f(z) = log, x, which
are the inverse of exponential functions.

e Example: The Catenary is a transcendental func-
tion.
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3 Sum, Differences, Products,
and Quotients

Like numbers, functions can be added, subtracted, mul-
tiplied, and divided to produce new functions (except
where the denominator is zero).

If f and g are functions, then for every x that belongs
to the domain of both f and g (i.e., x € D(f) N D(g)),
we define the following:

o (f+9)()=f(x)+g(x)
o (f—9)=) = f(z) —g(x)
o (f9)(z) = f(x)g(x)
At any point in D(f) N D(g) where g(z) # 0, we can

define the quotient:
(s

Functions can also be multiplied by constants. If ¢ is a
real number, then:

(ef)(@) = cf(x)
Example: Given f(z) = /z and g(z) = V1 — a:
* D(f) = [0,00)
e Dg) = (~o0,1

e Common domain: D(f) N D(g) = [0,00) N
(=00, 1] = [0, 1]
e (f+9)(x) =+ +/1— 2z, Domain: [0,1]

f—9)(z) =z —+/1—z, Domain: [0, 1]
f9)(x) = v/z(1 — x), Domain: [0, 1]

[ ]
—~ —~

(5) (z) = \/I Domain: [0,1) (exclude z =1

1—2?
to avoid division by zero)
4 Composite Functions
Composition is another way of combining functions.

Definition: If f and g are functions, the composite
function f o g (f composed with g) is defined by:

(fog)(x) = flg(x))
Example: If f(z) =+/z and g(z) = z + 1, find:
fog)(z) = f(g(zx)) = vz + 1, Domain: [—1,c0)
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5 Shifting a Graph of a Function

5.1 Vertical Shifts
e y = f(x) + k shifts the graph up k units (k£ > 0).
e y = f(x)—k shifts the graph down k units (k > 0).

5.2 Horizontal Shifts
e y = f(x + h) shifts the graph left h units (h > 0).
e y = f(x—h) shifts the graph right h units (h > 0).

6 Scaling and Reflecting Formu-
las

6.1 Scaling (for ¢ > 1)

e y = cf(xz): Stretches the graph vertically by a
factor c.

oy = % f(z): Compresses the graph vertically by
factor c.

e y = f(cx): Compresses the graph horizontally by
factor c.

e y = f(x/c): Stretches the graph horizontally by
factor c.
6.2 Reflections
e y = —f(z): Reflects the graph across the x-axis.
e y = f(—x): Reflects the graph across the y-axis.

7 Limit of a Function

7.1 Definition

Let f be a function. If as x approaches a from both
left and right sides of a, f(z) approaches to a special
number L, then L is called the limit as x approaches a:

lim f(z) =1L

Tr—a

7.2 Example

Find the limit of f(z) = ’f:24. As x approaches 2:
e f(1.999) = 3.99
o £(2.001) = 4.001

The limit appears to be 4.

8 Informal Description of the
Limit of a Function

For the function f(z) = ’”;:11, the function is defined
for all real numbers = except x = 1. For = # 1, we can

simplify the formula by factoring:

(x—1)(z+1)
z—1

fx) =

Even though f is not defined at x = 1, the function has
a limit of 2 as x approaches 1.

=x+1forx#1
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9 Limits of Identity and Con-
stant Functions

1. If f is the identity function f(x) = «, then for any
value of ¢:

lim f(z) =limz =c¢
r—cC r—cC

2. If f is the constant function f(x) = k, then for
any value c:

liny 1 (0) = i =
10 Examples of Functions with
No Limit

A function may not have a limit at a particular point
for several reasons:

e Jump Discontinuity: The unit step function
U(z) has no limit at @ = 0 because it jumps from
0 (for z < 0) to 1 (for z > 0).

o Infinite Growth: The function g(z) = 1 has no
limit as & — 0 because its values grow arbitrarily
large in absolute value.

e Oscillation: The function f(x) = sin(1/x) has no
limit as x — 0 because its values oscillate between
+1and —1 infinitely often as it approaches zero.

11 The Limit Laws

If L, M, c and k are real numbers and lim, . f(z) = L
and lim,_,. g(z) = M, then:

1. Sum Rule: lim, ,.(f(z) + g(z)) =L+ M
2. Difference Rule: lim,,.(f(z) —g(z))=L—-M

3. Constant Multiple Rule: lim,_,.(k - f(z)) =
k-L

4. Product Rule: lim, ,.(f(z) - g(z)) =L -M

5. Quotient Rule: lim, . ’;Eg =E£ M#0

6. Power Rule: lim,_.[f(z)]" = L™, n a positive

integer
7. Root Rule: lim,_,. ¥/f(z) = VL, n a positive
integer

12 Limits of Polynomials
If P(z) = apa™ + ap_12" "t + -+ + ag, then:

lim P(z) = P(c) = ane" + ap_1¢" ™+ + ag

Tr—c
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13 Exercises and Infinite Limits

13.1 Exercise 2.4
1. True or False Statements based on a graph
(implied):

() Tim, 1+ f(x) =1 (True)

(b) lim,_,g- f(z) =1 (False)

() Tim, o~ f(z) = 0 (True)

(d) lim, o~ f(2) = lim, o+ f(2) (True)

3. Piecewise Function: Let f(z) be defined as:

f(x):{3—x <2

s+1 z2>2

(a) Find limits as  — 2:
e Right-hand limit: lim, o+ f(z) =2 4+1=2
e Left-hand limit: lim,_,»- f(z)=3-2=1

(b) Does lim,_,5 f(z) exist? No, the limit does not
exist because lim,_,o+ f(z) # lim,_,o- f(x).
(c) Limit at x = 4: lim,_,4- f(z) = % +1=3.

13.2 Sandwich Theorem (Squeeze The-
orem)

Theorem: Suppose that g(z) < f(x) < h(z) for all x
in some open interval containing ¢ (except possibly at
2 = ¢) and that:

lim g(z) = lim h(z) = L
Then, lim, . f(z) = L.
Example: Given 1 — %2 <wu(z) <1+ 7”2—2 for all = # 0.
Find lim, o u(x).

e Limit of lower bound: lim,_,o(1 — %) =1

e Limit of upper bound: lim,_,o(1 + %) =1
By the Sandwich Theorem, lim,_,o u(z) = 1.

13.3 Limits Involving Infinity

Finite Limits as ¢ — +oo0: The symbol co does not
represent a real number. We use oo to describe the
behavior of a function when the values in its domain or
range outgrow all finite bounds.

Rules:

1. lim, 400 k = k (where k is constant)

2. limyyt00 2 =0

3. limg 4o z% = 0 (for positive integer n)

Example: Evaluate lim,_, ., E’m;;ﬁ. Divide numer-
ator and denominator by the highest power of & (which
is 22):
_5+8 -5 540-0 5
lim 5 = ==
r—oo 3+ & 340 3

Example: Evaluate lim,_,o 3572, Divide by z*:

- S+3% 040

e 2— 4 20

0
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13.4 Infinite Limits

Example: Find lim,_,o.(v/26 + 523 — 23). Multiply by
the conjugate:

/76 5 3 3
— lim (1/IG+55E3,$3).M
z—00 Vab + 5x3 4 a3

(28 + 523) — 26

= lim ~—(————
100 /6 4 53 4 23
. 53
= lim
. 53
= lim
5 5
= lim

oo iy 41 VIFOHL 2

13.5 Asymptotes

Horizontal Asymptote: A liney = b is a horizontal
asymptote of the graph of a function y = f(z) if either:

lim f(z)=0b or li)r_n flx)=">

T—r00

Vertical Asymptote: A line x = a is a vertical asymp-
tote if lim, .+ f(x) = fo0.

14  Limits at Infinity

We consider the behavior of functions as x approaches
positive or negative infinity.

14.1 Basic Limits

Iim — =0
rT—>—00 I

lim —=0
x—4oco

In general, for any positive integer n:

lim — =0
r—Foco "

14.2 Laws of Limits at Infinity

Behaviors involving infinity:
® 00+ 00 =00
e As z — o0, 22 — 0.

e Asz — o0, —22 = —o0.

15 Examples: Limits of Rational
Functions

15.1 Example 1: Equal Degrees

w2+1

Evaluate hmm_,oo Py
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Divide numerator and denominator by the highest
power of x in the denominator (z2):

. 22 +1 . 44
lim Qizhmﬁ

15.2 Example 2: Higher Degree in De-

nominator
2
. +
Evaluate lim; o0 75357
Divide by z3:
lim % hl % = 09 =
m—>001+?32+% 1+0+0

Since the limit is 0, y = 0 is a horizontal asymptote.

15.3 Example 3: Higher Degree in Nu-
merator

m3+1

Evaluate lim,_, o g

Divide by z:

3
Z; T+ 2
lim £—2% = lim ——2°
_oo+0
C1+0

16 Limits Involving Radicals

V242
3z—6 °

Recall that vz2 = |z|. Since x — —oo, we have |z| =
—z (or < 0). We divide the numerator by V22 and
the denominator by —|x| (which is effectively dividing
by the same magnitude, respecting signs):

Evaluate lim,_,_

V242
. 2+ 2 . Vz?
lim — = lim 3z 6
z——oc0 3x — 6 r——oc0 —2L _ L
V2 Y

(Using x = =V a? for x < 0)

V1t =

- 'pgrfloo 3z 6
—(—=x) —z
1+ 3
= lim

(Simplification step based on sign)
Alternatively, dividing by x (where z = —|z|):

Vr242
. /22
= lim —
z——o0 2L _ B

x x

/140 1

3-0 3

Thus, y = —1/3 is a horizontal asymptote.
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17 Asymptotes

An asymptote of a function is a curve or a line such that
the distance between the function and the line tends to
zero as they tend to infinity.
17.1 Types of Asymptotes

1. Horizontal Asymptotes

2. Vertical Asymptotes

3. Oblique (Slant) or Curvilinear Asymptotes

17.2 Horizontal Asymptote Example

1.
e

For y =
lim — =0, lim — =0
T—00 I T——00 I

Therefore, y = 0 is a horizontal asymptote.

17.3 Vertical Asymptote Example

Consider f(z) = ;{_11. Simplifying the expression (for

x#1):

x—1 1
= e+ ~ot1
The denominator is zero at x = —1. Thus, x = —1 is a

vertical asymptote.

17.4 Domain and Range Example
For a function like y = ﬁ + T

e Vertical Asymptote: x = 3

e Domain: D = (—00,3) U (3, 00)

e Range: R = (—o0, 7)U(7, 00) (assuming horizontal
asymptote shift)

18 Oblique and  Curvilinear
Asymptotes

18.1 Oblique Asymptotes

Consider the function f(x) = ’fjll. By performing long
division:

22 +1 2
fa) = —ol+

As © — o0, the term %H — 0. Therefore, the line

y = x — 1 is an oblique asymptote.

18.2 Curvilinear Asymptotes

Consider the function f(x) = ‘"”;Ll. By performing long

division (2® + 1 divided by z + 2):

f(x)=x2—2x+4—$i

As x — o0, the fraction approaches 0. Therefore, the
parabola y = x2 — 2z + 4 is a curvilinear asymptote.
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18.3 Limit at Infinity Example

. 3 2 . .
Evaluate lim,_, % Divide numerator and de-

nominator by the highest power of  in the denominator

19 Continuity

19.1 Continuity at a Point

Definition: A function f is continuous at a point z = a
if the following three conditions are met:

1. f(a) is defined.
2. limg ., f(x) exists.

3. limy o f(x) = f(a).

19.2 Example: Discontinuity
Check the continuity of the function at x = 3:

22-9
— r—3 7 x;«é3
) =
g(z) {57 o3

Solution:
1. Value of function: ¢(3) = 5.

2. Limit as ¢ — 3:

Cox?—=9
lim g(w) = lim =—3
L (x —=3)(z+3)
r—3 .’L’—-?)
=lim(z+3)=6
x—3

3. Conclusion: Since lim,_,3 g(x) # ¢g(3) (6 #5), the
function g(x) is discontinuous at x = 3.

20 Continuity of a Polynomial

20.1 Example: Absolute Value
Check the continuity of f(x) = ||

-z, <0
lz| =20, z=0
x, x>0

The function is continuous on (—o0,0) and (0,00) be-
cause it behaves like a polynomial. At x = 0:

e f(0)=0
e lim, o f(z) =0

Since the limit equals the function value, f is continuous
at x = 0. Thus, it is continuous everywhere.

21 Continuity on an Interval

A function f is continuous on a closed interval [a, b] if it
is continuous at every point in (a,b) and:

e lim, ..+ f(z) = f(a) (Right continuous at a)
e lim,_,,— f(z) = f(b) (Left continuous at b)
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21.1 Example
Check the continuity of f(z) = +v/9 — 22 on [-3, 3].

1. Let ¢ be an arbitrary point in (-3, 3).

lim f(x) :i_i_)rri\/Q—:CQ: V9—c = f(c)

xr—c
So, f is continuous on the open interval (—3,3).
2. At endpoints:

e At x=-3: lim,_,_3+vV9—22=0= f(-3).

e Atz =3: lim,_,3- V9 —22=0= f(3).

Therefore, f(z) is continuous on [—3, 3].

22 Exercise 2.6 Solutions

22.1 Q.9: Sandwich Theorem

Evaluate lim,_, Si“f””. We know that for all real num-
bers:

=1 <sm2x <1

Divide inequality. by = (for = > 0):

1 1
T T
Since lim, s(—1) = 0 and lim,_,o0(2) = 0, by the
Sandwich Theorem:
sin 2x

lim =
T—00 T

22.2 Q.13

Evaluate lim,_, o, 2&t3

S5x+7"

z(2+3) 240 2
lim = ==
amoop(5+ 1) 5+0 5

22.3 Q.21
Evaluate lim,_, o % Divide by z3:
o 3z+3-— L 00
lim S = — =00
22.4 Q.23
Evaluate lim,_, o 3;2;2

li Vi=2
i S -5

23 Slope of a Line
The slope of a line is defined as the rise over the run:

rise Yz — Y1
run To — T
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24 Secant Line

A secant line is a line joining any two points on a curve.
Consider a curve y = f(z) and two points P(z, f(x))
and Q(x + h, f(x + h)). The slope of the secant line
(msec) represents the average rate of change:

flz+h) = fz)
h

Msec =

25 Tangent Line

As the point @ approaches P (i.e., h — 0), the secant
line becomes the tangent line. The slope of the tangent
line (myqy) is the limit of the secant slope:

o — i L@ D)~ @)
h—0 h

This limit is also known as the derivative of f at =z,
denoted by % or f'(x).

26 Examples: Definition of

Derivative

26.1 Example 1: f(z) = z?

Find the derivative with respect to z using the defini-
tion.

. +h) — f(2)
! =1 x—
fi(a) = lim o
— im (x+h)? —
h—0 h
224 22h+ h? — a2
= lim
h—0 h
— lim h(2x + h)
h—0 h
= lim (22 + h) = 2z
h—0

26.2 Example 2: f(z) = /=

>
f(x)_i?—m h

. Vet+h—Va Vat+h+z
h—0 h Ve +h+yx

— lim (x+h)—=x
h—=0 h(v/x + h + /T)
. h

L e

1 1
m =
h=0\x+h+x 2Vx
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26.3 Example 3: Instantaneous Velocity
Consider a particle whose position is given by S(t) =
1+ 5t — 2t2. Find the instantaneous velocity v(t).

v(t) = lim w

h—0 h
i [1+5(t+h)—2(t+ h)?] — [1+ 5t — 2t?]
a0 h

. 145t +5h—2(t* + h?+2th) — 1 — 5t + 212
= lim

h—0 h

. bh —2h% — 4th
=lim ——

h—0 h
= lim (5 — 2h — 4t) =5 — 4¢

h—0

27 Finding the equation*® of the
Tangent Line

To find the tangent line to y'= f(x) at a point = = z;:

1. Evaluate y; = f(z1) to get the point of tangency
(z1,91)-

2. Find f'(z) and evaluate m = f’(x1) to get the
slope.

3. Substitute m, x1, and y; into the point-slope form:
y—y=m(z—x)
27.1 Example 4
Find the tangent line of f(z) = 222 — 3 at (2,5).
1¢ Point is given: (2,5). Check: f(2) =2(4) -3 =5.
2. Find f'(x):
[2(z + h)? — 3] — [222 — 3]

/ T
F(w) = Jim, h
— lim 2(2? + 2xh + h?) — 3 — 222 + 3
o h—0 h
dxh + 2h?
= 1. B 4
hs0 h *

Slope at x =2: m = f'(2) = 4(2) = 8.
3. equation*:

y—5=8(r—-2) = y=8xr—11

27.2 Example 5
Find the tangent line for y = 22 at 2 = —2.

1. Find y1: y(—2) = 1:2(1'3) = 1. Point: (—2,1/3).

2. Find derivative (using definition):
a+h+3 _ 243

. I=(ath)  1-=
y'(@) = }g%
_ lim (x+h+3)(1—2)—(+3)(1—x—h)
h—0 h(l—a—h)(1—x)
= ... (simplifying numerator) ...
= lim Ah 4
h—0 h(1 —x — h)(1 —x) (1—x)?
Slope at . = —2: m:ﬁ:%:%.

3. equation*:

1 4
_ -z )
y-3 9(x+)
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28 Differentiation Rules

28.1 Derivative of a Constant
If f is a constant function f(z) = ¢, then:

d
%(C):O

28.2 Power Rule

If n is a positive integer (holds for real numbers where

defined):
d

dzx

(z") = na" !

Examples:
T dy __ m—1
o y=a" = . =7x

oy — 21/3 — % — %x1/3—1 _ %x_2/3

28.3 Constant Multiple Rule

If w is a differentiable function of z and ¢ is a constant:

Example: y = 42° = % = 4(827) = 3227.

28.4 Sum Rule
If uw and v are differentiable functions:

du dv

L) =gt
Cdx  dx

dx
Example: y = 226 + z7°

dy d 6 d g 5 <10
2 = __(2 — =122 -9
dx da:(x)—'_d:c(x ) * *

29 Derivative of Logarithmic

Functions

29.1 Basic Formulas

1. Limit definition of e:
1
1 1 —
R =
2. Natural Logarithm:

%(lnx) = %

3. General Logarithmic Function (log, x):

i(lo x)fi nz) 1 1 _ 1
de 8 T gp |ap| " Inb z zlnb
4. Chain Rule for Natural Logarithm:

d 1 du

)| _ .
dac[nu] u dx

5. Chain Rule for General Logarithm:

d llo } 1 du
el ul = —— . ==
dx 8o ulnb dx
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29.2 Examples
1. Find L [In(z?+1)]:

d
—[n2?+1)] = (2?41
7 n(z” +1)] 21 G
1
_a:2+1.(2x)
2z
o241

2. Find % [ln (mj/%”)} First, simplify using loga-

rithmic properties:
T r?sinx
V=0 oz
=In(z?) + In(sinz) — In((1 + )*/?)
1
=2Inz + In(sinz) — 3 In(1 4+ x)

Now, differentiate:

dy:z(l)+ L N A S

dx x sinx 2(1+ )

2
= — t bl v EEEE—
ercox 51+ 2)

30 Derivative of In |z

To find the derivative of f(z) = In |z| where z # 0:
Case 1::2 >0

d 1
|z =2 = %(lnx) =

Case 2: <0
1 d 1

ol = —2 = (in(-2) = 2 (-z) = (1) =

—x dx —x

dx

Conclusion:

d 1
Injz]]==, z#0
T

o

31 Logarithmic Differentiation
Example
Find the derivative of y = 9”2(;7 W

Take the natural log of both sides:

z2(Tx — 14)Y/3
ny=In{ ———4—
e ( (1+ %) )

Iny = In(z?) + In((7z — 14)*/3) — In((1 4 z2)*)
Iny=2nx+ éln(?x —14) — 41In(1 + 2?)

Differentiate both sides with respect to x:

ldy 2 1 4
2 7)— 2
y dx x+3(7x—14)() 1+x2(x)
ldy 2 7 8z
A _

yde x  21(z—2) 1422

ldy 2 1 8x
L= _

yde x  3(x—2) 1+

Multiply by y to solve for %:

dy [ﬁm] (2 1 8z )

dr | (1+a22)4 §+3x—6_1+x2
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32 Derivatives of Exponential
Functions

32.1 Formulas
1. Base b: L[b"] = b"Inb
2. Base e: fL[e”] =e”

3. Chain Rule (Base b): d%[b“] =b%Inb- %

4. Chain Rule (Base e): -L[e¥] = e* - %

32.2 Examples
o 1[2°]=2"In2

° d%[e“’”} = ecosT . %(cosx) = €°®%(—sinx) =
—sinx e®8®

32.3 Variable Base and Exponent

Find % for y = (22 + 1)
Take In of both sides:

Iny = In((2* 4 1)¥7)
Iny = sinz - In(z? + 1)

Differentiate implicitly:

1d d

;% = %[Sinx . 11’1((172 —+ 1)]

1d 1

gﬁ = Sil’lI . m(Ql’) + ln(x2 + 1) . (COS z)
d 21 si
ﬁ = [ ;Sflx + cosz In(x? + 1)}

9 i
:vsmlx + cosz In(z? + 1)]

d 5
7@/ _ (x2 4 1)bln;ﬂ [

dx 2+

33 Derivatives of Inverse
Trigonometric Functions

33.1 Formulas

i[sin_1 u] = L du

dx V1 —w2dx

d 1 d
—[cos ™ u) = A
dz V1 —u2dx

d 1 d
—[tan"tu] = -

dx 1+ u?de

1 du

- -1 -

dx [eot ™" u] 1+u2dx

d 1 d
—[sec™tu] = - - o
dx lu|[vu2 —1dz
d 1 d
—Jese™tu] = - -
dx |u‘\/u2—1dl’
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33.2 Example

Find 2 for y = sec™!(e?).

1
dr  Jer|\/(e*)2 —1 dx
1 xT
= — e
e*ve2®r — 1
_ 1
er — 1

34 Lecture 15: Linearization and
Differentials

34.1 Linearization

If f is differentiable at © = a, then the approximating
function:

L(z) = f(a) + f(a)(z — a)
is the linearization of f at.a. The approximation f(z) =

L(z) is the standard linear approximation of f at a. The
point © = a is the center of the approximation.

34.1.1 Examples
1. Local Linearization of Square Root
(a) Find the local linearization of f(x) = /z at a = 1.
(b) Use.the linearization to approximate v/1.1.
Solution:
(a) Find the derivative and value at a = 1:
fa) = vE = f(1)=1

N 11
FW=3m = Wi 2

Construct the linearization function:
L(@) = )+ )= 1) =1+ 3z - 1)
(b) Approximate v/1.1:
VI1~L(11) = 1+%(1.1—1) = 1+%(0.1) =1.05

(Actual value = 1.0488)

2. Linearization of Sine Find the linearization of
f(z) =sinz at @ = 0 and approximate sin(2°).
Solution:

f(z) =sine = f(0)=0
f'(x) =cosz = f'(0)=1

Linearization:
Lz)=0+1(z-0) = L(z)==x
To approximate sin(2°), first convert degrees to radians:

2° — 9 x 1% ~ 0.0349 radians

Approximation:
sin(2°) ~ L(0.0349) = 0.0349
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34.2 Differentials

Let y = f(z) be a differentiable function. The differen-
tial dz is an independent variable. The differential dy is
defined as:

dy = f'(x)dx
34.2.1 Examples

1. Relationship between dy and dz For y = x2, find
dy at © = 1.

dy=2zxdx — atx =1, dy=2dx
2. Comparing Ay and dy Given y = /x:
(a) Find Ay and dy.
(b) Evaluate Ay and dy at ¢ = 4 with Az = dx = 3.
Solution:
(a) Formulas:
Ay = f(z+Az)— f(z) = Vo ¥ Bz — V5

dy = f'(z)dx = %dw

(b) Evaluate at =4, Az = 3:

Ay=+V4+3-Vi=T-2~265-2=065
1 3

dy:ﬁ(?’)zz

=0.75

34.3 Error in Differential Approxima-
tion

e True change: Af = f(a+ Ax) — f(a)
e Differential estimate: df = f'(a)Ax
e Approximation error: |Af — df|

As dz — 0, the error ¢ — 0.

35 Related Rates

The problem of finding a rate of change from other
known rates of change is called a related rates problem.

35.1 Examples

1. Spherical Balloon Volume V = %773, Differenti-
ate with respect to time t:

AV, adr

dt dt

2. Area of a Circle Area A = 7r2. equation* relating
rates:

% = 27r7’£

dt dt
3. Linear Relation Given y = 5z and d” = 2. Find
Zg. dy dx

I 5$ =5(2)=10

4. Multi-variable equation* Given r + s? +v3 = 12,
%:4, and%:f& Find%whenr:&s:l, and
v =2.
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Solution: Differentiate the equation™ with respect to t:

dr ds 5 dv

P + 2s S + 3v i =0
Substitute known values:
4+2(1)(-3) + 3(2)2% =0
4—-6+ 122—0 =0
dv
-2+ 12315 =0 ) 1
v v
125 =2 = 76

5 Volume of a Cylinder Volume V = mr2h. How is

ﬂ related to an and d“’

(a) r is constant:

av .2 dh
dt dt
(b) h is constant:
av dr
E = 27T7"ha

(c) Neither is constant (Product Rule):

dVv dh dr dh dr

36 Related Rates

36.1 Question 6

Given z = 3% — y and dy = 5. What is ‘fi—f when y = 27

Solution: leferentlatmg x with respect to t:

dz 9 dy
= 1=
i~ B =Dy,

Substitute y = 2 and dy =

Note: The lecture note calculation shows 3(2)%(5) —5 =
60 — 5 = 55.

36.2 Question 11

The edge length x of a cube decreases at the rate of 5
m/min. When = = 3m, at what rate does the cube’s (a)

surface area and (b) volume change?
Given: 42 = —5 m/min.

(a) Surface Area Change The surface area of a cube
is § = 622.

ds dx
Atz—3: ‘fls —12(3)(=5)

= —180 m?/min
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(b) Volume Change The volume of a cube is V = 3.

v . d
@
av
Atz=3: —= e
x=3 i 3(3)%(—5)
=3(9)(-5)
= —135 m®/min

36.3 Question 29: Hemispherical Bowl

Water is draining from a hemispherical bowl of radius
13 m at the rate of 6 m®/min. The volume of water in a
spherical bowl is given by V = %yQ (3R — y), where y is
the depth of the water and R is the radius of the bowl.
Given:

e R=13m

av.

M

= —6 m®/min

(a) Rate of change of water level Find % when
Yy =8 m.
Differentiate the volume formula with respect to t:

i
V= §(3Ry2 — %)

vo_r [6R % _ Sdey}

a3 dt
av dy
2 — x(2 _a2\Z2d
o = TRy —yT)
dy.
Solve for Z¥:
dy 1 av

at m(2Ry — y?) dt
Substitute R =13, y = 8, and % = —6:

dy - —6
dt — w[2(13)(8) — (8)?]
—6
= R0s 64
B -6 B 1 .
== o m/min

(b) Rate of change of the radius of the water
surface Let r be the radius of the water surface. From
the geometry of the sphere (Pythagorean theorem on
the cross-section):

R*=r?+(R-y)°
Substitute R = 13:
169 =% + (13 — y)?
r? =169 — (169 — 26y + y?)
r? = 26y — y>

r = /26y — y?

(c) Find % when y = 8 Differentiate r with respect
to t:

dr d
G ogy — 2) /2
o = 320y — )
1 _ dy
= —(26y — y?)"1/%(26 — 2y)—
5 (26y —y7)~( v
13—y dy

B \/26(7;—3/2E
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; — dy _ 1.
Substitute y = 8 and % = —51—:

dr  13-38 1
dt‘,/m<_m)
5 1
:ﬂ%6A7M)
5 1
= i (“21r)

_S5(_L
12 24w

= ——— m/min
2881

37 Points of Non-differentiability

A function fails to be differentiable at a point for the
following reasons:

1. Discontinuity

2. Corner

3. Points of Vertical Tangency
4. Cusp

37.1 Corner

Example: f(z) = |z|. Using the definition of the deriva-
tive at .= 0:
oy — i 40+ R) = f(0)
F10) = ilzlg}) h
Since |z| = z for > 0 and |z| = —z for < 0:
Left-hand derivative:

_ 0+ R|—|0]
! O 1 |
F7) = lim ——
—h
hir{)l* h

Right-hand derivative:

h
'07) = lim —=1
707 hgng h
Since the left and right limits are not equal, f(z) is not
differentiable at = = 0.

37.2 Points of Vertical Tangency

We say that a continuous curve y = f(z) has a vertical
tangent at x if:
h) —

lim f(gc—l——)f(m) =00 Or — 00

h—0 h
This means the slope of the tangent line becomes unde-
fined (vertical).
Example: Consider y = x'/3. Find the derivative at

xTr =
s 0+ h)1/3 —0l/3
F0)= illlg%) h
) h1/3
= o =
~ o2 T
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37.3 Cusp

A cusp occurs when the derivative approaches oo from
one side and —oo from the other.
Example: Consider y = z2/3. Find the derivative at

x =0:
s (0 + h)2/3 —02/3
F1(0) = fim, h
| h2/3 i 1
=5 h PRt hl/3

Analyzing the limits from both sides:

e Right-hand limit: limj_,o+ ﬁ =400

e Left-hand limit: limj,_,o- h11/3 = —00

Thus, there is a cusp at x = 0.

38 Extreme Values of Functions

38.1 Definitions

Let f be a function with domain D. Then f has an
absolute maximum value on D at a point c if:

f(z) < f(¢) forallzin D
And an absolute minimum value at c if:
f(x) > f(¢) forall zin D

Minimum and maximum values are called extreme val-
ues. Maxima and minima are also referred to as global
maxima or minima.

38.2 Examples

2 on (—o0,00):

l.y==x
e No absolute maximum.
e Absolute minimum of 0 at x = 0.
2. y=212% on [0,2]:
e Absolute maximum of 4 at x = 2.
e Absolute minimum of 0 at.x = 0.
3. y=1% on (0,2]:
e Absolute maximum of 4 at z = 2.

e No absolute minimum (since z = 0 is not in-

cluded).
4. y =22 on (0,2):
e No absolute maximum.

e No absolute minimum.

39 The Extreme Value Theorem

If f is continuous on a closed interval [a,b], then f at-
tains both an absolute maximum value M and an abso-
lute minimum value m in [a, b]. That is, there are num-
bers 21 and x5 in [a,b] with f(z1) = m and f(z9) = M
such that:

m < f(z) < M for every other x in [a, b
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40 Local Extreme Values

Definition: A function f has a local maximum value at
a point ¢ within its domain D if f(z) < f(c) forallz € D
lying in some open interval containing c. Similarly, f has
a local minimum value at ¢ if f(x) > f(c) for all z in an
open interval containing c.

40.1 The First Derivative Theorem for
Local Extreme Values

If f has a local maximum or minimum value at an in-
terior point ¢ of its domain, and if f’ is defined at c,
then:

flle)=0

41 Critical Point

An interior point of the domain of a function f where
f' is zero or undefined is a-critical point of f.

41.1 Examples
1. Find all critical points of f(z) = 23 — 3z + 1.
fl(x) =322 -3=0
32 —=1)=0
3z+1)(z—1)=0

r=1, xz=-1

2. Find all critical points of f(z) = 32°/3 — 152%/3.

f(z)=3 (2) 2?3~ 15 (g) z /3

= 52%/% — 1027 1/3
_ 5(x — 2

= 5x 1/3(.%'—2):%

e fllx)=0ifx=2.

e f/(z) is undefined if z = 0.

Thus, z = 0 and x = 2 are critical points.

42 Rolle’s Theorem

Suppose that y = f(x) is continuous over the closed
interval [a, b] and differentiable at every point of its in-
terior (a,b). If f(a) = f(b), then there is at least one
number c¢ in (a,b) at which f/(¢) = 0.
42.1 Example
f(z) = 2% — 52+ 6 on [2,3].
¢ f(2)=4-10+6=0
o f(3)=9-15+6=0
e f(a) = f(b), so Rolle’s Theorem applies.
Find c:
f(x)=2x-5
)
fllc)=0 = 2c—5=0 = 025:2.5

Since 2.5 € (2, 3), the theorem is verified.
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43 Mean Value Theorem

Suppose y = f(x) is continuous over a closed interval
[a, b] and differentiable on the interval (a,b). Then there
is at least one point ¢ in (a,b) at which:

e = HO =10

43.1 Example

Find ¢ for f(x) on [0, 2] such that the tangent is parallel
to the secant line passing through (0,0) and (2,4). (
implied f(z) = 2?)

4-0

2-0

(@) =2z = f'(c)=2c

2c=2 — c=1

Slope m =

44 Monotonic Functions and
First Derivative Test

Corollary: Suppose that f is continuous on [a,b] and
differentiable on (a,b).

e If f/(z) > 0 at each point = € (a,b), then f is
increasing on [a, b].

o If f'(x) < 0 at each point x € (a,b), then f is

decreasing on [a, b].

44.1 Examples

1. Find intervals of increase/decrease for f(z) =
% —4x + 3.

f(x) =22 —4=2(x—-2)
e f'(z) > 0if z > 2 (Increasing on [2,0))
e f'(z) <0if z < 2 (Decreasing on (=00, 2])

2. Find intervals for f(z) = z3. f'(z) = 322. Since
322 > 0 for all x, f is increasing on (—o0, 00).
3. Find intervals for f(z) = 32" + 423 — 1222 + 21.

f'(z) = 1223 + 122 — 24z
= 12z(z*+ 2 — 2)
=12z(x+2)(x - 1)

Critical points: x = 0,z = —2,x = 1. Testing intervals:
e © < —2: (—)(—)(—) = Decreasing on (—oo, —2)

e 2 < x <0 (=)(+)(—) = Increasing on
(_270)

e 0<z<1: (4+)(+)(—) = Decreasing on (0, 1)

e 2> 1: (+)(+)(+) = Increasing on (1, 00)
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45 Curve Sketching

45.1 Procedure

To sketch the graph of a function y = f(z), follow these
steps:

1. Identify the domain of the function.
2. Find the derivatives 3’ and y”.

3. Find the critical points of f (where f/'(x) = 0 or
is undefined) and identify the behavior at each.

4. Find intervals where the curve is increasing or de-
creasing.

5. Find points of inflection and determine the con-
cavity (f” > 0 concave up, f” < 0 concave down).

6. Identify asymptotes that may exist (vertical, hor-
izontal, or oblique).

7. Plot key points, such as intercepts and the points
found in steps 3-5, and sketch the curve together
with any asymptotes.

45.2 Example 1: Polynomial Function

Sketch the graph of f(z) = x? — 423 4 10.
1. Domain: (=00, 0)
2. Derivatives:

f(x) = 42® — 1222

f(x) = 1222 — 24x
3. Critical Points: Set f/'(z) = 0:
4z° —122° =0
42%(x —3) =0

Critical points are z = 0 and = = 3.
4. Intervals of Increase/Decrease:

o (—00,0): Test . = -1 = [f/(-1)=—-4-12=
—16 < 0 (Decreasing)

(0,3): Test =1 = f/(1)=4—-12=-8<0
(Decreasmg
(3,

o0): Test z =4 = f'(4) = 4(64) — 12(16) >
0 (Increasmg)

Conclusion:

e No relative extremum at = 0 (sign does not
change).

e Relative minimum at z = 3. Value f(3) = 81 —
108 + 10 = —17.

5. Concavity and Inflection Points: Set f”(z) = 0:

1222 — 242 =0
122(z—2)=0

Possible inflection points at x = 0 and x = 2.

o (—00,0): Test x = -1 = f"(-1)=12424>0
(Concave Up)
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e (0,2): Test z =1 = f"(1) =12-24 <0
(Concave Down)

e (2,00): Test t =3 = [f"”(3) > 0 (Concave Up)
Inflection points are at « = 0 (y = 10) and = = 2
(y = 16 — 32+ 10 = —6).

45.3 Example 2: General Shape from
Derivative

Sketch the general shape knowing 3’ = 2 + z — 2.

Critical Points:
2+x—2>=0
2-2)1+2)=0 = z=2,2=-1
Intervals:
e (—00,—1): y <0 (Decreasing)
e (—1,2): y' > 0 (Increasing)
e (2,00): y' <0 (Decreasing)

Local minimum at x = —1, Local maximum at z = 2.
Concavity: y” =1 — 2z. Inflection point at = 1/2.

e 1 <1/2: y" >0 (Concave Up)

e ©>1/2: y" <0 (Concave Down)

46 Plotting Rational Functions

46.1 Example 3
Sketch the graph of f(z) = .t

2
1. Domain: (—o0,0) U (0,00)96

2. Derivatives: Rewrite as f(z) =

1 2 x?—4

Fe)=5- 3= 5
4
f”(l’):;

3. Critical Points: f'(z) =0 = 22 -4=0 =
T = £2.

o At x = —2: f(=3) >0 (Inc), f'(-1) < 0 (Dec)
—> Relative Max.

e At . =2: f'(1) < 0 (Dec), f'(3) >0 (Inc) =
Relative Min.

4. Concavity:
e £ <0: f(z) <0 (Concave Down)
e z>0: f(xz) > 0 (Concave Up)
5. Asymptotes:
e Vertical Asymptote: x = 0.

x

e Oblique Asymptote: y = § (since f(x) =
and 2 — 0 as 2 — 00).

|8
+
8N
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46.2 Example 4
Sketch y = —ii:% = iz_ﬁ.
1. Domain: R\ {-1,1}
2. Derivatives:

;. 2
TG

"y 2(322 +1)
RCCESE
3. Analysis:
e Critical Point: = = 0. y'(0) = 0.

e Test: For z < 0, ¢’ > 0 (Increasing). For x > 0,
y’ < 0 (Decreasing).

¢ Extremum: Local Maximum at (0, —2).
4. Asymptotes:
e Vertical Asymptotes: x =1, z = —1.

e Horizontal Asymptote: y = —1 (limit as z — o).

47 Second Derivative Test for

Local Extrema

1. If f'(¢c) = 0 and f”(c) < 0, then f has a local

maximum at z = c.

2. If f'(¢) = 0 and f”(c) > 0, then f has a local
minimum at £ = c.

3. If f'(¢) =0 and f"”(c) =0, then the test fails.

47.1 Example

Find the local extrema of f(z) = 3z° — 5z3.
Solution: Find derivatives:

f'(x) = 152* — 152*
f"(x) = 602> — 30z
Find critical points (f'(x) = 0):
152* — 1522 = 0
152%(x% —1) =0
152%(z — 1)(x +1) =0

Critical points are z =0,z =1,z = —1.
Testing Critical Points:

e Atz =—1:
(1) = 60(—1)3-30(~1) = —60+30 = —30 < 0
Local Maximum.
e Atz =1:
f(1) = 60(1)% - 30(1) = 60 — 30 = 30 > 0
Local Minimum.

e At z=0:
f10)=0
Test Inconclusive. (First derivative test would
show f decreases on both sides, so no extremum).
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48 Indeterminate Forms and
L’Hopital’s Rule

48.1 Introduction

John Bernoulli discovered a rule for calculating limits
of fractions whose numerators and denominators both
approach zero. The rule is known as L’Hopital’s Rule.
Theorem: Suppose f(a) =0 and g(a) = 0, and that f
and ¢ are differentiable on an open interval I containing
a. Then: )

lim 7f(x) = lim (@)

z—a g(x) z—a g’(x)
provided the limit on the right exists.

48.2 Examples (0/0 Form)

1. Evaluate lim,_,q 396*% Substitution gives 0/0.
Apply L’Hopital’s Rule:
3
lim 2% _3 -9

x—0 1

2. Evaluate lim,_, ¥2t2=L, Substitution gives 0/0.

Apply Rule: ’
1

lim 2V 1+x _ 1
z—0 1 2

3. Evaluate lim,_,g Ifj# Substitution gives 0/0.

. 1l—cosx (O)
lim ——— = =
z—0  3x2 0

48.3 Indeterminate Forms (o0o/o0;00 -
0,00 — 00)

L’Hopital’s Rule also applies if lim f(z) =/ +oo and
lim g(z) = to0.
Examples: 1. Evaluate lim, ., . Form oo/oco.

1
hnl Y- :?0
x—o0 et

2. Evaluate lim, ,o+ zlnz. Form 0 - (—o00). Rewrite
as llnﬁ (Form —o0/00):

Inz . 1/x ~ Yim (—z) =0

im —— = lim ———
a0t 1/x  amot —1/22  asot

1

sin x

. sinx —«x 0
lim —— —
z—0 xsinx 0

3. Evaluate lim,_,o( —
fractions:

). Form co—oo. Combine

Apply Rule:

. cosr — 1 0
lim ——— -
z—0 rcosx + sinx 0
Apply Rule again:
—sinzx 0

Hnn - = =
z—0 —x sinx + cosx + cosx 0+1+1
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49 Applied Optimization

49.1 Example 1: Sum and Product

Find two numbers whose sum is 60 and whose product
is a maximum.
Solution: Let x and y be the two numbers.
Sum: S=zrz+y=60 = y=60—=z
Product: P = xy

Substitute y into the product equation*:
P(z) = 2(60 — x)
P(x) = 60z — 2°

To find the maximum, find the derivative and set it to
Zero:

P(x) =60—2x=0
20 =60 = =30
Find y:
y = 60 — 30 = 30
Maximum Product: P.="(30)(30) = 900.

49.2 Example 2: Difference and Prod-
uct

Find two numbers whose difference is 40 and whose
product is a minimum.
Solution: Let x and y be the numbers.

Difference: d=y—2x =40 — y=40+=«
Product: P = xy

Substitute y:
P(z) = 2(40 + z) = 40z + 22
Find critical point:

P'(z)=40+4+22=0
20 = —40 = z = —-20
Find y:
y = 40 + (—20) = 20
Minimum Product: P = (—20)(20) = —400.

49.3 Exercise Q:10 - Rectangular Tank

A 1125 ft* open-top rectangular tank with a square base
x ft on a side and y ft deep is to be built with its top
flush with the ground to catch runoff water. The costs
associated with the tank involve not only the material
from which the tank is made but also the cost of exca-
vation.

Given Information (inferred from standard opti-
mization problems of this type):

e Volume V = 2%y = 1125.

e Minimize Cost (Material + Excavation).

©www.RanaMaths.com Page Number 30



(Note: The full cost function details are cut off in the
provided text, but the setup usually involves minimizing
surface area or a weighted cost function subject to the
volume constraint).

General Setup: Constraint: y = 1;35. Surface Area
(Open Top): A = 2% + 4xy. Substitute y:

1125 4500
A(x):x2+4x( e ) =2’ + —

€T

To minimize, differentiate:

4500
——3 =0 = 227 =4500 = 2" = 2250

Al(z) =2z

(Solution continues based on specific cost parameters if
they were distinct from area).

50 Newton’s Method

Newton’s method is a technique to approximate the
roots of a real-valued function f(z) = 0.

50.1 Derivation

Given a function y = f(x) and an initial guess x,,. The
equation® of the tangent line at (z,,, f(x,)) is:

y— flzn) = f/(-rn)(x — )

To find the next approximation x,,41, we find where this
tangent line crosses the x-axis (set y = 0 and solve for

x):
0— f(xn) = f/<xn)(x — )

- =T — Tn
[ (@)
f(zn)
=z, —
f'(wn)
Thus, the iterative formula is:
o f(zn) . ’
LTn+1 = Tn f,(xn), provided f (xn) #0

50.2 Example 1

Find the positive root of the equation* f(x) = 22 —2 =
0.

fla)=a® -2
F@) = 2
Formula: 2,1 = 2, — xglx_Q.
Let initial guess zg = 1.
e Iteration 1:
12 -2 -1
=1- =1-—=1
o 2(1) 3 =15
o Tteration 2:
(1.5)2 -2 2.25 — 2 0.25
=15———=15————=15—— =~ 14167
2 2(1.5) 3 3
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50.3 Example 2

Find the x-coordinate of the point where the curve y =

2% — x crosses the horizontal line y = 1. equation* to

solve: 22 —x =1 = 23—z —1=0.
flx)y=a2% -z -1
f(x) =32% -1

3
T, —Tn—1

Formula: z,, 11 =z, —

3x2 -1
Let guess x¢p = 1.5.
e Iteration 1:
(1.5 —1.5-1
=15-—u—
. 3(1.5)2 — 1
3.375 — 2.5 0.875
=15—-——=15—-—=134
b 6.75 -1 g 5.75 3478

51 Antiderivatives

51.1 Definition

A function F(z) is an antiderivative of f(z) if F'(z) =
f(x) for all z in the domain. The general antiderivative
is denoted by:

/f(m)da?:F(x)+C’

where C'is an arbitrary constant.

51.2° Power Rule for Integration

anrl
n — 1
/x dx n_‘_1—|—C'7 n #

51.3 Examples

1. Find the general antiderivative of f(z) = z2.
3
/x2 de=2 +C
3
2. Find the antiderivative of f(z) = X5 = 273,

—2
-3,._ T~ _ b
/ac da:—72+0— 2:1:2+C

3. Find the general antiderivative of f(z) = sinx.

/sinxda: =—cosx+C

52 Initial Value Problems

A differential equation* Z—Z = f(x) with an initial con-

dition y(zg) = yo is called an initial value problem.

52.1 Example

Find the curve y = f(x) whose derivative is % =322-1
and which passes through the point (1,4).

1. Integrate to find the general solution:
y:/(3x2—1)dx:m3—w+0
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2. Apply initial condition y(1) = 4:
4=(1P-1)+C = 4=0+C = C=4

3. Particular Solution:

y=a>—x+4

52.2 Physics Application

Derive the equation® of position s for a body moving
with constant acceleration a, initial velocity v, and ini-
tial position sgq.

s _
dt?

ds
a:/adt:at+C’1

At ¢t = 0, velocity is vg, so C; = vg. Thus, v(t) = at+wvy.
L
s(t) = [ (at +vg)dt = iat + vot + Co
At t = 0, position is sg, so Cy = sp.

1
s(t) = §at2 + vt + S

53 Absolute Extrema on Closed
Intervals

53.1 Example 1

Find the absolute values of the function f(z) = 423 —
3922 + 90z + 2 on [1, 6].
Solution: Find the derivative and critical points:
f'(x) =122% =78z +90 =0
6(222 — 13z +15) = 0
207 — 132+ 15=0
222 =10z — 3z +15=0
2z(x —5)—3(x—5)=0
(2 -3)(z—5)=0

Critical points: x = % = 1.5and x = 5.
Evaluate f(x) at critical points and endpoints
{1,1.5,5,6}:

o f(1)=4(1)3-39(1)2+90(1)+2 = 4—39+90+42 =
57

o f(1.5)=62.75
o f(5)=-23

e f(6) = 2 (Wait, checking calculation: 4(216) —
39(36) +90(6) + 2 = 864 — 1404 + 540 + 2 = 2)

Conclusion:
e Absolute Maximum: 62.75 at z = 1.5

e Absolute Minimum: —23 at z =5
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53.2 Example 2

Find the absolute extrema of g(t) = 8t — t* on [-2, 1].
Solution:
gt)=8—4t

Set ¢'(t) = 0:
443 =8
=2 = t=+v2~1.26

The critical point ¢+ = /2 is not in the interval [~2, 1].
Evaluate at endpoints:

e g(—2) =8(-2) — (-2)* = —16 — 16 = —32 (Mini-
mum)

e g(1) =8(1) — (1)* = 7 (Maximum)

54 Local Extrema

54.1 Example 1

Identify local maximum and minimum values of f(z) =
x? — 4z
Solution:

() =20 —4=2(x—2)
Critical point at z = 2.
e For z <2, f'(x) < 0 (Decreasing)
e For z > 2, f'(x) > 0 (Increasing)
Local minimum at z = 2. Value: f(2) = (2)2 —4(2) =
4—-8=—-4.
54.2 Example 2

Find local extrema for f(z) = 223 + 32% — 12z.
Solution:

f'(x) = 62 4 62 — 12
=6(z® + 1 —2)
=6(z+2)(z—1)

Critical points: x = —2 and = = 1.
Test intervals:

e At x = —2: Local Maximum.
e At z = 1: Local Minimum.

Evaluate:

f(=2) =2(-2)34+3(-2)2—12(-2) = —16+12+24 = 20

54.3 Example 3 (Trigonometric)

Find extrema for f(z) = sin2z on [0, 7].

Solution:
f(z) = 2cos2x
Set f'(x) = 0:
T 3T T 37
cos 2« = 2z 53 T 1 a

e At 2 = w/4: Local Maximum.

e At x = 3w/4: Local Minimum.
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55 Concavity and Inflection
Points

55.1 Definition

e Concave Up: [’ is increasing (f” > 0) on an
open interval I.

e Concave Down: [’ is decreasing (f” < 0) on an
open interval I.

e Inflection Point: A point where the concavity
changes.

55.2 Example 4

Analyze concavity for f(z) = 23 — 922 + Tx.
Solution:

fl(x) =32% — 18z + 7
f'(x) =62 —18
Set f"(z) =0 = 6(z—3)=0 = z=3.
e 1 <3: f” <0 (Concave Down on (—o0, 3)).
e z>3: f” >0 (Concave Up on (3,00)).
Inflection point at = = 3:
f(3)=3%—9(3)> +7(3) =27 — 81 + 21 = —33

Point: (3, —33).

55.3 Example 5

Analyze concavity for f(z) = 2* + 423 + 1.
Solution:

f(z) = 42® + 1227
f(x) = 122% + 24x
Set f"(x) =0:
120(x+2)=0 = z=0,2.=—2
Sign Chart for f”:
e (—00,—2): f”> 0 (Concave Up).
e (—2,0): f” <0 (Concave Down).
e (0,00): f” >0 (Concave Up).
Inflection points at:
e =0 = f(0)=1. Point (0,1).

z=-2 = f(-2)=16-32+1= —15. Point
(=2, -15).

56 Second Derivative Test for
Local Extrema

1. If f'(¢) = 0 and f”(¢) < 0, then f has a local
maximum at c.

2. If f'(¢) = 0 and f"”(c) > 0, then f has a local
minimum at c.
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56.1 Example 6

Find local extrema for f(z) = 223 — 1222,
Solution:

f'(x) = 62% — 24z = 6z(x — 4)
f(x) =122 — 24
Critical points: x = 0,z = 4.
e At 2 =0: f"(0) = -24 <0 = Local Max.
e Atz =4: f'(4) =48 —-24=24 >0 = Local
Min.

56.2 Example 7

Find local extrema for f(z) = 423 — 622 — 24z + 1.
Solution:

fl(x) =1222 — 122 — 24 = 12(z® — 2 — 2) = 12(z — 2)(z + 1)
[ (z) = 242 — 12

Critical points: =z =2,z = —1.

e Atz =-1: f'(-1)=-24-12=-36<0 =
Local Max.

o At x =2 f(2) =48 —-12=36 >0 = Local
Min.

57 5.3 The Definite Integral

57.1 Definitions

The symbol [ is the integral sign. The function f(z) is
the integrand, x is the variable of integration, a is the
lower limit of integration, and b is the upper limit of
integration.

58 Properties of Definite Inte-
grals

58.1 Rules Satisfied by Definite Inte-
grals

1. Order of Integration:

/baf(x)dx/abf(x)d:v

2. Zero Width Interval:
/ flx)dz =0
3. Constant Multiple:
b b
/ kf(z)dx = k/ f(x)dx
4. Sum and Difference:

/ '(F() + () da = / ' fla)do = / o) da
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5. Additivity: If f is integrable on the three inter-
vals determined by a, b, and c:

/abf(:z:)dsc+/bcf(x)dx:/:f(z)dx

6. Max-Min Inequality: If f has a maximum value
max f and minimum value min f on [a, b], then:

b
minf-(b—a)g/ f@)de <max f-(b—a)

7. Domination:
o If f(x) > g(x) on [a,b], then ff flx)dz >
fabg(x) dx

e If f(z) > 0 on [a,b], then fab f(z)dx > 0.

59 Examples

59.1 Example: Additivity
Given f_ll f(x)dr = —2 and fl z)dr = 5. Evaluate

I fla) da

/41f(x)dx—/11f(x)dx+/14f(m)dx

=—2+45=3

59.2 Example: Max-Min Inequality

Show that fol VI+coszdr < /2.

Solution: We know that [ f(z)dz < max f - (b — a).
The maximum value of /1 + cosz on [0, 1] occurs at
x = 0 (since cosine decreases on [0, 1]).

maxf:\/1+6050=\/1+1:\/§

Therefore:

/1\/1+cosmdx<\/§~(1—0):\/§
0

59.3 Average Value

The average value of a continuous function on [a,b] is

defined as:
1 b
= bfa/a f(z)dx

60 Exercises 5.3

60.1 Question 10
leen fl z)de = —1, f79 f(x)dz =5, f79 h(z)dz =

(a) Find fl —2f(x)dx

72/ fl@)de =-2(-1) =2

(b) Find [} [f(z) + h(z)] da.
9
/7f($)da?+/7 h(z)de =5+4=9
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(c) Find [] f(z) da.

/lgf(x)da::/17f(a:)dx+/79f(m)dx
—1:/17f(x)dm+5 — /17f(a:)dx:—

60.2 Question 41
Evaluate f; 7dx.

/17d:c =[Tz]3=7(1)—73)=7—-21=—14
3

60.3 Question 55
Find the average value of f(x) = x> — 1 on [0,/3].

V3
ao(f) = —o /(z—l)d

V3-0

1 [23 &
Y ?_m]o

1

FS )
1 [3v3
i “51

1
:%[\/g—\/g]zo

60.4 Question 72

Maximize: For what values of a¢ and b is the integral
f;(x — 22) dr maximized? To maximize the integral, we
integrate over the interval where the integrand is non-
negative.

r—22>0 = x(1—xz)>0

This holds for 0 <z < 1. Thus, a =0 and b = 1.
Minimize: For what values of a and b is the integral
ff(:r‘1 — 22?) dz minimized? We integrate over the in-
terval where the integrand is negative.
2t =222 <0
x? (a:2 -2)<0
Since 22 > 0, weneed 22 —2 <0 = 22 <2 =

—V2 <z < 2. Thus, a = —v/2 and b = V2.

61 5.4 The Fundamental Theo-
rem of Calculus

Theorem (Mean Value Theorem for Definite In-
tegrals): If f is continuous on [a, b], then at some point

¢ in [a,b): : \
- a/a f(z)dx

Theorem ‘(Part 1): If f is continuous on [a,b], then
= : f(t)dt is continuous on [a,b] and differen-
tiable on (a,b).

fle) =
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62 5.5 Indefinite Integrals and
Substitution Method

62.1 Indefinite Integrals
The indefinite integral is defined as:

/f(x) de =F(z)+C

62.2 Properties of Indefinite Integrals

Suppose that F(z) and G(z) are antiderivatives of f(x)
and g(z) respectively, and that k is a constant. Then:

1. Constant Multiple Rule: A constant factor can
be moved through an integral sign.

/kf(x)dx:k/f(z)dx:kF(z)+C’

2. Sum Rule: An antiderivative of a sum is the sum
of the antiderivatives.

Ju@ +g@lde= [ f@ydo+ [ gwydo

=F(z)+G(x)+C

3. Difference Rule:

Jir@ - dr/f o~ [ g(a) ds

- Gx)+C

62.3 Examples
1. Evaluate [ 4cosz da:

4/cosxd:1c =4sinz +C
2. Evaluate [(z + z?)dx:

2 3
/xdm—l—/ﬁdmz%—l—%—l—c

3. Evaluate [ <%% dz: Rewrite using trigonometric
bll’l x
identities:

1 cosT
- - dr = [ cscxcotxdx
sinx sinx

=—cscx+C

62.4 Substitution Method

If u = g(z) is a differentiable function whose range is an
interval I, and f is continuous on I, then:

[ Ho@ng @ o= [ s

62.4.1 Examples of Substitution

1. Evaluate [(z?+ 1)?-2zdz: Let u = 2% + 1, then
du = 2z dz.

3 2 3
/quu:%+C:w+C
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2. Evaluate [cos(7z + 5)dx: Let u = 7z + 5, then
du=7dr = dx = %du.

1 1 1
/cosu~?du:?sinu+0:?sin(7x+5)+0

3. Evaluate [2?sin(z%)dz: Let u = z*, then du =
322dr = 2%dr = %du.

1 1 1
/sinu- gdu: —gcosu—i—C: —gcos(x3) +C

4. Evaluate fg/%dz: Let u = 22 + 1, then du =
2zdz.
1 ~1/3
/u1/3 dU*/u /3 du
u?/3 3
= ——+C=2(2+1)*+C
273 + 2(2 +1)7° +

63 5.6 Definite Integral Substitu-
tions

63.1 Formula

b g(b)
) g (z) dx = w) du
/a Ho(@)d' () / W

63.2 Examples

1. Evaluate f_ll 322vx% + 1dx: Let u =23+ 1.
o du=3z%dx
e Lower limit: 2= -1 = u=(-1)3+1=0

e Upper limit: 1 =1 = u=(1)3+1=2

2 2
/ \/ﬁdu:/ u’? du
0 0

2
e
3 0
2 2 4v2
=222 -0)=2(2v2) = —
5 )=302v2) ==
2. Evaluate f02 +1)%dz: Let u =22 +1 =
du =2z dr — xdx—%du

e r=0 = u=1

e r=2 — u=29
624
(5T —1%) = 8(625—1) < =8

64 Improper Integrals: (1st
Kind)

Integrals with infinite limits of integration are improper
integrals of Type I.
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1. If f(z) is continuous on [a, 00), then:
oo b
/ f(z)dx = lim f(z)dx
a b—oo J,
2. If f(z) is continuous on (—oo, b], then:

b b
[ f(@)de = lim f(x)dx

a—r — o0 a

3. If f(x) is continuous on (—oo, 00), then:

/_O;f(m)dx:/_;f(x)da:-s-/:of(x)dx

In each case, if the limit is finite, we say that the im-
proper integral converges and the limit is the value
of the improper integral. If the limit fails to exist, the
improper integral diverges.

65 Examples

65.1 Example 1

Is the area under the curve y = I;’—f fromz=1toz = c©
finite? If so, what is the value?
Solution:

Using integration by parts: Let v = Inx = du =
%da:. Let dv=2"2de — v=—1

z°

| 1 11
/n:c 7727/77.7&6
T T

1
Z—E—l-/xddx
_ ez 1
o T T

(Note: limp_, oo % = 0 by L'Hopital’s Rule). Thus, the
integral converges to 1.

65.2 Example 2

oo 4
Evalu&}te o T
Solution:

/°° dx _/0 dz +/°° dz
ol a2 Jo 1422y 142

Evaluating the first part:
0
d
/ * 5 = lim [tan~! z]°
o 1 +x a——0o0

=tan '(0) — lim tan '(a)
a——00
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Evaluating the second part:

oo
d
/ < 5 = lim [tan~' 2]}

Total Integral = § + 5 = 7.

66 Improper Integrals: (2nd
Kind)

Integrals of functions with vertical asymptotes (infinite
discontinuity) within the limits of integration.

1. If f(x) is continuous on (a, b] and discontinuous at
a:

b b
/f( ydo =t [ f@)da

c—at

2. If f(z) is continuous on{ayb) and discontinuous at
b:

b c
/ f(z)dz = lirgl_ flx)dzx

3. If f is discontinuous at ¢ where a < ¢ < b:

/abf(m)dx:/acf(x)d:c—k/cbf(x)dm

66.1 Examples

1. Evaluate fo ﬁ Vertical asymptote at =z = 1.

/3 dzx _/1 dzx +/3 dz
o (w=123 " Jy (x—1)2/3 1 (z—1)%3

Evaluate first part:

b
lim [ (z—1)"%3de = lim [3(z — 1)'/3]}

b—=1= Jo b—1—
=3(0)—3(-1)/3 =3
Evaluate second part:

3
tm [ (=17 do = lim (3o~ 1)/

c—=1t /. c—1+

=3(2)Y% - 3(0) = 3V2

Total = 3 + 3/2.
2. Evaluate fol \/% dx: Discontinuity at x = 1.

lim

. .1
bﬂl*/ V1 —3;2 b—1— 0

67 Convergence Tests

67.1 Limit Comparison Test (LCT)

If f(x) and g(x) are positive continuous functions on
[a, 00), and if:

lim M:L

, 0<L<o
z—oo g(x)

then [ f(z)dz and [ g(x)dx both converge or both
diverge.
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67.2 Example
Show that [

floo 9712 dz.

dx . .
11,7 converges by comparison with

1
lim —f(x) — lim 122

z—oo g(x) T—o0

= lim =1

Since L = 1 (finite and positive) and [ 25 dz converges
(p =2 > 1), the integral floo % also converges.

67.3 Example

Investigate convergence of floo 1’5_1 dx using g(x) = %
1 T
lim — Y~ lm(l-e®)=1-0=1
T—r00 X xT—00

Since floc % dz diverges (harmonic), the given integral
diverges.
68 Integral Formulas

1. [kdr=kz+C

1L+1

2. [a"de =275 4+C, n#-1
3. f%:lnm—&-C

4. [e*dr=¢e"+C
5.fa”dx—lna—|—0 a>0,a#1
6. [sinzdr =—cosz+ C

7. [coszdr =sinxz+ C

8. [sec?zdx =tanz + C

9. [esc?wdr = —cotz +C

10. [secztanzdx =secx + C

11. [esczcotwdr = —cscx +C
12. [tanzdz =In|secz|+ C

13. [cotxdr = In|sing|+ C

14. [secxzdx =In|secz +tanz|+ C
15. [escadr =In|cescx — cotz| + C
16. [sinhzdz = coshz + C

17. [coshadz = sinhz + C

18. [t =sin! (£) +C

19. [ S =Ltan~! (2) +C

a2+ax?

20.f\/W Lsec ! |Z|+C
21. [ o =sinh™ (£) +C

22. [ \/% = cosh™! (z)+cC

©www.RanaMaths.com Page Number 43

69 Integration by Parts

/udvzuv—/vdu

69.1 Examples

Formula:

1. Evaluate fa:cosxdx: Let wu = x = du = dx.
Let dv = coszxdr — v =sinz.

/xcosxda::acsinx—/sinxdx

=zsinz — (—cosz) +C

=zxsinz +cosz +C

2. Evaluate [Inzdz: Let w =Inz = du = %dx
Let dv =dz — v =x.

/lnxdx:xlnx—/x(1> dxr
T

:xlna:—/dxlenx—a:—i—C

3. Evaluate [z%¢”dz: Let u=2? = du = 2zdx.
Let dv =€e*dx = v = ¢€”.

/17261 do = 2% — /25861 do = z2e® — 2/.%61 dx

Apply integration by parts again for [ xe® dz: Let u =
r = du=dzx. Let dv =e"dr = v =¢€".

/xe“‘d:c:mex—/e“dx:xex—ex

Substitute back:
/xQe” dr = z?e”—2(xe” —e)+C = 2% —2re” 42 +C

4. Evaluate [e”cosxzdr: Let I = [e”cosxzdr. Let
u =cosr —> du = —sinxdr. Let dv = e*dzx —
v =¢e".

I:ezcosxf/em(fsinx)dm:e“"cosxqt/e””sinxd:c

Apply parts again for [e®sinzda: Let u = sinx =
du=cosxdr. Let dv =e*dr = v =¢€".

/e"”sinxdm:exsinx—/e”cosmdac:exsinm—l

Substitute back into original equation*:
I=¢e"cosz+ (e"sinz —I)

2I = e*(cosz + sin z)
x

I= %(cosx—i—sinx) +C

69.2 Tabular Method

Used for integrals like [ 2" dx or [ 2" sin(ax) dx.
Example: [z?%e”dx

Derivatives of v | Integrals of dv
2 T
x e
2x e’
2 e’
0 e

Multiply diagonals with alternating signs (+, -, +, ...):
/x2e” dr = +(2%)(e”) — (22)(e%) + (2)(e”) + C
=e"(2? —22+2)+C
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70 Integrating Products of Sines
and Cosines

70.1 Procedure
To evaluate integrals of the form [ sin™ z cos™ x da:
1. If n is odd:

e Split a factor of cosz.

2 2

e Use the identity cos®*z = 1 — sin” z.

e Substitute v = sinx.
2. If m is odd:

e Split a factor of sin .
2

e Use the identity sin?z = 1 — cos? z.
e Substitute ©u = cosz.
3. If m and n are both even:

e Use the relevant identities to reduce the pow-
ers:

.2 1 —cos2x 9 1+ cos2x
sin“z = ————, costr=—"F—

70.2 Examples

1. Evaluate [ sin® z cos® z dx: Since n = 5 is odd:
/sin4 zcos® xdr = /sin4 z(cos? z)% cos x dx
= /sin4 z(1 — sin? z)? cos z dx
Let u = sinzx, du = cosz dzx:
= /u4(1 —u®)?du
= /u4(1 —2u? +u*) du

= /(u4 —2u8 + u®) du

w20 W
=——+ —+C

5 gt
_ sin® 2 2sin’ @ +sin9:c e
5 7 9

2. Evaluate f sin® z cos? x dx: Since m = 3 is odd:
/sin3 zcos?xdr = /sin2 zcos? zsinz dx
= /(1 — cos? ) cos® x sin x dx
Let u = cosx, du = —sinx dx:

:t/kl—zﬁﬁﬁ(—du)

= /(u4 —u?)du

u5 u3
-~ _24cC
53 "
COS5 X COS3 x
= - C
5 3 "
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3. Evaluate fsin2 x cos* z dx: Since both powers are
even:

/ sin? z cos* z dz
= /sin2 z(cos® z)? dx

/(1 —c0s2x> <1+COS21‘>2
= dx
2 2

1
=- /(1 — c0s2z)(1 + 2 cos 2z + cos? 2x) dx

8

(Note: Expansion and further integration would follow
using standard methods for even powers).

71 Integrating Products of Tan-
gents and Secants

71.1 Procedure

To evaluate integrals of the form- [ tan™ z sec”  da:

1. If n is even:

o Split a factor of sec? z.
e Use identity sec? z = tan?z + 1.

e Substitute u = tanx.
2. If m is odd:

e Split a factor of secx tan x.

e Use identity tan® z = sec?z — 1.

e Substitute u = sec x.

3. If n is odd and m is even:

e Use integration by parts or reduction formu-
las.

71.2 Examples

1. Evaluate [ tan®xsec?zdz: Since n = 4 is even:
/tan2 xsec? rsec? xdr = /tan2 x(1 + tan? z) sec’ x dx
Let v = tanz, du = sec? z dx:

= /u2(1 +u?) du

= /(u2 +ut) du

3 5
U U
=—4+—+C
3 + 5 +
tan x tan® x
= O
3 + 5 +

2. Evaluate [ tan®zsecx da:
/(sec2 x—1)secxdr = /(sec3 x —secx) dx
Using reduction formula for [ sec® z da:

s 1 1
sec’ xdx = isecxtaner §1n|sec:c+tan:z:|
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Therefore: 3. Evaluate f dy for x > 5: Let z = 5secld —

3 dx = 5secftan 6 db.
sec’ xdr — | secxdx
i i / 5secf tan 6 df [ 5secftan6df
= (QSecmtanx—i—21n|secx+tanac|) 5secfv/25sec2f — 25 J 5Hsech-5tanf
1
— In|secx + tan x| :g/de
1 1
:isecxtanxfiln|secm+tanx\+0 :19—&—6'
5
72 Trigonometric Substitution Since z = 5secf = secl = F = 0 =sec™! (3).
72.1 Substitution Method = %sec*1 (%) +C
Expression | Substitution Simplification . .
T =22 pe—— P 7 S p—ly This pdf is for personal use only.
Va2 + z2 r =atanf a? + a?tan? 0 = a?sec2 6
Va2 — a? x=asecll | a’sec’d —a?=a’tan®0

72.2 Examples

1. Evaluate fﬁ‘fﬁ: Let z = 2sinf = dz =
2cos @ db.
2cosfdb

dxr /
/932\/4—332 4sin® 0v/4 — 4sin? 6
_/ 2cos 6 db
) 4sin%6-2cosh
1 1
=—- | ——db
4 / sin? 0
1
= 1/cs020d0

1
z—icote—kC’

Substitute back: sinf = 3. From the right triangle,

adjacent side is V4 — 22. So cot = Y422

x
Vi — 22
- +C

2. Find the arc length of the curve y = % from
x =0 to z =1: Formula: L = f; V1+ (y)2dz.

y/ —r — (yl)Q . 1172

1
L:/ V14 22dx
0

Let £ = tanf = dx = sec20df. Limits:
er=0— 60=0

er=1= 0=7%

/4 /4
/ V' 1+ tan? fsec? 6 do = / secf - sec? 0.do
0 0

/4 )
= / sec® 0 do
0

Using reduction formula or integration by parts:
/4

1 1
—secfHtand + — In|secd + tan 6|
2 2 .

— %[\/5(1) +In(v2+1)] - %[1(0) +In(1)]

- %NLL In(v2 +1)] ~ 1.148
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