TOPOLOGY

Notes Prepared By:- Dr. Muhammad Tahir

Wattoo

TOPICS:-

- Introduction to Topological Structures.
- Topological Groups.
- Connected Spaces/ Path Connected Spaces/ Locally Connected Spaces.
- Compact Spaces/ Locally Compact Spaces/ Lindelof Spaces.
- Homeomorphism.
- Separation Axioms.
- N-Spheres.
- Normal Spaces.
- Urysohn Lemma.
- Manifolds.
- ➢ Introduction to Dimension Theory.

BOOKS:-

- General Topology by John L. Kelley.
- Introduction to Topology and Modern Analyses by George F. Simmon.
- Foundations of Topology by C. Wayne Patty.
- Topology by James R. Munkres.
- Topology by James Dugundji.

Topology:-

Let X be non empty set and ' τ ' be the collection of subsets of X. Then τ is called topology if,

- (i) Φ and X belongs to τ .
- (ii) The intersection of any two sets in τ belongs to τ .
- (iii) The union of any number of sets in τ belongs to τ .

The members of τ are then called τ -open sets OR simply open sets. (And compliment of open set is called a closed set). X together with τ *i.e.* (*X*, τ) is called a topological space.

The set X is called its ground set and the elements of X are called its points.

Neighborhood of a Point:-

If (X, τ) is a topological space and $A \subseteq X$, Then $x \in A$, There exit $u \in \tau$ s. $t x \in u \subseteq A$. Then A is neighborhood of x.

- Neighborhood of a point is a set.
- Every open set is neighborhood of each of its points.
- ✤ A point of X can have more than one neighborhood.
- Every point of X has at least one neighborhood and that is X.
- Collection of all neighborhoods of a point is called neighborhood system of that point.

Base for a Topology:-

Let X be any set, then a subset β of subsets of X is a base for a topology if $\forall x \in X$, there exit B $\in \beta$ such that $x \in B$. For B_1 and $B_2 \in \beta$ and $x \in B_1 \cap B_2$, Then there exit $B_3 \in \beta$ such that $x \in B_3 \subseteq B_1 \cap B_2$

$$\cup B_i = X$$

Concepts:-

- (i) We are given with the topology τ and need to construct the base for τ .
- (ii) We are given with the ground set and need to construct a base and generate corresponding topology.

Base For a Topology:-

A collection β of a topology τ is called base fot topology if every member of τ is union of members of β .

Example:-

Let
$$X = \{a, b, c, d, e\}$$
 & $\tau = \{\varphi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$

$$\beta_1 = \{\{a, b\}, \{c, d\}, X\} \& \beta_2\{\{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$$

Both $\beta_1 \& \beta_2$ are the basis for τ .

Now consider,

$$\tau_{2} = \{\varphi, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d, e\}, \{d, e\}, \{a, d, e\}, X\}$$
$$\beta_{3} = \{\{a\}, \{b, c\}, \{d, e\}, \{b, c, d, e\}\} \& \beta_{4} = \{\{a\}, \{b, c\}, \{d, e\}\}$$

Then each β_3 and β_4 are basis for τ_2

Note:-

Members of the base for a topology are called basic open sets and their compliments are called basic closed sets.

Example:-

If X s a non empty set then the collection of all singletons of X is a base for a discrete topology.

e. *g*. $\beta = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}\}\$ for same above X.

Theorem:-

A collection β of a topology τ is a base for τ if and only if for any points $x \in u \in \tau$, there exit $B \in \beta$ such that $x \in B \subseteq \beta$.

Note:-

4 Consider the usual topology on the real line \mathbb{R} . Then a base β for this topology is the set of all open intervals, that is,

 $\beta = \{(a, b): a, b \in \mathbb{R} and a < b\}$

- ↓ Consider the usual topology on the plane \mathbb{R}^2 then each of the following collections is a base for the usual topology on \mathbb{R}^2 .
- 1. The collection β_1 of all open discs in \mathbb{R}^2 .
- 2. The collection β_2 of all open rectangles bounded by the sides, which are parallel to the co-ordinate axis.

Definition:-

A collection β of sub sets of a non empty set X is a base for some topology τ on X if β meet the following requirements,

- (1) If A, B $\epsilon \beta$ and $x \epsilon A \cap B$, then there exit $C \epsilon \beta$ such that, $x \epsilon C \subseteq A \cap B$.
- (2) Union of $B=X \forall B \epsilon \beta$

Base at a Point:-

Let *x* be any point of a topological space (X, τ) . A collection β_x of open sets containing *x* is called a base at the point *x*. This is also called local base.

★ A collection $β_x$ is base at the point *x*, if for every open set *u* containing *x*, there exit *B* ∈ $β_x$ such that *x* ∈ *B* ⊆ *u*.

Theorem:-

A collection β of open sets in a topological space (X, τ) is a base for τ if and only if β contains base at each point of X.

Example:-

Let
$$X = \{a, b, c, d, e\} \&$$

$$\tau = \begin{cases} \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{c, d, e\}, \{a, c, d, e, \}, \\ \{b, c, d, e\}, X \end{cases}$$

$$\beta_a = \{\{a\}\} , \qquad \beta_b = \{\{b\}\} , \qquad \beta_c = \{\{c\}\}$$

$$\beta_e = \{\{c, d, e\}\} \& \qquad \beta_d = \{\{c, d, e\}\}$$

And $\beta = \{\{a\}, \{b\}, \{c\}, \{c, d, e\}\}$:containing base at each point of X.

Example:-

The set of all open discs with centre x is a base at x with respect to the plane.

Example:-

In discrete topological space X, the base at each point is {{x}}.

Sub Base:-

Let τ be a topology on X, then the collection \boldsymbol{S} of members τ is called sub base for τ if and only if finite intersection of members of \boldsymbol{S} form base for τ .

Example:-

Let $X = \{a, b, c, d, e\}$ $\tau = \{\varphi, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d, e\}, \{d, e\}, \{a, d, e\}, X\}$ Let $S = \{\{a\}, \{a, b, c\}, \{b, c, d, e\}, \{a, d, e\}\}$ $\beta = \{\{a\}, \{a, d, e\}, \{b, c, d, e\}, \{a, d, e\}, \{b, c\}, \{d, e\}\}$ then clearly β is the base for τ .

 \Rightarrow **S** is a sub base.

Question 1:-

Let $X = \{a, b, c, d\}$; sow that $\beta = \{\{b, c\}, \{c, d\}\}$ cannot be base for any topology on X.

Solution:-

(1) Let
$$\beta_1 = \{b, c\} \& \beta_2 = \{c, d\} \in \beta$$

 $\beta_1 \cap \beta_2 = \{c\}$

Let $c \in \beta_1 \cap \beta_2$; then there does not exit any set $\beta_3 \in \beta$ such that,

 $c \epsilon \beta_3 \subseteq \beta_1 \cap \beta_2$

 $\Rightarrow \beta$ is not base for any topology.

- (2) Also union of $B_i \in \beta = \{b, c, d\} \neq X$
- $\Rightarrow \beta$ is not base for any topology.

Question 2:-

Find a sub base (with a few members as possible) for each of the following topology on $X = \{a, b, c\}$

Solution:-

(1) Sub base for
$$\tau_1 = S_1 = \{\varphi, \{a\}, X\}$$

- (2) Sub base for $\tau_2 = S_2 = \{\{a\}, \{b, c\}\}$
- (3) Sub base for $\tau_3 = S_3 = \{\{a\}, \{a, b\}, \{a, c\}\}$

Quetion3:-

Let $X = \{a, b, c, d, e\}$ generate topologies for,

$$S_1 = \{\{a, b\}, \{c, d\} X\} \quad \& \quad S_2 = \{\{a, b\}, \{b, c, d\}, \{d, e\}, X\}$$

Solution:-

(1) $S_1 = \{\{a, b\}, \{c, d\}, X\}$

Base for $S_1 = \beta_1 = \{\varphi, X, \{a, b\}, \{c, d\}\}$

And topology for $S_1 = \tau_1 = \{\varphi, X, \{c, d\}, \{a, b\}, \{a, b, c, d\}\}$

(2) $S_2 = \{\{a, b\}, \{b, c, d\}, \{d, e\}, X\}$

Base for $S_2 = \beta_2 = \{\varphi, X, \{a, b\}, \{b, c, d\}, \{d, e\}, \{b\}, \{d\}\}$

And topology = $\tau_2 = \{\varphi, X, \{a, b\}, \{b, c, d\}, \{d, e\}, \{b\}, \{d\}, \{a, b, c, d\}, \{a, b$

$${a, b, d, e}, {a, b, d}, {b, c, d, e}, {b, e, d}, {b, d}$$

Continuous Function:-

Let (X, τ_x) and (Y, τ_y) be topological spaces and $f: X \to Y$ is a function. Let $x_{\circ} \in X$ then f is said to be continuous at x_{\circ} if for

each open set V containing $f(x_0)$ there exit an open set U in X such that $x_0 \in U \& f(U) \subseteq V$.

Then f is said to be continuous on X if f is continuous at each point of X.

Example:-

Let
$$X = \{a, b, c\}$$
; $\tau_x = \{X, \varphi, \{a\}, \{a, b\}\}$ and

 $Y = \{1,2\}$; $\tau_y = \{\varphi, Y, \{1\}, \{2\}\}$. Let $f: X \to Y$ be defined by f(a) = 1,

f(b) = 1 & f(c) = 2. Then f is continuous at x = a, b but not continuous at c.

Verification:-

Let $x = b \Rightarrow f(x) = f(b) = 1$

Let
$$V = \{1\}$$
, Then $U = \{a, b\}$

Now, $b \in U \& f(U) = f(\{a, b\}) = 1 \subseteq V$

 \Rightarrow *f* is continuous at *x* = *b*

Similarly for x = a.

Now let x = c f(x) = f(c) = 2

And the open set $V = \{2\}$. Now $x = c \in U = X$

$$\Rightarrow f(U) = f(X) = Y = \{1,2\} \not\subseteq V$$

$$\Rightarrow f \text{ is not continuous at } c.$$

PREPAIRED BY Dr. MUHAMMAD TAHIR Wattoo M.S. MATHEMATICS FA15-RMT-007

Example:-

Let *X* be an indiscrete topological space and let *Y* be discrete topological space, then every function $f: X \to Y$ which is not constant is discontinuous at all points of *X*.

Example:-

Let *X* be an arbitrary topological space and let Y be an indiscrete topological space. Then every function $f: X \to Y$ is continuous at all points of *X*.

Continuous Function (Alternate Definition):-

A function $f: X \to Y$ is continuous on X if $f^{-1}(V)$ is open in X for every open set V of Y.

Product Topology/Box Topology:-

Let (X, τ_x) and (Y, τ_y) be topological spaces, The product topology (Box topology) on $X \times Y$ is the topology having as basis the collection β of all sub sets of the for $U \times V$, where U is an open subset of X and V is an open subset of V.

Result:-

If β is a basis for topology of X and γ is a basis for topology of Y, then the collection $\mathfrak{D} = \{B \times C : B \in \beta, and C \in \gamma\}$ is a basis for the product topology of $X \times Y$.

Example:-

Let
$$X = \{a, b, c\}; \quad \tau_x = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$$

Let $Y = \{1, 2, 3, 4\}; \quad \tau_{\gamma} = \{\varphi, \{1, 2\}, \{3, 4\}, Y\}$

Then we know,

 $X \times Y = \{(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4), (c, 1), (b, 2), (c, 3), (c, 4), (c, 1), (c, 1), (c, 2), (c, 3), (c, 4), (c, 1), (c, 2), (c, 3), (c, 4), (c, 3), (c, 4), (c, 3), (c, 4), (c,$

$$\begin{aligned} (c,2), (c,3), (c,4) \} \\ & \beta_{\tau_x} = \{\{a\}, \{b\}, X\}; \quad \gamma_{\tau_y} = \{\{1,2\}, \{3,4\}\} \\ \text{Let } U_1 = \{a\}, U_2 = \{b\} \in \beta_{\tau_x} \quad \& \quad V_1 = \{1,2\}, \quad V_2 = \{3,4\} \in \gamma_{\tau_y} \\ \Rightarrow \mathfrak{D} = \{U_1 \times V_1, \ U_2 \times V_1, \ U_1 \times V_2, U_2 \times V_2, \ X \times V_1, \ X \times V_2\} \\ \Rightarrow \mathfrak{D} = \{\{a\} \times \{1,2\}, \{b\} \times \{1,2\}, \{a\} \times \{3,4\}, \{b\} \times \{3,4\}, \{a,b,c\} \times \{1,2\}, \\ \{a,b,c\} \times \{3,4\}\} \\ \Rightarrow \mathfrak{D} = \{\{(a,1), (a,2)\}, \{(b,1), (b,2)\}, \{(a,3), (a,4)\}, \{(b,3), (b,4)\}, \\ \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}, \{(a,3), (a,4), (b,3), \\ (b,4), (c,3), (c,4)\}\} \end{aligned}$$

Is the base for $X \times Y$.

Note:-

Let $X_1, X_2, X_3, ..., X_n$ be a finite family of sets. Then the Cartesian product,

$$\prod_{\alpha=1}^{n} X_{\alpha} = X_{1} \times X_{2} \times X_{3} \times \dots \times X_{n}$$
$$= \{ x = (x_{1}, x_{2}, \dots, x_{n}) \colon x_{\alpha} \in X_{\alpha} \forall \alpha = 1, 2, \dots, n \}$$

For arbitrary product, Let $\{X_{\alpha} : \alpha \in \nabla\}$ be an arbitrary family of sets, then the Cartesian product is given by, $\prod_{\alpha \in \nabla} X_{\alpha}$.

Projection Mapping:-

The function $p_i: \prod_{\alpha \in \nabla} X_\alpha \longrightarrow X_i$; $i \in \nabla$ defined by,

 $p_i(x) = x_i$ is called a projection mapping of $\prod_{\alpha \in \nabla} X_\alpha$ onto X_i .

Every projection mapping is surjection (onto).

Definition:-

Let $\{X_{\alpha} : \alpha \in \nabla\}$ be an arbitrary family of topological spaces, and let $\beta \in \nabla$, then $p_{\beta} : \prod_{\alpha \in \nabla} X_{\alpha} \longrightarrow X_{\beta}$ defined by,

 $p_{\beta}^{-1}(U_{\beta}) = \prod_{\alpha \in \nabla} B_{\alpha}$; where $B_{\alpha} = U_{\beta}$ for $\alpha = \beta$ & $B_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$

Then, $S_{\alpha} = \{p_{\alpha}^{-1}(U_{\beta}): U_{\beta} \in \tau_{\alpha}\}$ and let $S = \bigcup_{\alpha \in \nabla} S_{\alpha}$ be a sub base for topology τ on $\prod_{\alpha \in \nabla} X_{\alpha}$.

Then τ is called product topology and the topological space $(\prod_{\alpha \in \nabla} X_{\alpha}, \tau)$ is called the product space.

Previous Knowledge

Semi Group:-

A non-empty set *S* is said to be semi group under the binary operation * if,

(i) (S, *) is closed.

(ii) * is associated in S.

Then we write (S,*) is a semi group.

e. *g*. (*N*, +), (*E*, \bullet) are semi groups.

PREPAIRED BY MUHAMMAD TAHIR M.S. MATHEMATICS

Group:-

A non empty set G is said to be group under the binary operation * if,

(i) (G,*) is closed *i.e.* $\forall a, b \in G \implies (a * b) \in G$

- (ii) (*G*,*) is associated *i.e.* \forall *a, b, c* \in *G* \Rightarrow (*a* * *b*) * *c* = *a* * (*b* * *c*)
- (iii) Identity element under the binary operation * exit in G. That is there exit an element $e \in G$ s.t. $\forall a \in G$, e * a = a * e = a.
- (iv) Every element of G has its inverse under the binary operation * in G. That is $\forall a \in G$ there exit some $b \in G \ s.t. \ a * b = b * a = e$. Where *e* is identity element in G.

Then we write (G,*) is a group.

Abelian Group:-

A group (G,*) is said to be commutative group or abelian group if "*" is commutative in G.

Sub Group:-

Let G be a group and H is a non empty sub set of G, then H is said to be sub group of G if H itself is group under the induced (same) binary operation of G. then we write it as $H \le G$.

Remark:-

Every group G has at least two sub groups namely the identity element $\{e\}$ and group G itself. These two groups of G are called trivial or improper subgroups of G. Any other sub group of G is called proper or non-trivial sub group of G.

Cyclic Group:-

A group G generates by a single element say a is called cyclic group. In this case "a" is called generator of G. and we write it as $G = \langle a \rangle$.

Left Coset:-

Let G be a group and $x \in G$, then a set defined by

 $xH = \{xh \in G : h \in H\}$ is called left coset of H in G determined by x, where H is sub set of G.

Similarly $Hx = \{hx: h \in H\}$ is said to be right coset of H in G.

Normal Sub Group:-

A sub group H of a group G is said to be normal sub group if and only if for all $g \in G \implies gH = Hg$. Then we write $H\Delta G$.

Factor Group OR Quotent Group:-

Let G be group and $H\underline{\Delta}G$. Then the collection of all left (or right) cosets of H in G is called factor group or quotient group. It is denoted by $G \setminus H$ *i.e.* $G \setminus H = \{gh: g \in G\}$.

Homomorphism:-

Let (G,*) & (G',\bullet) be two groups then a function,

 $\varphi: (G, *) \to (G', \bullet)$ is said to be group homomorphism or simply homomorphism if φ preserves the binary operations of both G & G', that is for all $a, b \in G$; $\varphi(a * b) = \varphi(a) \bullet \varphi(b)$.

Kernal of φ :-

Let $\varphi: G \to G'$ be a group homomorphism. Then kernel of φ is denoted and defined by $ker\varphi = \{g \in G: \varphi(g) = e'; e' \text{ is identity of } G'\}$

Page | 16

Permutation Group:-

Let $X \neq \varphi$, then any bijection mapping from $X \rightarrow X$ is called permutation on X.

Then the set of all permutations on X is denoted by S_x forms a non abelian group under the binary operation of compositions of functions. If O(X) = n, then $O(S_x) = n!$ and in this case S_x is denoted by S_n .

Note:-

 $\forall a \in G$, where (*G*,*) is a group,

- H = aH; where H is a sub group of G.
- $\bullet \ O(H) = O(aH)$
- ♦ In general we know that $aH \neq Ha$.
- Either cosets of a sub group H of a group G are similar or disjoint.
- ★ Let $\varphi: G \to G'$ be a homomorphism, (a) $\varphi(e) = e'$. (b) ∀ a ∈ G; $\varphi(a^{-1}) = {\varphi(a)}^{-1}$

Left Action:-

Let (S,*) be a semi group, for a fixed element $a \in S$, the mapping $l_a: S \to S$ defined by, $l_a(x) = a * x$ is called left action.

Right Action:-

Let (S,*) be a semi group, for a fixed element $a \in S$, the mapping $R_a: S \longrightarrow S$ defined by, $R_a(x) = x * a$ is called right action.

Inversion Mapping:-

If (G,*) is a group then a mapping $I: G \to G$ defined by, $I(x) = x^{-1}$ is called an inversion mapping.

Note:-

If (*G*,*) is a group, then left action is called **"Left Translation"** and right action is called **"Right Translation"**.

Right Topological Semi-Group:-

A right topological semi group consists of a,

- (i) Semi group (S,*).
- (ii) Topology τ on S.
- (iii) For all $a \in S$, the right action $R_a: S \to S$ is a continuous mapping.

Left Topological Semi-Group:-

A left topological semi group consists of a,

- (i) Semi group (S,*).
- (ii) Topology τ on S.
- (iii) For all $a \in S$, the left action $l_a: S \to S$ is a continuous mapping.

Right Topological Group:-

A right topological group consists of a,

- (i) A group (G,*).
- (ii) Topology τ on G.
- (iii) For each $a \in G$, the right translation $R_a: G \to G$ is continuous.

Left Topological Group:-

A left topological group consists of a,

- (i) A group (G,*).
- (ii) Topology τ on G.
- (iii) For each $a \in G$, the left translation $l_a: G \to G$ is continuous.

Para-topological Group:-

A para-topological group consists of a,

- (i) A group (G,*).
- (ii) Topology τ on G.
- (iii) Multiplication mapping $m: G \times G \to G$ defined by, m((x, y)) = x * y is continuous with respect to the product topology on $G \times G$.

Semi-topological Group:-

A semi-topological group consists of a,

- (i) A group (G,*).
- (ii) Topology τ on G.
- (iii) Left translation $l_a: G \to G$ and right translation $R_a: G \to G$ are continuous for each fixed $a \in G$.
- Continuity defined in para-topological group is called "jointly continuity" (: x and y vary independently). And the continuity defined in semi topological group is called "separately continuity" (: a is fixed).
- **↓** Jointly continuous is always separately continuous (that is if $m: G \times G \longrightarrow G$ is continuous then $l_a: G \longrightarrow G \& R_a: G \longrightarrow G$ is

continuous for each fixed $a \in G$). But a separately continuous may not be jointly continuous.

Topological Group:-

A topological group $(G, *, \tau) [((G, *), \tau)]$ is a group (G, *) together with topology τ defined on G that satisfies the following two properties,

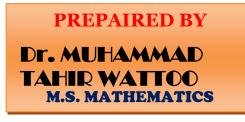
- (i) The multiplication mapping $m: G \times G \to G$ defined by m((x, y)) = x * y is continuous, where $G \times G$ is a product topology.
- (ii) The inversion mapping $I: G \to G$ defined by $I(x) = x^{-1} \forall x \in X$, is continuous.

Remark:-

- (i) Is equivalently to: Whenever W ⊆ G is an open sub set and (x * y) ∈ W, there exit open set U containing 'x' and V containing 'y' in G such that U * V ⊆ W.
- (ii) Is equivalently to: Whenever W is an open set in G containing x^{-1} , there exit an open set U in G containing 'x' such that, $I(U) \subseteq W \implies U^{-1} \subseteq W$.

Note:-

Let (G,*) be a group then for $A \subseteq G$; $A^{-1} = \{x \in G : x^{-1} \in A\}$. And for any sub set $A \subseteq G$, $B \subseteq G$; $A * B = \{a * b : a \in A \text{ and } b \in B\}$.



Topological Group (alternate):-

Let (G,*) be a group endowed with the topology τ on G, then $(G,*,\tau)$ is called a topological group if for each $x, y \in G$, the multiplication mapping $m: G \times G \to G$ defined by $m((x,y)) = x \times y^{-1}$ is continuous.

Topological Group (alternate):-

Let (G,*) be a group endowed with the topology τ on G, then $(G,*,\tau)$ is called a topological group if for each $x, y \in G$, and for each open set W in G containing $x * y^{-1}$, there exit open sets U and V in G containing x and y^{-1} respectively such that, $U * V^{-1} \subseteq G$.

Example:-

Let $G = \{\pm i, \pm 1\}$, Then (G, *) is a group,

$$\tau = \{\varphi, G, \{1\}, \{-1\}, \{1, -1\}\}$$

Verification:-

Let
$$x = i$$
, $y = -i$ \Rightarrow $y^{-1} = i$

$$\Rightarrow x \bullet y^{-1} = (i)(i) = -1$$

Let $x * y \in W = \{-1\}$, Let U = G, V = G (: only chance of G).

$$\Rightarrow V^{-1} = G^{-1} = G \qquad \& \qquad U \bullet V^{-1} = G \bullet G = G \nsubseteq W = \{-1\}.$$

 \Rightarrow (*G*,*, τ) is not topological group.

Example:-

Let $G = \{\pm 1, \pm i\}$, then (G, •) is a group and let, $\tau = \{\varphi, G, \{1, -1\}, \{i, -i\}\}$ Verification:-

Let x = i, $y = -i \implies y^{-1} = i$ $\Rightarrow x \cdot y^{-1} = (i)(i) = -1$ Let $x * y = x \cdot y^{-1} = -1 \in W = \{1, -1\}$ Now $x = i \in U = \{i, -i\} \quad \& \quad y = -i \in V = \{i, -i\} \quad \& \quad V^{-1} = \{-i, i\}$ $\Rightarrow U \cdot V^{-1} = \{i, -i\} \cdot \{-i, i\} = \{1, -1\} \subseteq W.$

Similarly we can verify every pair of point and will notice $U \cdot V^{-1} \subseteq W$

 \Rightarrow (*G*,*, τ) is a topological group.

EXERCISE 🔪

Question:-

Every open set W in the product space can be expressed in product of open sets U and V in the component space.

Example:-

Let $G = \{1, 3, 5, 7\}$ & $\tau = \{\varphi, G, \{1\}, \{1, 3, 5\}\}$ then:

- 1) $(G, \odot)_8$ is a group.
- 2) (G, τ) is a topological group.
- 3) Also show that (G, \bigcirc, τ) is not a topological group.

Example:-

 $G = \{1, \omega, \omega^2\}, \quad \tau = \{\varphi, 1, G\}$ verify for topological group.

Question:-

Show that the following are topological groups;

- 1) $(Z, +, \tau_z)$; τ_z is relative topology with usual topology on \mathbb{R} .
- 2) (\mathbb{R} , +) with usual topology on \mathbb{R} .
- 3) $(\mathbb{R}_+, \bullet, \tau_{\mathbb{R}_+})$ is a topological group. (1st show ($\mathbb{R}, +$) is a group.

Note:-

- (1) Let (G,*) is a group and $A, B \subseteq G$ then, $A * B = \{a * b : a \in A \& b \in B\}$
- (2) $A^{-1} = \{a^{-1}\epsilon \ G : a \epsilon A\}$
- (3) The group with discrete topology is always a topological group and this topological group is simply called discrete group.
- (4) Let (*G*,*) be a group endowed with indiscrete topology then it is always a topological group.

Lemma:-

Let (G, \bullet, τ) be a topological group then:

- 1) The map $g \mapsto g^{-1}$ is a homeomorphism of *G* onto itself.
- Fix g_o ∈ G then the map g → g_og, g → gg_o are homeomorphism of G onto itself.

Proof:-

(1) Let us define $i: G \to G$ by $i(g) = g^{-1} \forall g \in G$

i is one to one:-

Let
$$g_1, g_2 \in G$$
 & $i(g) = g^{-1}$

$$\Rightarrow g_1^{-1} = g_2^{-1} \qquad \Rightarrow \qquad g_1^{-1}g_1 = g_2^{-1}g_1$$
$$\Rightarrow e = g_2^{-1}g_1 \qquad \Rightarrow \qquad g_2e = g_2g_2^{-1}g_1$$

 $\Rightarrow g_2 = eg_1 \qquad \Rightarrow \qquad g_2 = g_1$ $\Rightarrow i \text{ is one to one.}$

i is onto:-

Let $g \in G$ (codomain)

Then, by definition there exit $g^{-1} \epsilon G s. t i(g^{-1}) = (g^{-1})^{-1} = g$

 \Rightarrow *i* is onto.

Now by definition, $i: G \rightarrow G$ is continuous

Now, $ii^{-1} = id$ (identity mapping)

Since *i* is continuous, therefore, $i^{-1}: G \to G$ is continuous.

Hence, $i: G \rightarrow G$ is homeomorphism.

(2) We have to prove that in a topological group every left translation (right translation) is homeomorphism.

Let (G, \bullet, τ) be topological group.

Let $g \in G$ be a fixed point then, $l_g : G \to G$ is defined by;

$$l_{g_{\circ}}(g) = g_{\circ}g \quad \forall \ g \in G$$

 $l_{g_{\circ}}$ is one to one:-

Let
$$g_1, g_2 \in G$$
 s.t. $l_{g_1}(g_1) = l_{g_1}(g_2)$

⇒ $g_1 = g_2$: *G* is a group and left (right) cancellation law holds ⇒ l_{g_1} is one to one.

 $l_{g_{a}}$ is onto:-

Let
$$y \in G$$
 (codomain) s.t. $l_g(x) = y$ for some $x \in G$.

$$\Rightarrow g_{\circ}x = y \qquad \Rightarrow \qquad g_{\circ}^{-1}g_{\circ}x = g_{\circ}^{-1}y$$

$$\Rightarrow ex = g_{\circ}^{-1}y \qquad \Rightarrow \qquad x = g_{\circ}^{-1}y$$

Since *G* is a group and g_{o} , $y \in G$

$$\Rightarrow g_{\circ}^{-1} \in G \quad \& \quad g_{\circ}^{-1} y \in G \quad \Rightarrow \quad x \in G$$
$$\Rightarrow l_{g_{\circ}}: G \longrightarrow G \text{ is on to}$$

Now, 1^{st} we show that $l_{g_{a}}: G \longrightarrow G$ is continuous.

Let $x \in G$ be an arbitrary point, and let W be an open set containing g.

Since (G, \bullet, τ) is a topological group, therefore there exit open sets U & V containing g & x respectively in G s.t. $UV \subseteq W$

 $\Rightarrow gV \subseteq UV \subseteq W \qquad \because g \in U$ $\Rightarrow l_g(V) = gV \subseteq W \qquad \because gV = l_g(V)$ $\Rightarrow l_g \text{ is continuous.}$

Now we show that $l_g^{-1}: G \to G$ is continuous.

Since, $l_g^{-1} = l_{g^{-1}} \& l_{g^{-1}}: G \to G$ is continuous for fixed $g^{-1} \in G$ Hence, $l_g^{-1}: G \to G$ is continuous.

This proves that $l_g: G \to G$ is homeomorphism.

Now, Let (G, \bullet, τ) be topological group.

Let $g_{\circ} \epsilon G$ be a fixed point then, $R_{g_{\circ}} \colon G \to G$ is defined by;

$$R_{g}(g) = gg_{o} \quad \forall g \in G$$

 $R_{g_{\circ}}$ is one to one:-

Let
$$g_1, g_2 \in G$$
 s.t. $R_{g_0}(g_1) = R_{g_0}(g_2)$

⇒ $g_1 = g_2$: *G* is a group and left (right) cancellation law holds ⇒ R_{g_a} is one to one. $R_{g_{\circ}}$ is onto:-

Let $y \in G$ (codomain) s.t. $R_{g_{\alpha}}(x) = y$ for some $x \in G$.

$$\Rightarrow xg_{\circ} = y \qquad \Rightarrow \qquad xg_{\circ}g_{\circ}^{-1} = yg_{\circ}^{-1}$$
$$\Rightarrow xe = yg_{\circ}^{-1} \qquad \Rightarrow \qquad x = yg_{\circ}^{-1}$$

Since *G* is a group and g_{o} , $y \in G$

 $\Rightarrow g_{\circ}^{-1} \epsilon G \quad \& \quad g_{\circ}^{-1} y \epsilon G \quad \Rightarrow \quad x \epsilon G$

That is for $y \in G$ (codomain) we have find $x \in G$ (domain) s. t. $R_{q_s}(x) = y$

 $\Rightarrow R_{g_a}: G \to G$ is on to

Now, 1st we show that $R_{g_{\circ}}: G \to G$ is continuous.

Let $x \in G$ be an arbitrary point, and let W be an open set containing g.

Since (G, \bullet, τ) is a topological group, therefore there exit open sets U & V containing g & x respectively in G s.t. $VU \subseteq W$

 $\Rightarrow Vg \subseteq VU \subseteq W \qquad \because g \in U$ $\Rightarrow R_g(V) = Vg \subseteq W \qquad \because Vg = R_g(V)$ $\Rightarrow R_g \text{ is continuous.} \qquad \because Vg = R_g(V)$

Now we show that $R_g^{-1}: G \to G$ is continuous.

Since, $R_g^{-1} = R_g^{-1}$ & $R_g^{-1}: G \to G$ is continuous for fixed $g^{-1} \in G$ Hence, $R_g^{-1}: G \to G$ is continuous.

This proves that $R_g: G \longrightarrow G$ is homeomorphism.

Theorem:-

Let $(G, * \tau)$ be a topological group and A,B are subsets of G. If A is open and B is arbitrary then A * B & B * A are open.

Proof:-

Since A is open subset of G and $R_b: G \to G$ is homeomorphism,

Therefore, R_b is an open mapping.

 \Rightarrow $R_b(A) = A * b$ is an open set.

 \Rightarrow $A * B = \bigcup_{b \in B} A * B$ is open.

Now, Since A is open subset of G and $l_b: G \rightarrow G$ is homeomorphism,

Therefore, l_b is an open mapping.

 $\Rightarrow l_b(A) = b * A \text{ is an open set.}$ $\Rightarrow B * A = \bigcup_{b \in B} b * A \text{ is open.}$

Theorem:-

Let (G, \bullet, τ) be a topological group and β_e is open base at the identity *e* of *G* then:

1 For every $U \in \beta_e$, $\exists V \in \beta_e \ s. t. V^2 \subseteq U$.

2 For every $U \in \beta_e$, $\exists V \in \beta_e s. t. V^{-1} \subseteq U$.

3 For every $U \in \beta_e$, and every $x \in U$, $\exists V \in \beta_e$ s.t. $Vx \subseteq U$.

4 For every $U \in \beta_e$, and $x \in G$, $\exists V \in \beta_e \ s.t. \ xVx^{-1} \subseteq U$.

5 For every $U, V \in \beta_e$, $\exists \omega \in \beta_e s.t. \omega \subseteq U \cap V$.

Proof:-

1 Let $U \in \beta_e$ *i.e.* $e \in U$

Now $m: G \times G \rightarrow G$ is continuous,

Thus for every open set U in G containing e' there exit an open set W in $G \times G$ containing $(e, e) \ s.t. \ m(W) \subseteq U.$

Since inverse mapping $i: G \to G$ is continuous, therefore for each U containing $i(e) = e^{-1} = e$, there exit $V \in G$ containing e such that,

$$i(V) = V^{-1} \subseteq U.$$

3 Since (G, \bullet, τ) is a topological group,

Therefore $r_x: G \to G$ is homeomorphism.

Thus for each $U \in \beta_e$ and for each $x \in U$, there exit $V \in \beta_e$ such that,

 $r_x(V) \subseteq U$ or $Vx \subseteq U$.

4 Since (G, \bullet, τ) is a topological group,

Therefore $l_x: G \to G \& r_x: G \to G$ are homeomorphism.

 $\Rightarrow l_x, r_x^{-1} \text{ are continuous.}$ $\Rightarrow r_x^{-1} \circ l_x : G \to G \text{ is continuous.}$

Thus for each $U \in \beta_e$ and for each $x \in G$, there exit $V \in \beta_e$ s.t.

$$(r_x^{-1} \circ l_x)(V) \subseteq U \quad \Rightarrow \quad r_x^{-1}(l_x(V)) \subseteq U.$$

$$\Rightarrow r_x^{-1}(xV) \subseteq U \qquad \Rightarrow \qquad xVx^{-1} \subseteq U.$$

5 Let $U, V \in \beta_e$,

Since β_e is base at *e*, therefore, by definition of open base at *e*, there exit $\omega \in \beta_e$ s.t. $\omega \subseteq U \cap V$.

Theorem:-

Prove that every topological group (G, \bullet, τ) is a regular space.

Proof:-

Let *U* be an open neighborhood of the identity $e \in G$. Then there exit $V \in \beta_e$ s.t. $V^2 \subseteq U$. Let $x \in Cl(V) \Leftrightarrow Vx \cap V \neq \varphi$ $\Rightarrow a_1x = a_2$, where, $a_1, a_2 \in V$ $\Rightarrow x \in V^2 \subseteq U$ $\Rightarrow x \in U$ $\Rightarrow x \in U$ $\Rightarrow x \in V \subseteq Cl(V) \subseteq U$. $\Rightarrow x \in V \subseteq Cl(V) \subseteq U$. $\Rightarrow x \in V \subseteq Cl(V) \subseteq U$.

Theorem:-A topological space (X, τ) is regular *iff* for each open set U in X and $x \in U$ there exit an open set V in X s.t.

 $x \in V \subseteq Cl(V) \subseteq U.$

Hence for each $x \in U$, there exit open set V in X s. t.

 $x \in V \subseteq Cl(V) \subseteq U.$

 \Rightarrow G is a regular space.

Theorem:-

Let (G, \bullet, τ) be a right topological space, prove that for any base $\beta_g = \{ug: u \in \beta_e\}$ is base of τ at g.

Proof:-

Let β_e be the base of the space (G, τ) at e.

We prove that $\beta_g = \{ug: u \in \beta_e\}$ is a base of the space (G, τ) at 'g'

Let *W* be any open set in (G, τ) containing g.

Since right translation $r_g: G \to G$ is continuous, therefore there exit an open set $u \in \beta_e \ s.t. \ r_g(u) \subseteq W$

 $\Rightarrow ug \subseteq W: \ u \in \beta_e \qquad \Rightarrow \ \bigcup_{g \in W} \ ug = W; \ u \in \beta_e$

 \Rightarrow Every open set *W* containing 'g' can be expressed as union of $ug: u \in \beta_e$.

This proves that $\beta_g = \{ug : u \in \beta_e\}$ is base at 'g'.

Theorem:-

Suppose that a subgroup 'H' of a right topological space (G, \bullet, τ) contains a non-empty open subset of G, then prove that H is open in G.

Proof:-

Let *u* be a non-empty open subset of *G* s.t. $u \subseteq H$.

We prove that H is open.

Let $a \in H$ be a fixed element.

Since right translation $r_a: G \rightarrow G$ is homeomorphism,

 \Rightarrow $r_a: G \rightarrow G$ is an open mapping.

Hence $r_a(u) = ua$ is an open subset of H.

Since each *ua* is open, therefore H is open.

Theorem:-

Let $f: (G, \bullet, \tau_G) \to (H, \bullet, \tau_H)$ be a homeomorphism of left topological groups. If f is continuous at the neutral element e_G of G, then f is continuous on G.

Proof:-

Let $x \in G$ be arbitrary point.

Let *O* be an open set containing y = f(x) in H.

Since left translation $l_{v}: H \rightarrow H$ is homeomorphism of H.

This implies there exit an open set V containing $e_H s.t. l_y(V) \subseteq O$

$$Or \quad yV \subseteq O$$

Since f is continuous at e_G , therefore there exit some open set u in G containing e_G s.t. $f(u) \subseteq V$.

Again, since $l_x: G \to G$ is homeomorphism, therefore the set $l_x(u) = xu$ is open in G containing x.

Consider $f(xu) = f(x)f(u) = yV \subseteq 0$ $\therefore f(x) = y \& f(u) \subseteq V$

 \Rightarrow *f* is continuous at *x*.

 \Rightarrow f is continuous at G.

Assignment No. 1:-

Let (G, \bullet) be a group and β_e be a family of subsets of G satisfying conditions:

- **1** For every $U \in \beta_e$, $\exists V \in \beta_e \ s.t. \ V^2 \subseteq U$.
- **2** For every $U \in \beta_e$, $\exists V \in \beta_e \ s.t. \ V^{-1} \subseteq U$.
- **3** For every $U \in \beta_e$, and every $x \in U$, $\exists V \in \beta_e s.t. Vx \subseteq U$.
- **4** For every $U \in \beta_e$, and $x \in G$, $\exists V \in \beta_e s.t. xVx^{-1} \subseteq U$.
- **5** For every $U, V \in \beta_e$, $\exists \omega \in \beta_e \ s.t. \ \omega \subseteq U \cap V$.

$$\mathbf{6} \{ e \} = \bigcap_{B \in \beta_e} B$$

Prove that the family $\beta_u = \{Bu: u \in \beta_e\}$ is a base for a T_1 -topology τ on G. Further prove that with this topology τ , (G, \bullet, τ) is a topological group. Proof:-

Let β_e be a family of subsets of *G* such that conditions (i) \rightarrow (iv) holds.

Let τ be the family of all subsets w of G. satisfying the condition.

For each $x \in W$, there is $U \in \beta_e$ s.t. $Ux \subseteq W$

- (i) $\varphi, G \in \boldsymbol{\tau}$
- (ii) Let γ be the collection of open sets *i.e.* $\gamma = \{\omega_i : \omega_i \in \tau\}$. Then

 $x \in \bigcup_{i \in \nabla} \omega_i$ \Rightarrow $x \in \omega_i$ for some i

So, there is $U \in \beta_e$ such that $Ux \subseteq \omega_i$ \because $\omega_i \in \tau$

 $\Rightarrow \quad Ux \subseteq \bigcup_{i \in \nabla} \omega_i$

⇒ Arbitrary union of open sets is open.

(iii) Let
$$\omega_1$$
, $\omega_2 \in \tau$ and put $\omega = \omega_1 \cap \omega_2$

We have to prove $\omega \in \tau$.

Take any $x \in \omega$. There exit $U_1 \in \beta_e \& U_2 \in \beta_e$ such that $U_1 x \subseteq \omega_1$ and $U_2 x \subseteq \omega_2$.

From (v) it follows that, there is $U \in \beta_e$ such that $U \subseteq U_1 \cap U_2$

Then
$$Ux \subseteq U_1x \cap U_2x \subseteq \omega_1 \cap \omega_2 = \omega$$

$$\Rightarrow \qquad Ux \subseteq \omega_1 \cap \omega_2 = \omega$$

Hence $\omega \in \tau$ and τ is a topology on G.

Now, Let $x \in G$ and $U \in \beta_e$

Take any $y \in Ux$, then $yx^{-1} \in U$

By (iii) there is an element $V \in \beta_e$ such that $Vyx^{-1} \subseteq U \implies Vy \subseteq Ux$

Hence $Ux \in \tau$

So for each $x \in G$ and $U \in \beta_e$, $Ux \in \tau$.

Property (iii) and above line implies the family $\beta_u = \{Ua: a \in G, U \in \beta_e\}$ is a base for the topology τ .

Hence $\tau \in \tau_{\beta_e}$

Now, we are to show that the multiplication in G is jointly continuous with respect to the topology τ .

Let a & b be arbitrary elements of G, and O be any element of τ such that *ab* ϵ *O*, then there exit $\omega \epsilon \beta_e$ such that $\omega ab \subseteq O$ It suffices to find $U \in \beta_e$ and $V \in \beta_e$ such that $UaVb \subseteq \omega ab$ Or equivalently $UaV \subseteq \omega a$ or $U(aVa^{-1}) \subseteq \omega$ Now we are going to choose U and V By (i) choose $U \in \beta_e$ s.t. $U^2 \subseteq \omega$ By (iv) choose $V \in \beta_e$ s.t. $aVa^{-1} \subseteq U$ Then we have $U(aVa^{-1}) \subseteq UU \subseteq U^2 \subseteq \omega$ $U(aVa^{-1})\subseteq U^2\subseteq\omega$ ⇒ $U(aVa^{-1}) \subseteq \omega \quad \Rightarrow \quad UaVb \subseteq \omega ab$ ⇒ Thus the multiplication in G is continuous with respect to the topology τ . In particular all right translations of G are continuous and the space G, τ is homogeneous. Let $b \in G$ and $V \in \beta_e$ To show $bV \in \tau$ Take any $y \in bV$ $\Rightarrow b^{-1}v \in V$

By (iii) there is an element $\omega \in \beta_e$ s.t. $wb^{-1}y \subseteq V$

Also by (iv) there is $U \in \beta_e$ s.t. $b^{-1}Ub \subseteq \omega$

Therefore $b^{-1}Ubb^{-1}y \subseteq \omega b^{-1}y \subseteq V \quad \Rightarrow \quad b^{-1}Ub \subseteq V$

 $\Rightarrow Uy \subseteq bV \quad \Rightarrow \quad bV \in \tau$

Now, we are to show that $i: G \to G$ defined by $i(x) = x^{-1} \forall x \in G$ is continuous.

To show this we show that $i^{-1}: G \to G$ is an open mapping.

Let $Ua \in \tau$ \Rightarrow $i^{-1}(Ua) = a^{-1}U^{-1}$

Since for all $b \in G$ and $V \in \beta_e$, $bV \in \tau$ So it suffices to verify that $U^{-1} \in \tau$. Take arbitrary $x \in U^{-1}$ then $x^{-1} \in U$ By (iii) $Vx^{-1} \subseteq U$ for some $V \in \beta_e$ By applying (ii) choose $\omega \in \beta_e$ s.t. $w^{-1} \subseteq V$ Then $w^{-1}x^{-1} \subseteq Ux^{-1} \subseteq U \Rightarrow x\omega = (\omega^{-1}x^{-1})^{-1} \subseteq U^{-1}$ And $x\omega$ is an open neighborhood of x in (G, τ) so $U^{-1} \in \tau$ $\Rightarrow \qquad a^{-1}U^{-1} \in \tau$ So (G, \bullet, τ) is a topological group.

Also by (iv) and homogeneity of G imply that the topology τ satisfies the T_1 -separation axiom.

This completes the proof.

Theorem:-

Prove that every subgroup H of a right (left) topological group is closed as well.

Proof:-

Let *H* be an open subgroup of right topological group (G, \bullet, τ) . Since right translation $r_a: G \to G$ is homeomorphism, therefore for each $a \in G$; $r_a(H) = Ha$ is open in *G*. (Alt) Let $\gamma = \{Ha: a \in G\}$ then γ forms the partition of *G*. \Rightarrow Every element of γ is closed set in *G* and hence H = Ha is closed in *G*. (Alternate) $\bigcup_{a \in G - \{e\}} Ha$ is open and hence, $\{\bigcup_{a \in G - \{e\}} Ha\}' = H$ is closed.

Homogeneous Topological Space:-

A topological space (X, τ) is said to be homogeneous if for each $x \in X$ and for each $y \in X$, there exit a homeomorphism $f: X \to X$ s.t. f(x) = y.

Theorem:-

Prove that every right topological group (G, \bullet, τ) is a homogeneous space.

Proof:-

Let $x, y \in G$

Put $z = x^{-1}y \in G$. Then right topological group has the property, there exit a homeomorphism $R_Z: G \to G$ and $R_Z(x) = xz$

$$\Rightarrow$$
 $R_Z(x) = x(x^{-1}y) = (xx^{-1})y = ey = y$

 \Rightarrow This is a homogeneous space.

Theorem:-

Let (G, \bullet, τ) be a topological group and H be a subgroup of G, Prove that Cl(H) is a subgroup of G.

Proof:-

Let $g, h \in \overline{H}$

We need to show, (i) $gh \in \overline{H}$ (ii) $h^{-1} \in \overline{H}$

(i) Let U be an open neighborhood of gh.

Let $m: G \rightarrow G$ be the multiplication mapping which is continuous.

So, $m^{-1}(U)$ is open $G \times G$, and $(g,h) \in m^{-1}(U)$

This implies, there exit open set V_1 containing g and V_2 containing h such that, $V_1 \times V_2 \subseteq m^{-1}(U)$

Now, since $g \in V_1$ & $g \in \overline{H}$, therefore $V_1 \cap H \neq \varphi$.

Say $x \in V_1 \cap H \implies x \in H$ And $h \in V_2$ & $h \in \overline{H}$, therefore $V_2 \cap H \neq \varphi$ Say $y \in V_2 \cap H \Rightarrow y \in H$ \Rightarrow x, y \in H, Since H is a subgroup therefore xy \in H And since $(x, y) \in m^{-1}(U) \implies m(x, y) = xy \in U$ $U \cap H \neq \varphi$ This proves that $gh \in \overline{H}$ Now for $h \in \overline{H}$, we show that $h^{-1} \in \overline{H}$ (ii) Since inverse mapping: $G \rightarrow G$ is continuous (:: *G* is topological group) Let $h^{-1} \in W$; where *W* an open neighborhood of is h^{-1} . Then $i(W) = W^{-1}$ is open subset containing *h*. Since $h \in \overline{H}$, therefore $W^{-1} \cap H \neq \varphi$. Let $z \in W^{-1} \cap H$ \Rightarrow $z^{-1} \in W \cap H \neq \varphi$ ∽ $h^{-1} \in \overline{H}$ By (i) and (ii) we conclude that \overline{H} is a subgroup of G.

Theorem:-

If (G, \bullet, τ) be a topological group and $K_1 \& K_2$ are compact subsets of *G* then prove that K_1K_2 is compact.

Proof:-

Let (G, \bullet, τ) be a topological group and $K_1 \& K_2$ are compact subsets of *G*.

Then $K_1 \times K_2$ is compact subset of $G \times G$. Since $m: G \times G \to G$ is continuous and we know that continuous image of a compact set is compact.

Therefore $m(K_1 \times K_2) = K_1 K_2$ is compact.

PREPAIRED BY

M.S. MATHEMATICS

Prepared By: MUHAMMAD TAHIR WATTOO (03448563284) M.S. Mathematics From CIIT Islamabad

Connected Spaces

Definition:-

Let (X, τ) be a topological space. A separation of X is a pair U, V of disjoint non-empty open subsets of X whose union is X.

Connected Set:-

A set is connected if it is all in one piece. *i.e.* it does not comprise on two or more than two separated pieces.

Connected Space:-

A topological space (X, τ) is said to be connected if it cannot be expressed as union of two non empty disjoint open sets.

i.e. there does not exit open sets U, V such that $U \neq \varphi, V \neq \varphi$ and $U \cup V = X$, $U \cap V = \varphi$.

Note:-

A space which is not connected is called disconnected.

Note:-

- (i) On the real line an interval is one piece, and therefore it is connected.
- (ii) The set $(0,1) \cup (2,3)$ consists of two separated pieces and is disconnected.
- (iii) Each point on the real line is in one piece $\{x\}$, therefore each point set is connected subset of \mathbb{R} .
- (iv) $(0,1) \left\{\frac{1}{2}\right\}$ is disconnected.
- (v) Every indiscrete space $\tau = \{\varphi, X\}$ is connected.

(vi) Every discrete space
$$\tau = P(X)$$
 is disconnected.

Characterization of connected spaces:-

In a topological space (X, τ) the

following are equivalent.

- (i) *X* is connected.
- (ii) The only open and closed subsets of *X* are $\varphi \& X$.
- (iii) There does not exit a continuous mapping $f: X \to \{0,1\}$, where topology on $\{0,1\}$ is discrete.

Proof:-

(i)→(ii)

Let *X* is connected.

We prove that φ and X are the only clopen sets.

Assume contrary, *i.e.* there exit a non-empty set *A* which is open as well closed.

 $\Rightarrow A \neq \varphi$, *A* is open.

Again A is closed gives that (X - A) is non-empty open set such that,

 $A \cup (X - A) = X, \quad A \cap (X - A) = \varphi$

 \Rightarrow X is disconnected.

A contradiction. Hence the only open and closed sets are φ and *X*. (ii) \rightarrow (iii)

Let $\varphi \& X$ are the only open and closed subsets of *X*.

We prove that there is no continuous function $f: X \to \{0,1\}$ with $\tau = \{\varphi, \{0\}, \{1\}, \{0,1\}\}.$

Assume contrary, *i.e.* there is a continuous function $g: X \to \{0,1\}$ with topology $\tau = \{\varphi, \{0\}, \{1\}, \{0,1\}\}$.

Then $g^{-1}(\{0\}) \neq \varphi$ is open in *X*. And $g^{-1}(\{1\}) \neq \varphi$ is open in *X*.

$$g^{-1}(\{0\}) \cup g^{-1}(\{1\}) = g^{-1}(\{0\} \cup \{1\}) = g^{-1}(\{0,1\}) = X$$

Now consider, $g^{-1}(\{0\}) \cap g^{-1}(\{1\}) = g^{-1}(\{0\} \cap \{1\}) = g^{-1}(\varphi) = \varphi$

⇒ There exit other than φ & *X* open sets which are open as well closed. This contradicts (ii)

 \Rightarrow Our assumption is wrong.

Therefore, no such continuous function exit.

 $(iii) \rightarrow (i)$

Let there be no continuous function $f: X \to \{0,1\}$ with discrete topology.

We prove that *X* is connected.

Assume contrary, *i.e.* X is disconnected. Say A, B form the disconnection of X *i.e.* $X = A \cup B$, $A \cap B = \varphi$. And $A \neq \varphi$ open, $B \neq \varphi$ open.

Define $g: X \longrightarrow \{0,1\}$ by

$$g(x) = \begin{cases} 0 & \text{if } x \notin A \\ 1 & \text{if } x \in A \end{cases}$$

Then g is continuous and onto. A contradiction.

Hence *X* is connected.

Theorem:-

Prove that the continuous surjection image of a connected space is connected.

Proof:-

Given that, (i) (X, τ) is connected space.

 \Rightarrow *X* cannot be expressed as union of two non-empty disjoint open sets.

(ii) $f: X \rightarrow Y$ is onto + continuous.

We have to prove *Y* is connected.

Suppose on contrary that *Y* is disconnected *i.e.* $Y = A \cup B$;

$$A \neq \varphi$$
 , $B \neq \varphi$ And $A \cap B = \varphi$

A & B are open in Y.

Since f is continuous so $f^{-1}(A)$ is open $\neq \varphi \& f^{-1}(B)$ is open $\neq \varphi$ $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(Y) = X$ and

 $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\varphi) = \varphi$

 \Rightarrow $f^{-1}(A) \& f^{-1}(B)$ forms separation of X.

 \Rightarrow *X* is disconnected. A contradiction.

So our supposition is wrong.

 \Rightarrow *Y* is connected.

Disconnected Subspace:-

A subspace *Y* of a space (X, τ) is disconnected if there eit open sets *G*, *H* of *X* such that,

 $Y \cap G \neq \varphi \quad , \quad Y \cap H \neq \varphi \quad \text{And} \quad$

 $(Y \cap G) \cup (Y \cap H) = Y \& (Y \cap G) \cap (Y \cap H) = \varphi$

Exercise:-

Prove that the continuous image of a connected subset is connected.

Proof:-

Let *X* be a connected space and $f: X \to Y$ be a continuous function.

To prove f(X) is connected.

Suppose on the contrary that f(X) is disconnected. Then there exit two open sets (non-empty) A & B in f(X) such that $A \cup B = f(X) \& A \cap B = \varphi$

Now as A & B are open in f(X) and f is continuous function.

So $f^{-1}(A) \& f^{-1}(B)$ are open in *X*.

Further $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(f(X)) = X.$

And
$$f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\varphi) = \varphi$$

 \Rightarrow X is disconnected.

Which is a contradiction? Because *X* is connected.

So our supposition is wrong.

Hence f(X) is connected.

Theorem:-

Prove that a topological space (X, τ) is connected if and only if noproper non-empty subset of *X* is both open and closed.

Proof:-

Suppose $A \neq \varphi$ is a proper subset of *X* which is not both open and closed.

We prove that *X* is connected.

Suppose on the contrary that *X* is disconnected.

As *X* is disconnected then there exit two open sets *A* and *B* such that

 $A \cup B = X \& A \cap B = \varphi$

Now as *A* is open and also as $A \cup B = X$ & $A \cap B = \varphi$ So by law of compliments B = A'

Also *B* is open implies A' is open. \Rightarrow *A* is closed.

 \Rightarrow A is both open and closed.

A contradiction, So our supposition is wrong.

Hence *X* is connected.

Conversely,

Let X is connected.

We have to prove that no-proper subset (non-empty) of *X* is both open and closed.

Suppose on contrary that a non-empty subset A of X is both open and closed.

Let B = A'. As A is closed $\Rightarrow A'$ is open $\Rightarrow B$ is open.

 \Rightarrow A & B are open in X with,

 $A \cup B = A \cup A' = X$ And $A \cap B = A \cap A' = \varphi$

 \Rightarrow X is disconnected.

A contradiction. So our supposition is wrong.

So there does not exit a proper non-empty subset of *X* which is both open and closed.

Component of a Topological Space:-

Let (X, τ) be topological space. A maximal connected subset of X is called a component of X.

A component of X is a connected subset of X which is not properly contained in any bigger connected subset of X.

Note:-

If *X* itself is connected, then the only component of *X* is *X* itself.

Totally Disconnected Space:-

A topological space (X, τ) is said to be totally disconnected if and only if all non-empty subsets (which are not one point subsets) are disconnected.

Example:-

Every discrete space is totally disconnected.

Theorem:-

A totally disconnected space is housdorff.

Proof:-

Let (X, τ) be a totally disconnected space.

Let $x, y \in X$ s.t. $x \neq y$, Then by definition there is a disconnection *A*, *B* of *X* s.t. $x \in A$, $y \in B$ and *A*, *B* are open in *X*. \Rightarrow *X* is housdorff.

Example:-

Let
$$X = \mathbb{R}^2$$
 & $Y = \{(x, y) : y = 0\} \cup \{(x, y) : x > 0 \text{ and } y = \frac{1}{x}\}$

Then *Y* is disconnected because,

$$A = \{(x, y): y = 0\}, \quad B = \{(x, y): x > 0 \text{ and } y = \frac{1}{x}\}$$

Then $A \cap B = \varphi$, $A \cup B = Y$.

Theorem:-

Let (X, τ) be topological space. If the sets *C* & *D* forms a separation of *X* and if *Y* is connected space of *X*, then *Y* lies entirely withen either *C* or *D*.

Proof:-

Since *C* and *D* are both open in *X*, the set $C \cap Y$ and $D \cap Y$ are open in *Y*.

These two sets are disjoint and there union is *Y*.

If they both are non-empty, then they will form a separation of *Y*.

But *Y* is connected, therefore either $C \cap Y = \varphi$ or $D \cap Y = \varphi$

If $C \cap Y = \varphi$ then $Y \subseteq D$ else $Y \subseteq C$. (Proved)

Theorem:-

Prove that the union of a collection of connected subspaces of a topological space (X, τ) that have a point in common is connected. **Proof:-** Let $\{A_{\alpha} : \alpha \in \nabla\}$ be a collection of connected subspaces of a topological space (X, τ) .

Let $p \in \bigcap_{\alpha \in \nabla} A_{\alpha}$: We prove that $Y = \bigcup_{\alpha \in \nabla} A_{\alpha}$ is connected.

Assume contrary, *i.e.Y* is disconnected.

Let $Y = C \cup D$, where C, D non empty open subsets of are $X \ s.t. \ C \cap D = \varphi$ The point $p \in C$ or $p \in D$.

Suppose $p \in C$, Since A_{α} is connected. It must lie entirely in *C i.e.*

$$A_{\alpha} \subseteq C \forall \alpha \in \nabla \quad \Rightarrow \quad Y = \bigcup_{\alpha \in \nabla} A_{\alpha} \subseteq C$$

Contradicting the fact that *D* is non-empty.

Hence *Y* is connected.

Theorem:-

Let *A* be a connected sub space of a topological space (X, τ) . If $A \subseteq B \subseteq Cl(A)$ then *B* is also connected sub space of *X*.

Proof:-

We prove that *B* is connected.

Assume contrary that is, let *B* is disconnected.

Hence $B = C \cup D$, where *C*, *D* are non empty open sub sets of *B* and $C \cap D = \varphi$.

Since $A \subseteq B = C \cup D$ and A is connected. Therefore, A must lie entirely in C or D.

Suppose that $A \subseteq C$, then $\overline{A} \subseteq \overline{C}$. Since \overline{C} and D are disjoint.

 \Rightarrow *B* cannot intersect *D*. This contradicts the fact that $D = \varphi$.

Hence the proof.

Theorem:-

Prove that a finite cartesian product of connected spaces is connected.

Proof:-

We prove that the Cartesian product of two connected spaces is connected.

Let $a \times b \in X \times Y$. Then horizontal slice $X \times b$ is connected being homeomorphic with connected space *X*.

The vertical slice $x \times Y$ is connected being the homeomorphic with the connected space *Y*.

This implies, $T_x = (X \times b) \cup (x \times Y)$ is connected.

Because union of connected spaces is connected if they have a point in common. And in this case $x \times b$ is a common point.

Now, $X \times Y = \bigcup_{x \in X} T_x$ is connected.

Theorem:-

Prove that the real line \mathbb{R} with the usual topology is connected.

Proof:-

Assume contrary that is real line \mathbb{R} is disconnected.

Let U, V are non-empty open sets such that $U \cup V = \mathbb{R} \& U \cap V = \varphi$.

i.e. (U, V forms a disconnection of \mathbb{R}).

Let $x \in U$ & $y \in V$. Assume x < y.

Let $G = U \cap [x, y]$ & $H = V \cap [x, y]$

Then
$$G \cup H = \{U \cap [x, y]\} \cup \{V \cap [x, y]\} = (U \cup V) \cap [x, y]$$

 $\mathbb{R} \cap [x, y] = [x, y]$

Now *G* is bounded above by 'y' and by the least upper bound property of \mathbb{R} , *G* has least upper bound say $c \in \mathbb{R}$.

Then, $x \le c \le y$. We derive a contradiction by showing that $c \notin H$.

Assume that $c \in H$.

Since $x \notin H$ and H is open in [x, y]. It implies that there exit $d \in \mathbb{R}$ such that x < d < c and $(d, c] \subseteq H$.

⇒ *d* is an upper bound of *G*. And $d < c = l_{ub}(G)$.

A contradiction and thus $c \notin H$.

Similarly we can show that $c \notin G$.

But $c \in [x, y]$ & $G \cup H = [x, y]$

With the final contradiction it follows that \mathbb{R} with the usual topology is connected topological space.

Assignment No. 2:-

Prove that a sub space X of \mathbb{R} is connected if and only if X

is an interval.

Proof:-

Suppose *X* is connected.

To prove *X* is an interval.

Assume on contrary that is *X* is not an interval, then there exit x, y, z such that x < y < z and $x, z \in X \& y \notin X$.

Now, $] - \infty$, y[and $]y, \infty[$ are open in \mathbb{R} .

 \Rightarrow] – ∞ , y[$\cap X \&$] y, ∞ [$\cap X$ are open in X with,

$$(] - \infty, y[\cap X) \cup (]y, \infty[\cap X) = (] - \infty, y[\cup]y, \infty[) \cap X$$
$$= (\mathbb{R} - \{y\}) \cap X = X$$

And $(] - \infty, y[\cap X) \cap (]y, \infty[\cap X) = (] - \infty, y[\cap]y, \infty[) \cap X$

 $= \varphi \cap X = \varphi$

 \Rightarrow *X* is disconnected. Which is a contradiction.

So our supposition is wrong. Hence *X* is an interval.

Conversely,

Suppose *X* is an interval.

To prove *X* is an connected.

On the contrary suppose *X* is disconnected. Then there exit two non-empty open disjoint subsets *A* and *B* of *X* such that $A \cup B = X$ & $A \cap B = \varphi$.

Let $a \in A \& b \in B$.

As $A \cap B = \varphi \quad \Rightarrow \quad a \neq b$.

Let a < b. Put $y = Sup([a, b] \cap A)$.

Then by definition of supremum for every $\varepsilon > 0$, there is some point a' in A such that $y - \varepsilon < a' \Rightarrow y - a' < \varepsilon \Rightarrow d(y, a') < \varepsilon$

 $\Rightarrow a' \epsilon B(y, \epsilon)$

So every open ball with centre at *y* contains a point of *A* different from *y*.

 \Rightarrow *y* is limit point of *A*.

As *A* is also closed so $y \in A$, Similarly $y \in B$.

 $\Rightarrow A \cap B \neq \varphi$

Which is a contradiction. so our supposition is wrong.

Hence *X* is connected.

Path:-

Let (X, τ) be a topological space. Let $x, y \in X$. A path in X from x to y is a continuous map $f: [0,1] \to X$ such that f(0) = x & f(1) = y.

Path Connected Space:-

A topological space (X, τ) is said to be path connected if every pair of points of X can be joined by a path in X.

A sub set 'A' of a topological space *X* is path connected in *X* if *A* is path connected in the subspace topology.

Note:-

Every path connected space is connected. Converse is not true in general, that is a connected space may not be path connected.

Example:-

The unit ball $(B^n \text{ in } \mathbb{R}^n)$ is path connected.

Define the unit ball B^n in $\mathbb{R}^n = X$ by the equation $B^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, where $|x| = \sqrt{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}$ Let $x, y \in B^n$. Define a straight line path $f: [0,1] \to B^n$ such that $f(t) = (1-t)x + ty; \quad 0 \le t \le 1$ $\Rightarrow f(0) = x$, f(1) = y lies in $B^n \Rightarrow |f(t)| \le 1$

Note:-

Every open ball $B_d(x, \varepsilon)$ and every closed ball in \mathbb{R}^n are path connected.

Example:-

Punctured Euclidean plane $\mathbb{R}^n - \{0\}$, for n > 1 is path connected, where '0' is the origin in \mathbb{R}^n . If n > 1, this space is path connected.

Given x & y different from 0, we can join x & y by a straight line path between them if that path does not pass through the origin. Otherwise we can choose a point z not on the line joining x and y and take the path from x to z and then from z to y.

Theorem:-

If (X, τ) is path connected and $f: X \to Y$ is a continuous function, then f(x) is path connected.

Proof:-

Let f(x), $f(y) \in f(X) \Rightarrow x, y \in X$ and X is path connected. This gives that there exit a path λ : $[0,1] \rightarrow X$ such that $\lambda(0) = x$, $\lambda(1) = y$ Since composition of two continuous functions is continuous therefore,

 $fo\lambda: [0,1] \to f(x)$ is continuous and $fo\lambda(0) = f(\lambda(0)) = f(x)$

And $fo\lambda(1) = f(\lambda(1)) = f(y)$.

This proves that f(X) is path connected.

⇒ Path connectedness is a topological property.

(: Homeomorphic image of a path connected space is path connected).

Theorem:-

If (X, τ) is a path connected space, then prove that it is connected.

Proof:-

Let (X, τ) be a path connected space.

We prove this theorem by contradiction.

Let (X, τ) is disconnected. Then there exit non empty open sets U & V in X such that $U \cap V = \varphi \& U \cup V = X$.

Let $a \in U \& b \in V$ and let $f: [0,1] \to X$ be a path from $a \to b$.

Then $f^{-1}(U) \& f^{-1}(V)$ are non empty disjoint open sub sets of [0,1] such that $[0,1] = f^{-1}(U) \cup f^{-1}(V)$

This gives that [0,1] is a disconnected set. A contradiction.

Hence (X, τ) is connected.

Theorem:-

Let (X, τ_x) & (Y, τ_y) be path connected spaces. Prove that $(X \times Y, \tau)$ is a path connected space. Where τ is the product topology. **Proof:**-

Let (x_1, y_1) & (x_2, y_2) be points of $X \times Y$.

Since (X, τ_x) is path connected, so there must exit some path $\lambda_1: [0,1] \to X$ Such that $\lambda_1(0) = x_1$, $\lambda_1(1) = x_2$

Again (Y, τ_y) is path connected, therefore there must exit some path $\lambda_2: [0,1] \to Y$ such that $\lambda_2(0) = y_1$, $\lambda_2(1) = y_2$.

Now define $(\lambda_1 * \lambda_2): [0,1] \to X \times Y$ by $(\lambda_1 * \lambda_2)(t) = (\lambda_1(t), \lambda_2(t))$

Then $\lambda_1 * \lambda_2$ is continuous mapping, also

$$(\lambda_1 * \lambda_2)(0) = (\lambda_1(0), \lambda_2(0)) = (x_1, y_1) = z_1$$

And $(\lambda_1 * \lambda_2)(1) = (\lambda_1(1), \lambda_2(1)) = (x_2, y_2) = z_2$

 \Rightarrow X × Y is path connected with respect to the product topology.

Theorem:-

If $\{A_i : i \in N\}$ is a collection of path connected subsets of a space (X, τ) and $\bigcap_{i \in N} A_i \neq \varphi$. Then $\bigcup_{i \in N} A_i$ is path connected.

Proof:-

Let $x, y \in \bigcup_{i \in N} A_i$ \Rightarrow $x \in A_{i1}$, $y \in A_{i2}$ Let $z \in \bigcap_{i \in N} A_i \neq \varphi$ \Rightarrow $z \in A_{i1}$, $z \in A_{i2}$

 \Rightarrow *x*, *z* ϵ *A*_{*i*1} path connected. Therefore there exit some path

$$\lambda_1: [0,1] \rightarrow A_{i1} \quad s.t. \quad \lambda_1(0) = x \quad , \quad \lambda_1(1) = z$$

Again *z*, *y* \in *A*_{*i*2} path connected.

$$\Rightarrow \quad \lambda_2: [0,1] \rightarrow A_{i2} \quad s.t. \quad \lambda_2(0) = z \quad , \quad \lambda_2(1) = y$$

Let $\lambda_1 * \lambda_2 : [0,1] \rightarrow \bigcup_{i \in \mathbb{N}} A_i$. Define a function

$$(\lambda_1 * \lambda_2)(t) = \begin{cases} \lambda_1(2t) & ; \quad 0 \le t \le \frac{1}{2} \\ \lambda_2(2t-1) & ; \quad \frac{1}{2} \le t \le 1 \end{cases}$$

Then obviously $\lambda_1 * \lambda_2$ is continuous.

Then clearly

$$(\lambda_1 * \lambda_2)(0) = \lambda_1(0) = x$$

&
$$(\lambda_1 * \lambda_2)(1) = \lambda_2(2 - 1) = \lambda_2(1) = y$$

 $\Rightarrow \bigcup_{i \in N} A_i$ is path connected.

Heridity Property:-

Prove that the sub space of a path connected space is path connected.

Proof:-

Locally Connected Space:-

A topological space (X, τ) is said to be locally connected at $x \in X$ if for every neighborhood U of x, there is a connected neighborhood V of x contained in U.

If *X* is locally connected at each of its points then it is simply called locally connected space.

Locally Path Connected Space:-

A topological space (X, τ) is said to be locally path connected at $x \in X$ if for every neighborhood U of x, there is a path connected neighborhood V of x contained in U.

If *X* is locally connected at each of its points then it is simply called locally path connected space.

Example:-

Each interval in the real line is both connected and locally connected.

The subspace $[-1,0) \cup (0,1]$. This subspace of \mathbb{R} is not connected, but it is locally connected.

Theorem:-

Prove that a topological space (X, τ) is locally connected if and only if each component of each open set is open.

Proof:-

Let (X, τ) be a locally connected space.

Let $U \in \tau$. Let *C* be a component of *U*.

Let $p \in C$. Since space is locally connected, therefore there is a connected neighborhood *V* of *p* s.t. $V \subseteq U$.

If $V \not\subseteq C$, then *C* is the proper subset of the connected set $V \cup C$, therefore $V \subseteq C$ and hence *C* is open.

Conversely,

Let each component of each open set is open.

We prove that *X* is locally connected.

Let $p \in X$ and let U be a neighborhood of p. then the component V of U that contains p is a connected neighborhood of p s.t. $V \subseteq U$.

 \Rightarrow (*X*, τ) is locally connected.

Compact And Locally Compact Spaces

Covering / Open Cover:-

Let (X, τ) be a topological space. A collection $\{U_{\alpha} : \alpha \in \nabla\}$ of subsets of *X* is called cover of *X* if $X = \bigcup_{\alpha \in \nabla} U_{\alpha}$.

The cover $\{U_{\alpha} : \alpha \in \nabla\}$ is called

- (i) Open cover if for each $\alpha \in \nabla$, $U_{\alpha} \in \tau$.
- (ii) Countable cover if it is a collection of countable subsets of *X*.
- (iii) Finite cover if ∇ is a finite set.
- (iv) If β is a base for τ and $U_{\alpha} \in \beta$ then the covering $\{U_{\alpha} : \alpha \in \nabla\}$ is called basic open cover of *X*.
- (v) Similarly if S is a sub base for τ and $U_{\alpha} \in S$, then the covering $\{U_{\alpha} : \alpha \in \nabla\}$ is called sub basic open cover of X.

Compact Space:-

A topological space (X, τ) is said to be compact if for every open cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X, there exit a finite subset $\nabla \circ of \nabla$ such that,

$$X = \bigcup_{\alpha \in \nabla^{\circ}} U_{\alpha}$$

Heine Boral Property:-

Heine Boral property of the set of real numbers \mathbb{R} is: If *X* is a closed and bounded subset of \mathbb{R} , then any class of open sets of \mathbb{R} whose union contains *X* has a finite sub class whose union contains *X*.

Finite Intersection Property:-

PREPAIRED BY MUHAMMAD TAHIR M.S. MATHEMATICS A collection $\mathcal{C} = \{C_{\alpha} : \alpha \in \nabla\}$ of sub sets of (X, τ) is said to have the finite intersection property if every finite sub collection $\{C_1, C_2, ..., C_n\}$ of \mathcal{C} the intersection $C_1 \cap C_2 \cap ... \cap C_n \neq \varphi$.

Theorem:-

Let (X, τ) be a topological space, then X is compact if and only if for every collection C of closed sets of X having finite intersection property, has non empty intersection.

Proof:-

Let *X* be a compact space and let $C = \{C_{\alpha} : \alpha \in \nabla\}$ be a collection of closed sets of *X* having finite intersection property.

To prove
$$\bigcap_{\alpha \in \nabla} C_{\alpha} \neq \varphi$$

Assume contrary, that is $\bigcap_{\alpha \in \nabla} C_{\alpha} = \varphi$

$$\Rightarrow \left(\bigcap_{\alpha \in \nabla} C_{\alpha}\right)' = \varphi' \qquad \Rightarrow \qquad \bigcup_{\alpha \in \nabla} C_{\alpha}' = X$$

Now, $\{C_{\alpha} : \alpha \in \nabla\}$ is the collection of closed sets, so $\{C'_{\alpha} : \alpha \in \nabla\}$ is a collection of open sets with $\bigcup_{\alpha \in \nabla} C_{\alpha}' = X \iff \{C'_{\alpha} : \alpha \in \nabla\}$ is an open cover of *X*.

As X is compact, So this open cover has a finite sub cover say

$$\{C'_{\alpha_{1}}, C'_{\alpha_{2}}, \dots, C'_{\alpha_{n}}\} \text{ that is } X = \bigcup_{i=1}^{n} C'_{\alpha_{i}}$$

$$\Rightarrow X' = \left(\bigcup_{i=1}^{n} C'_{\alpha_{i}}\right)' \quad \Rightarrow \quad \varphi = \bigcap_{i=1}^{n} (C'_{\alpha_{i}})'$$

$$\Rightarrow \quad \varphi = \bigcap_{i=1}^{n} C_{\alpha_{i}}$$

 $\Rightarrow \{C_{\alpha_1}, C_{\alpha_2}, \dots, C_{\alpha_n}\} \text{ is a finite sub collection of } \{C_{\alpha}: \alpha \in \nabla\} \text{ with empty intersection.}$

 \Rightarrow { C_{α} : $\alpha \in \nabla$ } does not satisfies finite intersection property, which is a contradiction, So our supposition is wrong and hence

$$\bigcap_{\alpha \in \nabla} C_{\alpha} \neq \varphi$$

Conversely,

Let every collection of closed sets with finite intersection property has non empty intersection.

To prove *X* is compact.

Let $\{U_{\alpha} : \alpha \in I\}$ be an open cover for *X*. *i.e.* $\bigcup_{\alpha \in I} U_{\alpha} = X$.

$$\Rightarrow \quad \left(\bigcup_{\alpha \in I} U_{\alpha}\right) = X' \qquad \Rightarrow \qquad \qquad \bigcap_{\alpha \in I} U_{\alpha}' = \varphi$$

 \Rightarrow { U'_{α} : $\alpha \in I$ } is a collection of closed sets with empty intersection then by given hypothesis { U'_{α} : $\alpha \in I$ } does not satisfies finite intersection property. Then there exit a finite sub collection { $U'_{\alpha_1}, U'_{\alpha_2}, \dots, U'_{\alpha_n}$ } with empty intersection.

$$\Rightarrow \bigcap_{i=1}^{n} U_{\alpha_{i}}' = \varphi \quad \Rightarrow \quad \left(\bigcap_{i=1}^{n} U_{\alpha_{i}}'\right)' = \varphi'$$
$$\Rightarrow \bigcup_{i=1}^{n} U_{\alpha_{i}} = X$$

 $\Rightarrow \{U_{\alpha_1}, U_{\alpha_2}, U_{\alpha_3}, \dots, U_{\alpha_n}\} \text{ is a finite open sub cover for } X.$

 \Rightarrow X is compact.

Alternate,

Assume that for any finite sub set $\nabla_o of \nabla$, we have

$$X \neq \bigcup_{\alpha \in \nabla_o} U_\alpha$$

 $\Rightarrow \bigcap_{\alpha \in \nabla_o} U'_{\alpha} \neq \varphi \quad i.e. \quad \{U'_{\alpha} : \alpha \in \nabla_o\} \text{ where } \nabla_o \text{ is a finite subset of } \nabla \text{ and } U'_{\alpha} \text{ is closed subset of } X \neq \alpha \in \nabla_o.$

By given condition $\bigcap_{\alpha \in \nabla} U_{\alpha}' \neq \varphi \quad \Rightarrow \quad \bigcup_{\alpha \in \nabla} U_{\alpha} \neq X$, A contradiction. Hence *X* is compact. **Theorem:-**

The continuous image of a compact space is compact/ Compactness is a topological property/ Hmeomorphic image of a compact space is compact. **Proof:-**

Let *X* be a compact space and $f: X \to Y$ be a continuous function. To prove f(X) is compact.

Let { U_{α} : $\alpha \in I$ } be an open cover for f(X) *i.e.* $f(X) = \bigcup_{\alpha \in I} U_{\alpha}$

As U_{α} is open in f(X) and f is continuous, so $f^{-1}(U_{\alpha})$ is an open set in X. Also U_{α} is open in f(X) and f(X) is a subspace of Y so there exit an open set V_{α} in Y such that, $U_{\alpha} = V_{\alpha} \cap f(X)$

$$\Rightarrow U_{\alpha} \subseteq V_{\alpha} \Rightarrow \bigcup_{\alpha \in I} U_{\alpha} \subseteq \bigcup_{\alpha \in I} V_{\alpha} \Rightarrow f(X) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$$
$$\Rightarrow X \subseteq f^{-1} \left(\bigcup_{\alpha \in I} V_{\alpha} \right) \Rightarrow X \subseteq \bigcup_{\alpha \in I} f^{-1}(V_{\alpha}) \subseteq X$$
$$\Rightarrow X = \bigcup_{\alpha \in I} f^{-1}(V_{\alpha})$$

As V_{α} is open in Y and f is continuous so $f^{-1}(V_{\alpha})$ is open in X.

 $\Rightarrow \{f^{-1}(V_{\alpha}: \alpha \in I\} \text{ is an open cover for } X.$

As *X* is compact so there exit a finite sub cover say $\{f^{-1}(V_1), f^{-1}(V_2), \dots, f^{-1}(V_n)\}$ of $\{f^{-1}(V_\alpha; \alpha \in I\}$ that is

$$\begin{aligned} X &= \bigcup_{i=1}^{n} f^{-1}(V_i) \quad \Rightarrow \quad X = f^{-1} \left(\bigcup_{i=1}^{n} V_i \right) \quad \Rightarrow \quad f(X) \subseteq \bigcup_{i=1}^{n} V_i \\ \Rightarrow \quad f(X) \subseteq \left(\bigcup_{i=1}^{n} V_i \right) \cap f(X) \quad \Rightarrow \quad f(X) \subseteq \bigcup_{i=1}^{n} \left(V_i \cap f(X) \right) \\ \Rightarrow \quad f(X) \subseteq \bigcup_{i=1}^{n} U_i \subseteq f(X) \quad \Rightarrow \quad f(X) = \bigcup_{i=1}^{n} U_i \end{aligned}$$

\Rightarrow f(X) is compact.

Theorem:-

Every closed sub space of a compact space is compact/ Closed Heridity property.

Proof:-

Let *X* be a compact space and *Y* be a closed subspace of *X*.

To prove *Y* is compact.

Let $\{U_{\alpha} : \alpha \in I\}$ be an open cover for *Y*. As U_{α} is an open set in *Y* and *Y* is a sub space of *X* so $U_{\alpha} = V_{\alpha} \cap Y$ where V_{α} is an open set in *X*.

Now,

$$U_{\alpha} = V_{\alpha} \cap Y \quad \Rightarrow \quad U_{\alpha} \subseteq V_{\alpha} \qquad \bigcup_{\alpha \in I} U_{\alpha} \subseteq \bigcup_{\alpha \in I} V_{\alpha}$$
$$\Rightarrow \quad Y \subseteq \bigcup_{\alpha \in I} V_{\alpha} \quad \Rightarrow \quad X = Y \cup Y' \subseteq \bigcup_{\alpha \in I} V_{\alpha} \cup Y' \subseteq X$$
$$\Rightarrow \quad X = \bigcup_{\alpha \in I} V_{\alpha} \cup Y'$$

As *Y* is closed in *X*. \Rightarrow *Y* is an open set in *X*.

 \Rightarrow {*Y*['], *V*_{α}: $\alpha \in I$ } is an open cover for *X*.

As *X* is compact so this open cover has a finite sub cover say $\{Y', V_{\alpha_1}, V_{\alpha_2}, \dots, V_{\alpha_n}\}$. therefore $X = \bigcup_{i=1}^n V_{\alpha_i} \cup Y'$

Now,

$$Y \subseteq X = \bigcup_{i=1}^{n} V_{\alpha_{i}} \cup Y' \quad \Rightarrow \quad Y \subseteq \bigcup_{i=1}^{n} V_{\alpha_{i}}$$
$$\Rightarrow \quad Y \cap Y \subseteq \left(\bigcup_{i=1}^{n} V_{\alpha_{i}}\right) \cap Y \quad \Rightarrow \quad Y \subseteq \bigcup_{i=1}^{n} (V_{\alpha_{i}} \cap Y)$$

$$\Rightarrow \quad Y \subseteq \bigcup_{i=1}^{n} U_{\alpha_i} \subseteq Y \qquad \subseteq \qquad Y = \bigcup_{i=1}^{n} U_{\alpha_i}$$

 $\Rightarrow \{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\} \text{ is a finite sub cover for } Y.$

 \Rightarrow *Y* is compact.

Theorem:-

Prove that every compact sub set of a Housdorff space is closed.

Proof:-

Let X be a T_2 -Space and C be a compact sub set (sub-space) of X.

To prove *C* is closed. For this we have to prove C' is an open set.

If $C' = \varphi \iff C'$ is an open set.

If $C' \neq \varphi$, Let $x \in C' \Rightarrow x \notin C$

As we know that in a T_2 -Space any point and a disjoint compact sub space of X can be separated by open sets, then there exit two open sets say $U_x \& V_x$ such that $x \in U_x \& C \subseteq V_x$ and $U_x \cap V_x = \varphi$

$$\Rightarrow \{x\} \subseteq U_x \quad \Rightarrow \quad \bigcup_{x \in C'} \{x\} \subseteq \bigcup_{x \in C'} U_x$$
$$\Rightarrow \quad C' \subseteq \bigcup_{x \in C'} U_x \subseteq C' \quad \Rightarrow \quad C' = \bigcup_{x \in C'} U_x$$
$$\Rightarrow \quad C' \text{ is an open set.} \quad \Rightarrow \quad C \text{ is closed.}$$

Theorem:-

Let (X, τ) be a compact space and (Y, U) be a Housdorff space and $f: X \to Y$ is a continuous function then prove that f is closed mapping. **Proof:-**

To prove f is closed mapping.

As we know that the continuous image of a compact space is compact.

As f is continuous and C be a compact then by above theorem f(C) is compact.

Also we know that the compact subspace of a Housdorff space is closed

 \Rightarrow f(C) is closed in Y.

Also closed subset of a compact set is compact.

As *C* is closed sub set of *X* that is compact space.

Hence C is closed in X.

 \Rightarrow f(C) is closed in Y.

 \Rightarrow *f* is closed mapping.

Hence the proof.

Theorem:-

Let (X, τ) be a compact space. Let (Y, U) be a Housdorff space and let f is continuous surjection then prove that f is a quotient mapping. **Proof:**-

Continuous mapping may not be a quotient mapping, where as every quotient mapping is continuous.

Theorem:-

Let (X, τ) and (Y, U) be compact spaces, then prove that $X \times Y$ is compact.

Proof:-

Let $G = \{U: U \in \tau_{X \times Y}\}$ be an open cover for X×Y.

For each $x \in X$, G is a cover of $\{x\} \times \{Y\}$ by sets that are open in $X \times Y$.

There is a neighborhood V_x of x and a finite sub collection F_x of G such that

$$V_x \times Y \subseteq \bigcup_{x \in F_x} U$$

Since $\{V_x : x \in X\}$ cover *X*. Since *X* is compact therefore there exit a finite sub set *F* of *X* such that $\{V_x : x \in F\}$ cover *X*.

Let $\wp = \bigcup_{x \in F} U_x$.

Since \wp is finite union of finite collection of *G*. This proves that $X \times Y$ is compact.

Note:-

- (i) All finite spaces are compact.
- (ii) Every co-finite space is compact. (Co-finite Space:- if $u \in \tau$ then u' is finite)
- (iii) \mathbb{R} with the usual topology is not compact.
- (iv) No infinite discrete space is compact.
- (v) A subset of a compact space need not to be compact. (If closed then compact).

Theorem:-

Any finite union of compact sub sets of a space *X* is compact. **Proof:-**

We prove the theorem for only two sub sets of a space *X*.

Let *A* & *B* be compact sub sets of *X*. We prove that $A \cup B$ is compact sub set of *X*.

Let $\{U_{\alpha} : \alpha \in \nabla\}$ be a cover of $A \cup B$ by sets $U_{\alpha's}$ open in X. *i.e.*

$$A \cup B = \bigcup_{\alpha \in \nabla} U_{\alpha}$$
$$\Rightarrow A \subseteq \bigcup_{\alpha \in \nabla} U_{\alpha} \qquad \& \qquad B \subseteq \bigcup_{\alpha \in \nabla} U_{\alpha}$$

Since *A* is a compact sub set of *X*, therefore there exit a finite sub set ∇_o of ∇ such that,

$$A \subseteq \bigcup_{\alpha \in \nabla_0} U_{\alpha} - - - - - 1$$

Again by compactness of *B*, there exit a finite sub set ∇_1 of ∇ such that,

$$B \subseteq \bigcup_{\alpha \in \nabla_1} U_{\alpha} - - - - - 2$$

Let $\nabla_2 = \nabla_0 \cup \nabla_1$ then ∇_2 is a finite sub set of ∇ and

$$A \cup B \subseteq \bigcup_{\alpha \in \nabla_2} U_{\alpha}$$

 $\Rightarrow A \cup B$ is compact.

Example:-

Let $X = \mathbb{R}$ and $F = \{\dots, (-\infty, -2), (-\infty, -1), (-\infty, 0), (-\infty, 1), (-\infty, 2), \dots\}$. Then *F* has finite intersection property.

Theorem:-

The following are equivalent in a topological space (X, τ)

- (i) *X* is compact.
- (ii) Every class of closed sets with empty intersection has a finite sub class with empty intersection.

Proof:-

Let *X* is compact and let $\{C_{\alpha} : \alpha \in I\}$ be a class of closed sets in *X* with $\bigcap_{\alpha \in I} C_{\alpha} = \varphi$.

$$\Rightarrow \left(\bigcap_{\alpha \in I} C_{\alpha} = \varphi\right) = \varphi' \quad \Rightarrow \quad \bigcup_{\alpha \in I} C_{\alpha}' = X$$

As C_{α} is closed. This implies that C'_{α} is open in *X*.

 $\Rightarrow \{C'_{\alpha} : \alpha \in I\} \text{ is an open cover for } X. \text{ As } X \text{ is compact so there exit a finite sub cover say } \{C'_{\alpha_1}, C'_{\alpha_2}, \dots, C'_{\alpha_n}\} \text{ of } \{C'_{\alpha} : \alpha \in I\} \text{ that is,}$

$$\bigcup_{i=1}^{n} C_{\alpha_{i}}' = X \quad \Rightarrow \quad \left(\bigcup_{i=1}^{n} C_{\alpha_{i}}'\right)' = X'$$
$$\Rightarrow \quad \bigcap_{i=1}^{n} C_{\alpha_{i}} = \varphi$$

Conversely,

Suppose in a topological space *X* each class $\{C_{\alpha} : \alpha \in I\}$ of closed sets with empty intersection has a finite sub class with empty intersection.

To prove *X* is compact.

Let $\{U_{\alpha} : \alpha \in I\}$ be an open cover for *X i*. *e*.

$$X = \bigcup_{\alpha \in I} U_{\alpha} \quad \Rightarrow \quad X' = \left(\bigcup_{\alpha \in I} U_{\alpha}\right)$$
$$\Rightarrow \quad \varphi = \bigcap_{\alpha \in I} U_{\alpha}'$$

As U_{α} is open then U_{α}' is closed set so $\{U'_{\alpha} : \alpha \in I\}$ is class of closed sets with empty intersection. So by given condition there exit a finite sub class say $\{U'_{\alpha_1}, U'_{\alpha_2}, \dots, U'_{\alpha_n}\}$ with empty intersection.

$$\Rightarrow \bigcap_{i=1}^{n} U_{\alpha_{i}}' = \varphi \Rightarrow \left(\bigcap_{i=1}^{n} U_{\alpha_{i}}'\right)' = \varphi'$$
$$\Rightarrow \bigcup_{\alpha_{i}} U_{\alpha_{i}} = X$$

i=1

 $\Rightarrow \{U_{\alpha_1}, U_{\alpha_2}, U_{\alpha_3}, \dots, U_{\alpha_n}\} \text{ is a finite open sub cover for } X.$

→ X is compact.

Lindelof Space:-

A topological space (X, τ) is called a Lindelof space if every open cover of X contains a countable sub covering of X.

Note:-

Every compact space is Lindelof space, where as a lindelof space may not be a compact space.

Locally Compact Space:-

A topological space (X, τ) is said to be locally compact space at $p \in X$ if there exit an open set U and a compact set K of Xsuch that $p \in U \subseteq K$.

The space (X, τ) is said to be locally compact if it is locally compact at each point of *X*.

Note:-

Ever compact space is locally compact, where as a locally compact space may not be compact.

Example:-

 \mathbb{R} with the usual topology is locally compact but not compact.

Theorem:-

Let (X, τ) be a housdorff space and $p \in X$. Then X is locally compact at p if and only if there is a neighborhood U of p such that \overline{U} is compact.

Proof:-

Let *X* be locally compact at $p \in X$.

Then there exit a compact set *K* and an open set *U* containing *U* such that $p \in U \subseteq K$.

Since *K* is compact sub set of the housdorff space *X*, therefore *K* is closed *i*.*e*. $K = \overline{K}$.

Now, $U \subseteq K \Rightarrow \overline{U} \subseteq \overline{K} = K$

Since \overline{U} is a closed sub set of a compact set *K*, therefore \overline{U} itself is compact. Conversely, Since $p \in U \subseteq \overline{U}$, where \overline{U} is compact.

Therefore *X* is locally compact at *p*.

Theorem:-

Every closed sub space of a locally compact housdorff space is locally compact.

Proof:-

Theorem:-

Let (X, τ) be a topological space then X is locally compact Housdorff if and only if there exit a space Y satisfying the following conditions,

1) X is sub space of *Y*.

2) The set (Y - X) consists of a single point.

3) *Y* is compact housdorff space.

If Y & Y' are two spaces satisfying these conditions then there is a homeomorphism of Y & Y' that equals the identity map on X.

Proof:-

Let *X* be a locally compact housdorff space.

<u>Step I:</u>- First we prove the uniqueness of *Y*.

Let *Y* & *Y*['] be two spaces satisfying conditions 1 to 3. Define $h: Y \to Y'$ by h(p) = q, where $p \in Y - X$ & $q \in Y' - X$

And $h(x) = x \quad \forall \ x \in X$.

To prove h is homeomorphism it is sufficient to prove that h is an open mapping.

Case 1:- Let *U* be an open sub set of *Y s.t.* $p \notin U$, Then by definition of *h*, h(U) = U.

Now *U* is open in *Y* and $U \subseteq X$.

 $\Rightarrow \quad U = U \cap X \text{ is open in } X.$

Now Y' is housdorff space. This implies Y' is a T_1 -space so singleton sets are closed in Y. Hence $\{q\}$ is closed in Y'. Thus $Y' - \{q\} = X$ is open in Y'.

This proves that U is open in Y'.

Case 2:- Let *U* be an open sub set of *Y* s.t. $p \in U$.

Since Y - U = C is closed in *Y*.

Since *Y* is compact, therefore *C* is compact sub space of *Y* and $C \subseteq X$.

Therefore *C* is compact sub space of X.

Now X is sub space of Y' so C is compact sub space of Y'. Because Y' is housdorff, therefore C is closed sub space of Y'. And hence Y' - C is open in Y'.

Now, h(U) = h(Y - C) = h(Y) - h(C) = Y' - C is open in Y'.

In both cases h is homeomorphism.

Step II:- Now we construct Y.

Case 1:- Let $p \notin X$ and $Y = X \cup \{p\}$

Topologizing *Y*: Let open sets of *Y* consists of

1) All sets *U* open in *X* and

2) All sets of the form Y - C, where C is compact sub set of X.

Now we verify that this collection satisfy all conditions of topology on *Y*.

(i) φ is open in *X* (type 1), therefore φ is open in *Y*.

 $Y = Y - \varphi$, therefore *Y* is open in *Y*.

(ii) Intersection:- Let U_1 , U_2 (type 1) open sets in Y, then $U_1 \cap U_2$ is open in X and hence open in Y.

Let $(Y - C_1) \cap (Y - C_2) = Y - (C_1 \cap C_2)$, which is open in *Y*.

Let $U_1 \cap (Y - C) = U_1 \cap (X - C)$, where *C* is closed in *X* and hence X - C is open in *X*, therefore $U_1 \cap (Y - C)$ is open.

(iii) Arbitrary Union:-
$$\cup U_{\alpha} = U$$
 is open in Y (for U_{α} open of type 1)
 $\cup (Y - C_{\beta}) = Y - \cap C_{\beta} = Y - C$ is open of type 2.
 $\cup U_{\alpha} \cup [\cup (Y - C_{\beta})] = U \cup (Y - C) = Y - (C - U)$ open of type 2

This shows that the collection of sub sets of type1 and type2 form topology on *Y*.

<u>Step III:</u>- Now we show that *X* is a sub space of *Y*.

First we show that $X \cap U$ is open in X for every open set U in Y.

- (i) If *U* is open of type1 then $U = U \cap X$ is open in *X*.
- (ii) If (Y C) is open of type2, then $Y C \cap X = X C$ is open in X.

Conversely, only sets open in *X* a set of type1. This gives that *X* is a sub space of *Y*.

<u>Step IV:</u>- To show *Y* is compact.

Let A be an open cover of Y, then A contains an open set Y - C (type2) (to contain $\{p\}$)

Now, $X \cap V_{\alpha}$; (V_{α} are all open sets of \mathbb{A} different from Y - C) is covering of C by sets open in X.

Since *C* is compact, so there exit a finite sub set ∇_0 such that

$$C \subseteq \bigcup_{\alpha \in \nabla_0} (X \cap V_\alpha) \subseteq \bigcup_{\alpha \in \nabla_0} V_\alpha$$
$$\Rightarrow \quad C \cup (Y - C) = Y = \left(\bigcup_{\alpha \in \nabla_0} V_\alpha\right) \cup (Y - C)$$

 \Rightarrow *Y* is compact.

<u>Step V:</u>- To show *Y* is housdorff.

Let $x, y \in Y$ such that $x \neq y$.

Since *X* is open in *Y*, *So U*, *V* are open in *Y*.

This proves that *Y* is housdorff.

Now. If $x \in X$ & $y = p \in Y - X$

We can choose a compact set *C* in *X* containing a neighborhood *U* of *x*, then $U \And Y - C$ are open subsets of *Y* containing $x \And y$ respectively and

$$U \cap (Y - \mathcal{C}) = \varphi$$

 \Rightarrow *Y* is housdorff.

Conversely,

Let *Y* be satisfying conditions 1 to 3.

We prove that *X* is locally compact housdorff space.

Obviously *X* is housdorff space being a sub space of a housdorff space.

Let $x \in X$, we show that X is locally compact at x.

Choose disjoint open sets U & V containing of Y such that

$$x \in U$$
, $p = y \in V$

Then C = Y - C is closed in Y, so it is compact sub space of Y.

Since $C \subseteq X$, so *C* is compact sub space of *X*.

 \Rightarrow X is locally compact at x.

Hence *X* is locally compact.

One Point Compactification:-

If *Y* is a housdorff space and *X* is a proper sub space of *Y* such that $\overline{X} = Y$, then *Y* is said to be compactification of *X*.

If (Y - X) is a single point, then Y is called one point compactification of X.

Normal Space:-

A topological space (X, τ) is said to be normal if for every pair of disjoint closed sets A, B of X there ext disjoint open sets U, V such that

 $A \subseteq U \quad , \quad B \subseteq V$

T₄-Space:-

A normal, T_1 -Space is called T_4 -Space.

> A regular T_1 -space is called T_3 -space.

- > Regular space may not be T_2 -space, but T_3 -space is T_2 -space.
- ▶ Normal space may not be a regular space, but T_4 -space \Rightarrow T_3 -space \Rightarrow regular space, T_2 -space \Rightarrow T_1 -space \Rightarrow T_0 -space.

Theorem:-

A T_4 -Space is a Regular space.

Proof:-

Let (X, τ) be a T_4 -space, then X is a normal space as well as T_1 -space.

Let *F* be a closed sub set of *X* and $x \in X - F$.

Since X is T_1 -space, therefore $\{x\}$ and F are disjoint closed sets.

Sine *X* is normal, therefore there exit disjoint open sets *U* & *V* such that

$$\{x\} \subseteq U \quad , \quad F \subseteq V \quad ; \quad (U \cap V = \varphi) \\ Or \qquad x \in U \quad , \quad F \subseteq V$$

 \Rightarrow (*X*, τ) is a regular space.

Theorem:-

A topological space (X, τ) is normal if and only if for each closed set *F* and open set *H* containing *F*, there exit an open set *G* such that

$F \subseteq G \subseteq Cl(G) \subseteq H$

Proof:-

Let (X, τ) is a normal space.

Let $F \subseteq H$, where *F* is closed and *H* is open. Then X - H is closed and $F \cap (X - H) = \varphi$.

Since X is normal, therefore there exit disjoint open sets G & U such that

$$F \subseteq G \quad \& \quad X - H \subseteq U$$
$$G \cap H = \varphi \quad \Rightarrow \quad G \subseteq X - U$$
And
$$X - H \subseteq U \quad \Rightarrow \quad X - U \subseteq H$$

Thus, $F \subseteq G \subseteq X - U \subseteq H$

$$Or \quad F \subseteq G \subseteq Cl(G) \subseteq Cl(X - U) \subseteq X - U \subseteq H$$
$$\Rightarrow \quad F \subseteq G \subseteq Cl(G) \subseteq H$$

Conversely,

Let $F_1 \& F_2$ be two disjoint closed sets, then $F_1 \subseteq X - F_2$, where $X - F_2$ is open.

By hypothesis, there exit an open set *G* such that $F_1 \subseteq G \subseteq Cl(G) \subseteq X - F_2$

$$\Rightarrow Cl(G) \subseteq X - F_2 \subseteq F_2 \subseteq X - Cl(G) = open$$

Now, $G \cap (X - Cl(G)) = \varphi$

 \Rightarrow (*X*, τ) is normal.

Theorem:-

Prove that continuous closed surjection image of a normal space is normal (Homework).

Proof:-

Let *X* be a normal space and Y = f(X) is its closed continuous image. To prove *Y* is normal. Let $A_1 \& B_1$ be two disjoint closed sets of *Y*. As *f* is continuous so inverse image of each closed set is closed. So, $f^{-1}(A_1)$ and $f^{-1}(B_1)$ are closed sets in *X*. Let $A = f^{-1}(A_1)$ and $B = f^{-1}(B_1)$ Now, $A \cap B = f^{-1}(A_1) \cap f^{-1}(B_1) = f^{-1}(A_1 \cap B_1) = f^{-1}(\varphi) = \varphi$ So A & B are disjoint closed sets in X. As X is normal so there exit two open sets U & V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \varphi$ As U and V are open sets in X so U' and V' are closed sets in X. As *f* is closed function, \Rightarrow f(U') and f(V') are closed sets in Y. Put $U_1 = [f(U')]' = Y - f(U')$ & $V_1 = [f(V')]'$ Then U_1 and V_1 are open sets in *Y*. Next we show that $A_1 \subseteq U_1$ Let $x \in A_1 = f(A) \implies x \in f(A) \implies f^{-1}(x) \in A \subseteq U$ $\Rightarrow f^{-1}(x) \in U \Rightarrow f^{-1}(x) \notin U'$ $\Rightarrow x \notin f(U') \Rightarrow x \in [f(U')]' = U_1$ $A_1 \subseteq U_1$ Similarly we can show that $B_1 \subseteq V_1$ Now, $U_1 \cap V_1 = [f(U')]' \cap [f(V')]' = [f(U') \cup f(V')]'$ $= [f(U' \cup V')]' = [f(X)]' = Y'$

- $\Rightarrow \quad U_1 \cap V_1 = \varphi$
- \Rightarrow Y = f(X) is normal.

Theorem:-

Prove that the closed sub space of a normal space is normal (Homework).

Proof:-

Let *X* be a normal space and *Y* be a closed sub space of *X*.

To prove *Y* is normal.

Let A & B be two closed sets in Y such that $A \cap B = \varphi$ As A & B are closed in Y and Y is a sub space of X. So there exit two closed sub sets A_1 and B_1 in X such that $A = A_1 \cap Y$, $B = B_1 \cap Y$ As $A \cap B = \varphi \implies A_1 \cap B_1 = \varphi$ As $A_1 \& B_1$ are closed sets in X, $A_1 \cap B_1 = \varphi$ and X is normal. So there exit two open sets $V_1 \& U_1$ in X such that $A_1 \subseteq U_1$, $B_1 \subseteq V_1$ and $U_1 \cap V_1 = \varphi$ put $U = U_1 \cap Y$, $V = V_1 \cap Y$ Then U and V are open sets in Y. As $A_1 \subseteq U_1 \implies A_1 \cap Y \subseteq U_1 \cap Y \implies A \subseteq U$ Also $B_1 \subseteq V_1 \implies B_1 \cap Y \subseteq V_1 \cap Y \implies B \subseteq V$ And $U \cap V = (U_1 \cap Y) \cap (V_1 \cap Y) = (U_1 \cap V_1) \cap Y = \varphi \cap Y = \varphi$ $\implies U \cap V = \varphi$ $\implies Y$ is normal.

Theorem:-

Prove that every discrete space with at least two points is normal (Homework).

Proof:-

Let *X* be a discrete space with at least two points.

To prove *X* is normal.

As *X* is discrete, so each sub set of *X* is closed as well as open.

Let *A* & *B* are two closed sub sets of *X*. such that $A \cap B = \varphi$

Put U = A and V = B

Then $U \And V$ are open in X because X is discrete. Also $A \subseteq U$, $B \subseteq V$ and $U \cap V = \varphi$ \Rightarrow X is normal.

Urysohn Lemma:-

Let (X, τ) be a normal space. If F_1 , F_2 are any disjoint closed sets in X, then there exit a continuous mapping $f: X \to [0,1]$ with $f(F_1) = 0$ & $f(F_2) = 1$.

Proof:-

Step 1:- $F_1 \cap F_2 = \varphi$, where $F_1 \& F_2$ are closed sub sets of *X*. $\Rightarrow F_1 \subseteq X - F_2$; and $X - F_2$ is an open set.

Since X is normal space, therefore there exit an open set $U_{1/2}$ such that

$$F_1 \subseteq U_{1/2} \subseteq Cl\left(U_{1/2}\right) \subseteq X - F_2$$

Step 2:- Now $U_{1/2}$ and $X - F_2$ are open sub sets containing closed sets F_1 and $Cl(U_{1/2})$ respectively.

Therefore there exit open sets $U_{1/4}$ and $U_{3/4}$ such that

$$F_1 \subseteq U_{1/4} \subseteq Cl(U_{1/4}) \subseteq U_{1/2} \subseteq Cl(U_{1/2}) \subseteq U_{3/4} \subseteq Cl(U_{3/4}) \subseteq X - F_2$$

Step 3:- Let $d = \frac{m}{2n}$; $n = 1, 2, 3, ...$ and $m = 1, 2, ..., 2^n - 1$

(Numbers of the form of d are called "dyadic rational numbers")

If we continuous this process, we obtain an open set U_d such that $d_1 < d_2$

$$\Rightarrow F_1 \subseteq U_{d_1} \subseteq Cl(U_{d_1}) \subseteq U_{d_2} \subseteq Cl(U_{d_2}) \subseteq X - F_2$$

Step 4:- We define $f: X \to [0,1]$ as f(x) = 0 if $x \in U_d$

And $f(x) = Sup\{d : x \notin U_d\}$ PREPIt is clear that $f(F_1) = 0$ and $f(F_2) = 1$ MUHAM

PREPAIRED BY MUHAMMAD TAHIR M.S. MATHEMATICS Step 5:- We shoe that f is continuous.

Consider the family {[0, *a*), (*a*, 1]; 0 < a < 1} which is a sub base for [0,1] We simply show that $f^{-1}([0, a))$ and $f^{-1}((a, 1])$ are open. We note that $f(x) < a \iff x \in U_d$ for some d < aThis gives that $f^{-1}([0, a)) = \{x : f(x) < a\} = \bigcup U_d$ Again $f^{-1}((a, 1]) = \{x : f(x) > a\} = \bigcup_{d > a} (X - Cl(U_d));$ Which are open sets. This proves that f is continuous.

Assignment Number 3

Paracompactness:-

A T_2 -Space (X, τ) is pare compact if every open covering \mathcal{A} of X has a locally finite open refinement β that covers X.

Refinement:-

Let *X* be a set and let \mathcal{A} and β be covers of *X*, we say \mathcal{A} is refinement of β or \mathcal{A} refines β if for each $U \in \mathcal{A}$ there exit $V \in \beta$ such that $U \subseteq V$.

Locally Finite:-

Let (X, τ) be a topological space. A collection \mathcal{A} of sub sets of X is said to be locally finite in X if every point of X has a neighborhood that intersects only finitely many elements of \mathcal{A} .

e.g. $\mathcal{A} = \{(n, n + 2): n \in Z\}$ is locally finite in the topological space \mathbb{R} .

σ-Locally Finite:-

A collection β of sub sets of topological space (X, τ) is σ -locally finite if,

$$\beta = \bigcup_{n \in N} B_n$$
 ,

Where B_n is a locally finite collection of sub sets of *X*.

Theorem:-

Every regular Lindelof space is Paracompact.

Proof:-

Let (X, τ) be a regular lindel of space.

To prove *X* is paracompact.

Let \mathfrak{U} be an open cover of X. Since X is lindelof, then there exit a countable sub collection V of \mathfrak{U} that covers X.

 \Rightarrow *V* is an open σ -locally finite refinement of \mathfrak{U} .

Since (X, τ) is regular, by theorem it is paracompact.

Theorem:-

Let (X, τ) be a regular topological space, then following are equivalent.

(a) (X, τ) is paracompact.

- (b) Every open cover of X has a open σ -locally finite refinement.
- (c) Every open cover of *X* has locally finite refinement.
- (d) Every open cover of *X* has a closed locally finitr refinement.

Proof:-

(a)→(b)

Let (X, τ) is paracompact.

To prove every cover of *X* has an open σ -locally finite refinement.

Let \mathcal{A} be an open cover of X then there exit an open locally finite refinement β of \mathcal{A} .

 \Rightarrow *β* is an open *σ*-locally finite refinement.

(b)→(c)

Let every open cover of *X* has an open σ -locally finite refinement.

To prove every open cover of X has a locally finite refinement.

Let \mathfrak{U} be an open cover of X, then there exit an open σ -locally finite refinement q of \mathfrak{U} so that $q = \bigcup_{n \in \mathbb{N}} q_n$, where q_n is locally finite.

For each $n \in N$, let $\omega_n = \bigcup \{V : V \in q_n\}$

Then $\{\omega_n : n \in N\}$ is an open cover of *X*.

For each $n \in N$ let $A_n = \omega_n - \bigcup_{i=1}^{n-1} \omega_i$. Then $\{A_n : n \in N\}$ is refinement of $\{\omega_n : n \in N\}$. Let $x \in X$ and let n_x be the smallest number of $\{n \in N, x \in \omega_n\}$ then $x \in A_{n_x}$ and hence $\{A_n : n \in N\}$ covers X.

Also ω_{n_x} is neighborhood of x that does not intersect A_n for any $n > n_x$ and so $\{A_n : n \in N\}$ is locally finite.

Let $\mathcal{A} = \{A_n \cap V : n \in N \text{ and } V \in q_n\}$

Since q is refinement of \mathfrak{U} this imply \mathcal{A} refine \mathfrak{U} .

Let $x \in X$, Since $\{A_n : n \in N\}$ is locally finite so there exit a neighborhood M of x that intersects only a finite number of members of $A_{n_1}, A_{n_2}, ..., A_{n_k}$ of $\{A_n : n \in N\}$ for each i = 1, 2, ..., k there exit a neighborhood n_x of x that intersects only a finite number of members of q_n . Then $M \cap \bigcap_{i=1}^k Nx_i$ is a neighborhood of x that intersects only a finite number of linite number of members of A, therefore A is locally finite.

 \Rightarrow \mathcal{A} is locally finite refinement of \mathfrak{U} .

Let every open cover of *X* has a locally finite refinement.

To prove, every open cover of *X* has a closed locally finite refinement.

Let \mathfrak{U} be an open cover of X.

For each $x \in X$, let $U_x \in \mathfrak{U}$ s.t. $x \in U_x$

Since (X, τ) is regular therefore there exit a neighborhood V_x of X such that $\overline{V_x} \subseteq U_x$ then $\{V_x : x \in X\}$ is an open cover of X, so by assumption this open cover has a locale finite refinement $\{A_\alpha : \alpha \in \nabla\}$ then $\{\overline{A_\alpha} : \alpha \in \nabla\}$ is also locally finite.

For $\alpha \in \nabla \exists x \in X \quad s.t. \quad A_{\alpha} \subseteq V_x$, therefore since $\overline{V_x} \subseteq U_x$ for each $x \in X$, $\overline{A_{\alpha}} \subseteq U_x$ thus $\{\overline{A_{\alpha}} : \alpha \in \nabla\}$ is closed locally finite refinement of \mathfrak{U} . (d) \rightarrow (a)

Let every open cover of *X* has a closed locally finite refinement.

To prove (X, τ) is paracompact.

Let \mathfrak{U} be an open cover of X, then there exit a closed locally finite refinement \mathcal{A} of \mathfrak{U} .

For each $x \in X$, let V_x be a neighborhood of x that intersects only a finite number of members of A. Then $\{V_x : x \in X\}$ is an open cover of X.

So there exit a closed locally finite refinement C of $\{V_x : x \in X\}$.

For each $A \in \mathcal{A}$ let $A^* = X - \cup \{C \in \mathcal{C} : A \cap C = \varphi\}$

Since C is locally finite

$$\Rightarrow \quad \cup \overline{\{C \in \mathcal{C} : A \cap C = \varphi\}} = \cup \{\overline{C} \in \mathcal{C} : A \cap C = \varphi\}$$

But each member of \mathcal{C} is closed, so

$$\cup \left\{ \overline{C} \in \mathcal{C} : A \cap C = \varphi \right\} = \cup \left\{ C \in \mathcal{C} : A \cap C = \varphi \right\}$$

Since $\cup \{C \in C : A \cap C = \varphi\}$ is closed so A^* is open.

For each $A \in \mathcal{A} : A \subseteq A^*$ \Rightarrow $\{A^* : A \in \mathcal{A}\}$ is cover of *X*.

We claim that $\{A^* : A \in \mathcal{A}\}$ is locally finite.

Let $x \in X$, there exit a neighborhood W of x that intersects only a finite number of members of $C_1, C_2, ..., C_n$ of C.

Since C covers X,

$$W \subseteq \bigcup_{i=1}^n C_i$$

Therefore $W \cap A^* \neq \varphi$

Then there exit $k(1 \le k \le n)$ s.t. $C_k \cap A^* \ne \varphi$

But $C_k \cap A^* \neq \varphi$ \Rightarrow $C_k \cap A = \varphi$

Therefore $\{A^* : A \in \mathcal{A}\}$ is locally finite.

Now for each $A \in \mathcal{A}$, choose $U_A \in \mathfrak{U}$ *s.t.* $A \subseteq U_A$ then $\{A^* \cap U_A : A \in \mathcal{A}\}$ is an open locally finite refinement of \mathfrak{U} .

This implies *X* is paracompact.

Topological Manifolds

Second Countable Space:-

A topological space (X, τ) is said to be 2nd countable provided there are countable basis for τ .

Note:-

Every 2nd countable space is 1st countable. A space which is 1st countable may not be 2nd countable.

• Every countable infinite space is 1st countable. $\beta_x = \{\{x\}\}$

First Countable Space:-

A topological space (X, τ) is said to be 1st countable if it has a countable base at each of its point.

Manifolds:-

A topological n-dimensional manifolds or manifolds is a 2nd countable T_2 -space in which each point has a neighborhood *i.e.* homeomorphic to the open disc $U^n = \{x \in R^n : |x| < 1\}$

- ➤ A 1-manifold is called a curve.
- ➤ A 2-manifold is called a surface.

Note:-

 U^n can not be homeomorphic to U^m unless n = m.

For each $n \in N$, R^n is n-manifold.

Example:-

The square $\{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1 \& -1 \le y \le 1\}$ is 2-manifolds.

www.Ranawaths.con

Introduction To Dimension Theory

Dimension of a topological space is defined in three different ways.

- 1) Small inductive dimension : ind(X)
- 2) Large inductive dimension :Ind(X)
- 3) Covering dimension : dim(X)

Note:-

Three dimension function coincides in the class of separable spaces *i.e.* ind(X) = Ind(X) = dim(X).

Small Inductive Dimension Of Topological Space:-

Let (X, τ) be a regular topological space, ind(X) is called small inductive dimension of X which is an integer larger or equal to -1 or the "infinity number (∞) "; where

$$ind(X): X \longrightarrow \{-1,0,1,2,\dots\} \cup \{\infty\}$$

Is defined as

- (*mu*1) ind(X) = -1 if and only if $X = \varphi$.
- (*mu*2) $ind(X) = \le n$, where *n* can be 0,1,2,... if for every point $x \in X$ and Each neighborhood $V \subseteq X$ of the point *x*, there exit an open set

$$U \subseteq X$$
 s.t. $x \in U \subseteq V$ & $ind(F_r(U)) \leq n-1$

- (mu3) ind(X) = n if $ind(X) \le n \& ind(X) > n 1$
- (*mu*4) $ind(X) = \infty$ if ind(X) > n for n = -1,0,1,2,...

Note:-

Small inductive dimension is also called Menger Urysohn dimension.

Note:-

If the regular space (X, τ_x) and (Y, τ_y) are homomorphic, then ind(X) = ind(Y). Example:-

$$X = \{a, b, c, d\}, \ \tau = \{\varphi, X, \{a, b\}, \{c, d\}\} - - regular$$

Closed sets $\varphi, X, \{a, b\}, \{c, d\}$

Since (X, τ) is regular and $X \neq \varphi$ \Rightarrow $ind(X) \neq -1$

Let
$$x = a$$
 \Rightarrow $V = \{a, b\} = U$
 $F_r(U) = Cl(U) \cap Cl(X - U) = \{a, b\} \cap \{c, d\} = \varphi$
 $\Rightarrow ind(F_r(U)) = -1 = 0 - 1$ \Rightarrow $n = 0$

$$\Rightarrow$$
 ind(X) = 0

n = 0

