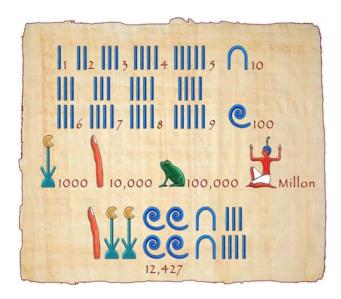

For video lecture please visit https://www.youtube.com/@MathwayAcademy

HISTORY OF NUMBERS:


Thousands of years from ancient civilization to modern Arabic system

Sumerians (4500-1900 BCE)

Sexagesimal (base 60) system for counting
Used cone , bead, large cone, large perforated cone, sphere and perforated sphere, corresponding to 1, 10. 60, 600.

Egyptians (3000 - 2000 BCE)
Base 10 (decimal system) for counting

Romans (500BCE-500CE)

Romans numerals use 7 letters to represent different numbers.

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000

1	I	11	XI	50 L	
2	II	12	XII	100 C	
	III	13	XIII	500 D	
4	$_{ m V}^{ m IV}$	14	XIV	1000 M	
5	\mathbf{V}	15	XV		
6	$_{ m VI}^{ m VI}$	16	XVI		
7	VII	17	XVII		
8	VIII	18	XVIII		
9	IX		XIX		
10	\mathbf{X}	20	XX		

INDIANS (500 - 1200 CE)

- Concept of zero(0)
- Contribution to decimal (base 10) system

Number system used today was invented by Indians still called <mark>Indo-Arabic</mark>. Indian invented and Arab merchants took to the Western world.

ARABS (800 - 1500 CE)

- ► Introduced Arabic numerals (0 9) to Europe.
- ► Muhammad ibn MUSA Al-Khwarizmi introduced algebra in 9th century
- Successors Al-Karaji expanded his work, contributing to advancements in various mathematical domains.

Modern era (1700 - present):

Modern number systems e.g. binary system(base -2) and hexadecimal system (base -16)

Denary/Decimal	Binary	Hexadecimal
Base 10 Number System	Base 2 Number System	Base 16 Number System
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Natural numbers:

- Natural numbers counts from 1 to infinity.
- They are the positive counting numbers.
- Represented by 'N'.
- Generally use for counting.

$$N \ = \ \{1,2,3,4,5,6,7,\dots\}$$

Whole numbers:

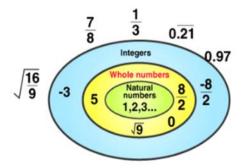
- > count from zero to infinity.
- Do not include fractions or decimals.
 Represented by 'W'.

$$W = \{0,1,2,3,4,5,...\}$$

Integers:

- Set of numbers including all the positive counting numbers, zero as well as all negative counting numbers which count from negative infinity to positive infinity.
- The set doesn't include fractions and decimals.
- Represented by 'Z'.

$$Z = \{... - 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...\}$$

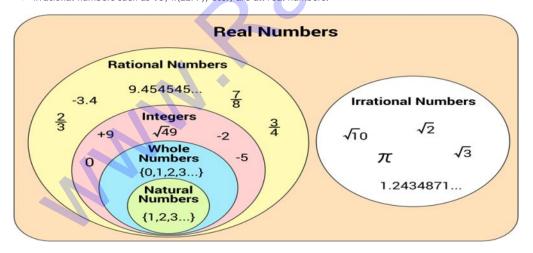

Integers on a Number Line Neither positive nor negative

Rational number:

 \Rightarrow Any number which can be represented in the form of p/q where q \neq 0.

⇒ Any fraction, where the denominator and numerator are integers and the denominator is not equal to zero.

⇒ When the rational number (i.e., Fraction) is divided, the result will be in decimal form, which may be either terminating decimal or the repeating decimal.



Irrational number:

- ♦ A real number that cannot be expressed as a ratio of integers;
- \Rightarrow for example, $\sqrt{2}$ is an irrational number.
- ♦ We cannot express any irrational number in the form of a ratio, such as p/q, where p and q are integers, q≠0.
- ♦ The decimal expansion of an irrational number is neither terminating nor recurring

Real numbers:

- * Numbers that include both rational and irrational numbers.
- * Rational numbers such as integers (-2, 0, 1),
- fractions(1/2, 2.5)
- * irrational numbers such as $\sqrt{3}$, $\pi(22/7)$, etc., are all real numbers.

PROPERTIES OF REAL NUMBERS

Name of property	$\forall a, b, c \in R$	
Operation	ADDITION	MULTIPLICATION
Closure	a + b ∈ R	ab ∈ R
Commutative	a + b = b + a	ab = ba
Associative	a + (b + c) = (a + b) + c	a(bc) = (ab)c
Identity	a + 0 = a = 0 + a	$a \times 1 = a = 1 \times a$
Inverse	a + (-a) = -a + a = 0	$a \times \frac{1}{a} = 1 = \frac{1}{a} \times a$
Distributive property $a(b+c) = ab + ac$		

2+3=5ER
3-X3=6ER
2 4

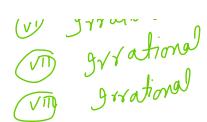
	a a Ly /
Distributive property $a(b+c) = ab + ac$	$(2+3)^{+}$
(a + b)c = ac + bc	(- + 1 -
Properties of Equality	

	· · · · · · · · · · · · · · · · · · ·
Reflexive V	$\forall a \in R, \qquad a = a$
Symmetric	$\forall a, b \in R, \qquad a = b \Rightarrow b = a$
Transitive	$\forall a, b, c \in R$ $a = b \land b = c \Rightarrow a = c$
Additive	$\forall a, b, c \in R a = b \Rightarrow a + c = b + c$
Multiplicative	$\forall a, b, c \in R a = b \Rightarrow ac = bc$
Cancellation (+)	$\forall a, b, c \in R$ $a + c = b + c \Rightarrow a = b$
Cancellation (×)	$\forall a, b, c \in R \land c \neq 0, a \neq b \Rightarrow a = c$

a+0=a
9=9

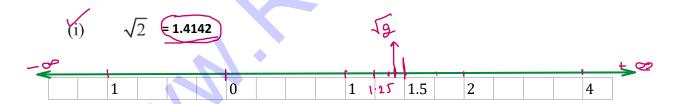
9=	4=>	4 = 2

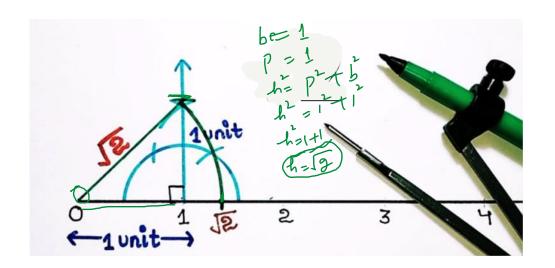
Order properties	
Trichotomy property	$\forall a, b, c \in R a = b \text{ or } a > b \text{ or } a < b$
Transitive	$\forall a, b, c \in R$ • $a > b \land b > c \Rightarrow a > c$ • $a < b \land b < c \Rightarrow a < c$

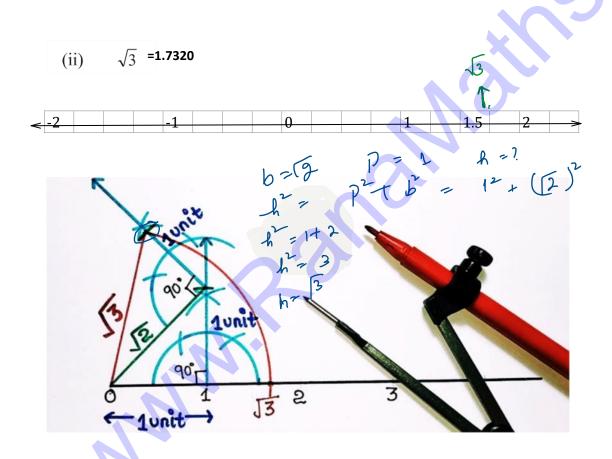


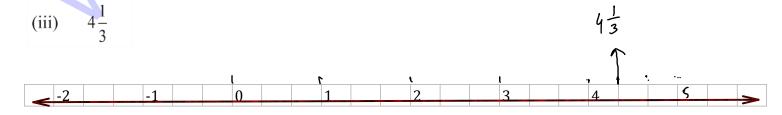
1. Identify each of the following as a rational or irrational number:

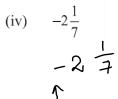
- (i) 2.353535
- 0.6 0.6686 ... -
- (iii)
- 2.236067... (iv) $\sqrt{7}$


- (viii) $\sqrt{3} + \sqrt{13}$




- (ix) $\frac{15}{4}$ (ix) Pational


 X) Rational
- (x) $\frac{(2-\sqrt{2})(2+\sqrt{2})}{(\alpha-b)(\alpha+b)} = \alpha^2 b^2$ $g^2 (\sqrt{2})$ $= \mu \lambda$ $= \lambda$


2. Represent the following numbers on number line:





Express the following as a rational number $\frac{p}{q}$ where p and q are integers 3. and $q \neq 0$:

Let
$$\chi = 0.4$$

 $\chi = 0.444...$

Multiplying 10 b.s

 $10\chi = 10(0.444...)$
 $10\chi = 4.444...$

$$10x = 4.444...$$
 $10x = 4 + 6.444...$
 $10x = 4 + 0.444...$
 $10x = 4 + 0.444...$
 $10x = 4 + 0.444...$

$$9X = 4$$

$$1/\lambda = \frac{4}{9}$$

(ii)
$$0.\overline{37}$$

Let $x = 0.\overline{37}$
 $y = 0.\overline{37}$

(iii)
$$0.\overline{21}$$

Let $x = 0.2/2121...$

Muliphy M 100 b.

 $100x = 100(0.212121...)$
 $100x = 21.2121...$
 $100x = 21.2121...$
 $100x = 21 + 0.212121...$
 $100x = 21 + x$

4. Name the property used in the following:

(i)
$$(a+4)+b=a+(4+b)$$

ASS ociotive property w.s.t

(ii)
$$\sqrt{2}+\sqrt{3}=\sqrt{3}+\sqrt{2}$$

Commutative Property W.Y. (+)

(iii)
$$x-x=0$$
 $y+(-x)=0$
Additive governe

(iv)
$$a(b+c) = ab + ac$$

Left Distributive foreserty

(vi)
$$100 \times 1 = 100$$

multiplicative 9 down't

5. Name the property used in the following:

(i)
$$-3 < -1 \Rightarrow 0 < 2$$
 -3 $+3$ $< -1 + 3$ Additive hosperty

(iii) If
$$a < b$$
 then $a + c < b + c$

Adifive property

(iv) If
$$ac < bc$$
 and $c > 0$ then $a < b$

(an (ellasion property)

(v) If ac < bc and c < 0 then a > b(an (ellation from bc)

Cancellation property

Either a > b or a = b or a < b(vi)

6. Insert two rational numbers between:

(i)
$$\left(\frac{1}{3}\right)$$
 and $\left(\frac{1}{4}\right)$

1st No =
$$\frac{1}{9} \left[\frac{1}{3} + \frac{1}{4} \right] = \frac{1}{9} \left[\frac{4+3}{12} \right]$$

= $\frac{1}{9} \left[\frac{7}{12} \right] = \frac{7}{94}$

and
$$No = \frac{1}{9} \left[\frac{1}{3} + \frac{7}{9} u \right] = \frac{1}{9} \left[\frac{8+7}{9} u \right]$$

(ii) 3 and 4

1 St
$$n0 = \frac{1}{9} [3+4] = \frac{7}{9}$$

(11)
$$3 \text{ and } 4$$

 $1 \text{ St } n0 = \frac{1}{3} [3 + 4] = \frac{7}{3}$

gnd no: =
$$\frac{1}{9}[3+\frac{7}{9}]$$

= $\frac{1}{9}[\frac{6+\frac{7}{9}}{9}]$
= $\frac{1}{2}[\frac{13}{9}] = \frac{13}{4}$ Ans

(iii)
$$\frac{3}{5}$$
 and $\frac{4}{5}$

1st no = $9[\frac{3}{5} + \frac{4}{5}]$

= $\frac{1}{3}[\frac{3+4}{5}] = \frac{1}{9}[\frac{7}{5}]$

= $\frac{7}{10}$

9 nd no = $\frac{1}{3}[\frac{7+4}{5}] = \frac{1}{9}[\frac{7+4}{5}]$