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TOPOLOGY:-

Let ‘X’ be a non empty set and 't be a collection of subsets of
‘X’. Then ‘7’ is called topology if

(i) ¢ and X belongs to 7.
(i)  The intersection of any two sets in 't belongs to .
(iii) The union of any number of sets in 't’ belongs to .

The members of T are then called t-open sets or simply open sets
(and compliment of open sets is called a closed set). X together with 7 i.e. (X,7)
is called a topological space.

The set X’ is called its ground set and the element of ‘X’ is called
its points.

¢ @ and X are always open as well as closed (clopen).

¢ Neighborhood of a point x € X isaset'N’'s.t. xe O € N where O is an
open set.

An open set is neighborhood of each of its points.

Each point of a topological space has at least one neighborhood and that
is X.

» A point of a topological space may have more than one neighborhood.

Example:-
LetX={a, b, ¢, d}

P(X)= ¢, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, ¢},

71 ={¢, X, {a}, {c}, {a, c}, {b, c}, {a, b, c}}

72 = {@, X, {b}, {d}, {b, ¢}, {b, d} {b, ¢, d}}

T, and 1, satisfy all the conditions of a topological space.

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VW Ranagat hs. comr

Interior of a Set:-

Let (X, T) be topological space and ‘A’ is a non-empty subset
of X’. A point xeA is an interior point of ‘A’ if there exits an open
neighborhood O s.t. xeO <€ A.

Example:-
Let X=R

T is the collection of all possible open intervals of R and ¢. Then t is a topology
on R. This topology is called usual topology on R or standard topology on R.

A=1[0,1]

A
v

X=0€A. 0 1

Here 0€A but not interior point of A. 1€A but not interior point of A. All other
points of A are interior points of A.

B=(0,1) PREPAIRED BY
Every point of B is interior point o B. MUHAMMAD TAHIR

M.S. MATHEMATICS
Note:-

¢ Every point of an open set is an interior point of that set.

¢ Interior of a set is a collection of all interior points of that set and is
denoted by Int(A).

s Aset‘A’is openifand only if Int(4) = A.

s Int(A) € A.
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Limit Point of a Set:-

Let (X, T) be a topological space and ‘A’ is a subset of ‘X". A
point x € X is called a limit point of A if every open neighborhood of X’
contains a point of A other than x. i.e. V ue N(x); Anu - {x}#¢.

¢ Limit point of a set may not be member of that set.

* Asetis closed if it contains all of its limit points.

¢ Collection of all limits points of ‘A’ is called derived set of A and it is
usually denoted by A%

Closure of a Set:-

Let (X, T) be a topological space and ASX then closure of ‘A’ is
denoted by CI(4) and is defined by CI(4)= AUA?

s Aisclosediff A = CL(A).
e ACCIl(A).

Exterior Point:-

Let (X, 1) be topological space and ACX. Then xeX is said to be an
exterior point of A if x is an interior point of A. i.e. x is said to be exterior point
of A if there exit some open set ‘0’ such that x e u € A.

OR x is exterior point of A if there exit open set u containing x such that
unNA=q.

Boundary Point:-

Let (X, 1) be a topological space an A subset of X then xeX is
said to be boundary point of A if x is neither the interior point of A nor the
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interior point of A. In other words x € X is said to be boundary point of ASX if
for every open set u containing x, unA # ¢ and unA # ¢.

Dense Set:-

Let (X, 1) be topological space and ACX, then A is called dense in X
if A=X.

Example:-

LetX={1,2,3,4,5}and t={o, X, {1}, {2}, {1,2}}.
Let A= {1, 2}
Closed sets of X are {X, o, {2,3,4,5}, {1,3,4,5}, {3,4,5}}.
Closed super set of A is X only. Therefore A=X.

= AisdenseinX.
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SEMI OPEN SETS AND SEMI CONTINUITY IN
TOPOLOGICAL SPACES

This paper was published by American Mathematical Monthly vol.70 N-I (Jan 1963):
pages (36-41).

Semi-Open Sets:-

Let (X, T) be topological space, a subset U of X is said to be
semi-open in X if there exit an open set O in X such that,

0 cUcCl0)

Example:-

X ={a,b, ¢, d} and t= {0, X, {a}, {b}, {a, b}}.
Let A={a, c}.
Here closed sets are {¢, X, {b, ¢, d}, {a, ¢, d}}.
Cl({ah)={a,c,d} , CI({bP={b, c,d} and CI({a, b}P=X.
As ‘A’ is an open set and
{ac{actcfacdt=Cl{a}) => {a}c{actcCl({a})

=> {a, c}is a semi-open set.

+ Every open set is also a semi open set.
¢ A semi open set may not be an open set.
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Equivalently:-
A sub set ‘U’ of X is semi open in X if and only if u € Cl[Int(u)]
Proof:-
Let ‘u’ be a semi open in X.

Put Int(u) =0 --------------m-mmmmmm- (D
And Int(u) Su (obvious) => 0<ucCI(0) ------ by definition

= UCCl[Int(u)] By (1)
Conversely,

Let u € Cl[Int(uw)]

Since Int(u) Su => Int(u) € u < Cl[Int(u)]
i,e. vEucCl(v), wherevisopeninX.

= uis semiopen in X.
Note:-

+¢ Collection of all semi open sets in X is denoted by SO(X).
* The compliment of a semi-open set is called a semi closed set.
+¢ Collection of all semi closed sets in X is denoted by SC(X).

Example:-
Let X=R with the usual topology on R.
Let E=(0,1), Then CI(E)=[0,1].

If A=[0,1) , B=(0,1] , C=[0,1], Then each A, B, and C are semi-open in X.
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Note:-

C=[0,1] is a closed set which is semi-open as well. This means closed set
can be semi open as well [but open sets are always semi-open]

(0,1)=C=[0,1]<Cl(0,1)=[0,1] That's why C is semi-open.

Example:-

Let X=R with usual topology and let
—cL 11y, t m 1 joym+1
A=, DUG, UG DU u(1/2m,1/2m ...
And B={0}U(;, DU, UG DU e u(1/2m,1/2m+Yu.........

= Ais an open set. Since A is union of open intervals and every open
interval is a open set and union of any number of open sets is a open
set.

Here A=(0,1) and CI(A)=[0,1] and B=[0,1]

= AC BCcCl(A).
= B is a semi-open set.

A is open so is semi open. In this case B is neither open nor closed (but is
semi-open)

Example:-
Let X be the Euclidean Plane R? with usual topology.

Let E be the set suh that.

1<x<?2

1<x<?2
E={ 1225

()1 <y <  Then CI(E)={

Then semi open sets are,
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1<x<?2 1<x<?2
Az{(x'”:lsysz ’ B:{(x'”:1<ysz
1<x<2 1<x<?2
C={("'3’):1<y<2 ’ Dz{("'”’lsysz
1<x<?2 1<x<2
I::{(x’y):1Sy<2 ’ G:{(x’y):1<y32

And so on (so many semi open sets are available).

Theorem 2:-

Let (X, T) be a topological space and {4,: aeV} be any collection of
semi-open sets in X. Then U,y 4, is semi open in X. (i.e. union of any
number of semi-open sets is semi-open in X).

Proof:-
Since A, is semi openin X V aeV
Therefore there exit an open set 0, in X such that.
0,<€ A, € Cl(0,) VaeV

= UaeVOa = aeVAa c aeVCl(Oa) = Cl(UaeVOa)
= 0 cU,vA, € ClL(A) Since O,y = 0 and O is open set
= Ug.vA, Is semi-open set in X.

Theorem 3:-

Let (X, T) be a topological space and A is a semi-open subset of X.
Suppose A € B € CI(A), then prove that B is also a semi-open in X.

Proof:-
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Since A is semi open in X,

Therefore there exit an open set O in X s.t.

0 € A c CI(0).

Now, OCACB--me- (1) by supposition A € B € CI(A)
Now, AC ClI(0) SinceO < AcCI(0)

= CIl(A) € Cl[CL(0)] = cl(0)

= Cl(A) € Cl(O) --------mmmmmmmmmmmmmmmeee- (2)
Again, B € Cl(A) Since A € B € Cl(A)by given

= Cl(B) € Cl[Cl(A)]

= C1(B) € CI(A) -------------------- (3)

By relation 1, 2, 3 we get
OCSAcSBCCl(B)<cCl(A) ccl(o) Since B € Cl(B)always true
= 0 € B < Cl(0)

This proves that B is a semi-open set.

Theorem 4:-
Let (X, 1) be a topological space then,

(1) € S0(X) (just by def.)
(2) For AeSO(X) and A € B € CI(A), then BeSO(X) (already proved)
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Theorem 5:-
Let § = {B,: aeV} be a collection of sets in X s.t.
(1) =ep (2) IfBepBand B < D < CI(B) then D € 3, Then SO(X) € 3
Proof:-
Let Ae SO(X),

Then by definition there exit an open set O € T such that

Then by condition 1 O€ep
So by condition 2 Aef3
= SO(X) € (proved)

Statement Continued:- Furthermore SO(X) is the smallest class of sets in X
Suppose GO(X) be another class of sets satisfying (1) and (2) such that
GO(X) € SO(X) -------=-=--mmmmmmmmmme- 3)
Let A* € SO(X) Then there exit O*e 7 such that
0" C A" C Cl(O0")----==-=-=mmmmmmmmmmmmmaee (a)

Then by (2) 0* € GO(X) and 0* € A* € Cl(0"

= A*e GO(X)
= SO(X) € GO(X) ----==rmmmmmmmmmmmmnee (4)
So GO(X) =SO(X) by equation (3) and (4)

Hence SO(X) is the smallest class of sets satisfying conditions 1 and 2.

Relative Topology (OR) Subspace Topology:-

Let (X, T) be topological space and
Y be a subspace of X. Then the collection 7, = {U NY:U € 7} is a topology on

Y. This topology is called relative topology.
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Note:-

If 7, is arelative topology on Y then (Y, 7,) is subspace of (X, 7).

Theorem 6:-

Let (X, 1) be topological spaceand AC Y € X, where Yis a
subspace of X. Let A € SO(X) then prove that A € SO(Y).

Proof:-
Since A € SO(X), Therefore there exit an open set O in X s.t.

0 S AcClL(0)

= ONYCANYCYNCL(0)
= 0 < AcCL,(0), whereOisopeninY.
= Ais semi-openinY.
i.e. AeSO(Y)
Lemma 1:-

Let (X, T) be a topological space and O is open in X. prove that
Cl(0) - O is nowhere dense in X.

Proof:-
E € (X, 7) Is nowhere dense in X
We have to prove If Int[CL(E)] = @
Int[CI{CL(0) — 0}] = ¢
Now, Int[CI{CL(0) — 0}] = Int[CI{CL(0) N (X — O0)

c Int[CH{CL(0) N CI(X — 0)
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= Int[CI{CI(0) N (X —0)}] € Int[Cl(0) n (X —0)] Since X-0 is closed.
= Int[CL(O)] N Int(X — 0)
= Int[Cl(0)] n (X — ClI(0))
=

= Int[CI{Cl(0) — 0} = ¢
= Cl(0) — 0 isnowhere densein X. (proved)

Theorem 7:-

Let (X, ) be topological space and A € SO(X). Then A= 0 U B,
where.

(1) Oert
(2) ONnB=¢@ and
(3) Bisnowhere dense.

Proof:-

Given A is semi open in X. Then by definition there exit an open set O in
the X such that. 0 € A € CI(0)

ButA=0U(A-0)
Let B = A\O, Then clearly A = OUB, where
(1) Oert (2) ONB=¢
The only thing we need to prove is that B is nowhere dense set.
Now, B=A\0 < ClI(0)\ 0, SinceA < Cl(0)
= Int[CL(B)] € Int[CI{CL(0) — O}]
Since O is open, therefore Cl(0) — O is nowhere dense and hence,

Int[CI{Cl(0) — 0}] = ¢
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= Int[CL(B)] € ¢
= Int[Cl(B) = ¢
= Bis nowhere dense in X.

Remark:-

The converse of theorem 7 is not true in general, that is, In a
topological space (X, T) aset ‘A’ is written as A = O U B, where O is open, B is
nowhere dense and O N B = ¢. Then A may not be semi-open.

Example:-
PREPAIRED BY
Let X = R with usual topology.
MUHAMMAD TAHIR

LetA={x €R:0<x <1}U{2}.Th 4

etd ={x * < 1}V {2} Then WATTO0

(1) A=0UB,where0O = (0,1)er and

M.S. MATHEMATICS

(2) B={2}

3) 0NB=g¢ CIIT ISLAMABAD

03448563284

Now we show that B is nowhere dense.
Consider, Int[CI(B)] = Int[Cl{2}] = Int{2} = ¢
= Bis nowhere dense.
Now ifwelet O = (0,1) Then O € A But A € Cl(0)

Hence we cannot find an open set satisfying the relation 0 € A < Cl(0)

5 A¢S0(X)
Remark:- Disconnected Set: - In a
Topological space (X, T) a subset a
The converse of theorem 7 is false of X is disconnected if it can be

expressed as union of two non-
empty disjoint open sets.
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even when connectedness is imposed upon ‘A’.
Example:-

Let X = R? with usual topology (open discs or open rectangles
whose sides are parallel to coordinate axis form basis for T.

LetA={(x,y):0<x<1,and 0 <y <1}U{(x,0):1<x <2}

We notethat A = 0 U B,where O = {(x,y):0<x<l,and 0 <y <1l}er
AndB ={(x,0):1<x<2}and ONB = ¢

And B is nowhere dense because Int{Cl[1,2]} = ¢

And A is connected because it is not disconnected.

Moreover A € SO(X) Since 0 € A £ Cl(0)

Theorem 8:-
Let (X, T) be a topological space and A = OUB, where

(1) 0 # @isopen (2) Aisconnectedand (3) BY = ¢, where B¢ is
derived set of B. Then prove that A € SO(X)

Proof:-
A=0UB = O0CA
The only thing we need to prove is that A € Cl(0)
OROUB c Cl(0) OR We need to show B € CL(0), Since O € ClI(O) obvious
Assume contrary, B € CIl(0)
Let B = B; U B,,where
B; € Cl(0O)and B, € X —ClL(O) “B+ ¢

Now, A=0UB =0 U (B; UB,)
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% A=(0UB;)UB,
AndOUB; #¢@ 0+ ¢ and B, # ¢ * By € ClL(0)
And O U B; € CI(0) and B, € B,,a closed set
B,NClL(O)=¢

= O U B;and B, constitute a partition for A.
= A is disconnected.

Which is not true, so our supposition is wrong and hence
Bc Cl(0O)=0UBCcCl(0O)= AccClLO)

= 0CcSAcCl(0)
= A eSO0(X) ~ Oisopen. (proved)

Remark 4:-

It is not true that the components of a semi-open set are semi open.

Example 4:-

1 1
il g U....

Then A is semi-open and {0} is a component of A, But {0} is not semi-open in
X.

A—{0} € AcCl[A - {0}]
A — {0}is open set - A — {0}is union of open sets.
= Ais semi-open ° openset € A CCl(open set)

{0} is a component of A but {0} is neither open nor semi-open.
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Remark 5:-

(1) Ingeneral the compliment of a semi-open set may not be
semi- open.
(2) Intersection of two semi-open sets may not be semi-open.

Example:-
¢ Let X = R with usual topology.
We consider, A = [0, 1] e SO(X) and B =[1, 2] € SO(X)

% ANB = {1} €S0(X)
% LetX =10, 1]

4=(31)v(0)v (53 v Fm) v
- 2, 4,2 8’4 ------ 2n+1’2n ------

2 AeSO(X) andAz{l,%,

1
Z;

Theorem 9:-

Let (X;z,) and (Y,7,) be topological spaces. Let f: X—Y be
continuous and open mapping. Let A € SO(X), prove that f(A) € SO(Y).

Proof:-

Since A € SO(X), Therefore there exit an open set O and nowhere dense
setBsuchthat A=0UB:0NB =¢@and B < Cl(O)—-0

Cl(0) — 0 < Cl(0
Now,0 CA=0UBRB (0) (0)

= f(0) < f(A)=f(OUB)
= = f(0) U f(B)
= c f(0O)u fcl(o) B € Cl(0)
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= FIC1(0)] = Cl[f(0)]
= = Cl[f(0)] & £(0) € CI[f(0)]
= f(0) € f(A) € Cl[f(0)] = £(0) U f[CL(0)] = CI[f(0)]

Since fis open, therefore f(0) is open in Y and hence f(4)eSO(Y)

Remark 6:-

f Must be open in theorem 9, otherwise for A € SO(X); f (A) may
not be semi-openin.

Example 5:-

Let X =Y = R with usual topology. Let f: X — Y be defined by
f(x) = 1V x € X. Then X is semi-open in X but f(X) is not semi open in Y.

Solution:-
1:-Since f(x) =1V xeX.

Therefore f is a constant function and every constant function is continuous.
Therefore fis a continuous function.

2:-Let ‘u’ be any open setin X, Then f (u) = {1} € 7,
This gives that f is not an open function.
Now X is open and hence semi-open. But f(X) = {1}.

Since {1} contains no open set therefore {1} cannot be semi-openinY.

Lemma 2:-

Let T be the collection of open sets in the topological space X. Then
prove that T = IntSO (X).

Proof:-
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LetOet.
Therefore O is an open set.
= 0eS0(X) ~ 0 is open
And since 0 = Int(0) O is open

= Qelnt SO(X)
D T C Int SO(X) ------mmmmmmmmmmmmemmeee (1)

Conversely,
Let Oelnt SO(X)

Then O = Int(A)for some AeSO(X)

And thus, Oert ~ Int of any set is open.
2 It SO(X) © T ---mmmmmmmmmmmmmmem e (2]
From @) and @
T = Int SO(X).
Theorem 10:-

Let T and t* be two topologies for X. Suppose SO(X, 1) ©

SO(X,T*). Thent € T".
Proof:-

SoX,7) €S0(X,t")

S Int[SO(X,7)] € Int[SO(X,t*)] | * Int[SO(X,D]are open sets int

> 7CT’ Int[SO(X,t*)]are open sets in t
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Corollary 1:-

Let T and 7* be two topologies for X. Suppose SO (X, 1) =
SoX,t") thent =1"

Remark 7:-
It is interesting to note that converse of theorem 10 is false in
general.
(x, ), [x,¥), G, y], [y
Example 6:- [x,9), [x, y]eT*

LetX=R

T={(xy):x <y}
&t ={[x,y):x <y}
Thent S t* ButSO(X,7) € SO(X,7*)

“(x,y]eSO(X,t)but (x,y] € SOX, ")

Basis:-

B, and B,ef3,xeB; N B,

VxeX3BEe
4 Then there exit B; such that UB, =X

Such that x € B
.X'EB3 c Bl N BZ

¢ Let 3 and y are two basis such that 8 is basis for (X, 7,.) and y is a basis

for (Y,Ty) then 8 Xy = {B X C: Bef, Cey}
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+¢ There can be construct more than one basis corresponds to each
topology but there is only one topology corresponds to each basis.

Theorem 11:-

Let (X, t1)and (X, 1,) be topological spaces and X = X; X X, be
topological product. Let A;€S0(X;)and A,eSO(X,). Then prove that
Al X A2€SO(X1 X Xz)

Proof:-

WehaveAi =0i XBl, l=1,2

Where O, isopeninX;; i=1,2 PREPAIRED BY
And B; isnowheredenseinX;; i=12 | MUHAMMAD TAHIR
And 0, N B, = ¢ Vi = 1,2 M.S. MATHEMATICS
Further,

NOW, A1 X AZ = (01 U Bl) X (02 U Bz)
= = (0; X 0;) U (01 X B) U (B; X 0) U (By X By) ---*
= c (0 X 0,)U[Cl(09) X CI(0)] U [CL(0O) X 0,]U
[CL(0,) X CL(0,)] v By € Cl(01),B, <€ Cl(03)

= 01 X 02 c Al X A2 c Cl(Ol) X Cl(OZ) = Cl(Ol X 02) fT'OTn *
Since 0; X 0, is open in the product space,

Therefore A; X A,eS0(X; X X5)

Remark 8:-

If AeSO(X; X X;) then in general we cannot write A = A; X 4,,
where A;€50(X;)and A,eS0(X,).
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Example 7:-
Let X = R? with usual topology.
LetA={(x,y):0<x<1,0<y<1}U(1,1)

Then A is semi-open in RXR. But we cannot find two sets A;and A, s.t.
A=A, XA, and A;eSO(R)and A,eSO(R)

Semi-Continuous Function:-

Let (X, 7,)and (Y, 7)) be topological spaces and
f:X — Y be a single valued function then 'f’ is said to be semi-continuous if
and only if, for each openset VinY, f~1(V) is semi-open in X.

Remark 9:-

Every continuous function is semi-continuous as well but a semi-
continuous function may not be continuous.

Example 8:-

Let X =Y = [0,1] with usual topology and f: X — Y defined by,

1 if0sx<

fx) =

= N

|
le <x<
This is a semi-continuous function but not a continuous function.

Let V be an open setin,
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( 1
1eV,0¢V = (V)= [O,E] €SO (X)

1
v=Joev,1¢v = f‘l(V)=(§,1]eSO(X)

0gvVv,1e¢V =  fY(V) = ger,
\0eV, 1eV =  fY(V) =[01]er,

Theorem 12:-

Let (X,t,)and (Y,1,) Be topological spacesand f: X — Y be a
single valued function, then 'f’ is semi-continuous if and only if for f(p)eV,
there exit an AeSO(X)s.t.peA and f(A) C V.

Proof:-
Let f(p)eVer,
= There exitan A,eSO(X)s.t. peA,and f(A,) €V

We have to prove that f is semi-continuous.

For this we show that f~1(V)eS0 (X)

Now, f@eV = pef~'(V)
By hypothesis there exit an 4,eS0(X)s.t. peA, and f(4,) SV
= ped, € ff(4,) € V) vACfTUA&ffTI(A) A

= ped, S f1(V)

Thus f~1(V) =u 1) Ay

pef™
Since arbitrary union of semi-open sets is semi-open, therefore
f1V) =V, -1 4, is semi — open
= f is semi-continuous

Conversely,

Let f: X — Y be semi-continuous
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Let f(p)eVer,

= pef 1 (V)eSO(X) = fis semi continuous & Vety; f eSO (X)
Let f~1(V) = A
i.e. peA and f(A)=fft(V)cV

= peA and f(A) €V (This completes the proof)

Theorem 13:-

Let (X, t,)and (Y, ry) be topological spaces. Let f: X — Y be a
semi-continuous function and Y be 2rd axioms space. Let P be the set of
discontinuities of 'f’ then prove that P is op 15t category.

Proof:-

Given, @ f is semi-continuous.

@ (Y, Ty) is 2nd axioms space.

First Category: - A set is of 1st

. union of nowhere dense sets.
We have to prove that P is of 1st category.

= P =Ucountable Go ant Int[Cl(Ga) =@

LetpeP, Let f(p)e0;, € (Y,t,), where O;, the countable union of basic
open sets because (Y, 7,) is a 2nd axioms space.

Now if O is open in X such that peO,

Then f(0) € O, because 'f" is discontinuous at peP.

Now, since f is semi-continuous, therefore there exit
AipeSO(X,p) s.t. peAy, and f(A,) € Oy

As A, is semi-open inX, therefore, there exit U, and By, s.t.
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Ay = Bip U Uy, where Uy, is open in X and By, is nowhere dense in X,
Moreover, By, € Cl(U;,) — Uy,
Thus, peB;, anowhere dense set. “p € open set i.e.Uy,

= P CUy,p By,
= P is of 1st category.

Remark 10:-

The converse of theorem 13 is false in general.

Example 9:-
Let X = (0,1] and X* = [0,1]

0, x is irrationan

Letf: X — X :{3, x is rational = Q

Where Q = {s;p, qeZ,q # 0,(p,q) = 1}

Then, f iscontinuous at irrationals and discontinuous at rational.

Hence the set of discontinuities is of 15t category [ the set of rational is
countable set.]

Consider u = G, 1] eX"isopenas0€&u

2 ) =f"" G, 1] = sub set of rational b/w (0, 1]

And we cannot find an open set O in X such that
O C sub set of rational between (0, 1] € C1(0)

= f is not semi-continuous.
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Theorem 14:-

Let f;: X; — X/ be semi-continuous. Let f: X; X X, — X{ X X;
be defined as f: ((xl,xz)) = (f1 (x1), fo (xz)). Then prove that

f: X1 X X, — X{ X X, is semi-continuous.
Proof:-
Given fi:X; — X{ and f,: X, — X5 are semi-continuous functions.
Let u and v are open sets such thatu € X{ and v € X,
As f; and f, are semi-continuous,
Therefore, f; 1(u)eSO(X,) and f5 1 (v)eSO(X,)
i.e. Inverse images of open sets are semi-open.
Nowlet, u X v € X{ X X5
We have to prove f~1(u X v)eSO(X; X X5)
Now, f'(uXwv)= fi'(w) X f;'()
€ SO(X;) X S0(X,)
€SO0(X; X X,)

2 fl(uXv)eSO0X; X X,)
= f:X; XX, — X{ X X, is semi continuous.

Theorem 15:-

Let h: X — X; X X, be semi continuous, where X, X; and X, are
topological spaces. Let f;: X — X, be defined as follows. For xeX; h(x) =
(x1,x7). Let f;(x) = x; then f;: X — X, is semi-continuous fori = 1,2.

Proof:-
h: X — X; is semi-continuous.
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Let O; be open in X;. Then 0; X X, is openin X; X X,
And hence, h™1(0; X X,) is semi-open in X.
But f71(0,) = h™1(0; X X,) € SO(X)

=  f; is semi-continuous.

Similarly for f,.

Remark 11:-

The converse of theorem 15 is generally false.

Example 10:-
Let X =X; =X, =[0,1]
1 if0<x<:
fi:X— X =
1 1 0 if%<x£1 PREPAIRED BY
MUHAMMAD TAHIR
X ¥ 1 if0<sx< % M.S. MATHEMATICS
X — X, =
? ’ if-<x<1
Then,

fi: X — X; is semi-continuous but h(x) = [f; (x), L,(x)]: X — X; X X, is not
semi-continuous.

Remark 12:-

f is said to be continuous at
x=xifVe>03ad>0s.t.

continuous functions is not a semi- | f(x) — f(x.) I< € whenever
| X — XO) < 5

Composition of two semi-

continuous function.
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Example 11:-
Let X = X; = X, =[0,1]

1
X l'fOSXSE
X — X = 1
0 if=<x<1
2
1
f2:X1 = X; =

1
1 if 5<x<1
Now, (o f)(0) = (e fiH)
Let ueX,; Oeuandlgu = f;1(u) = [0, %]
> (oW =@l = £ ([05]) =X open

Now Oguandl€u = fz_l(u)z[%,l]

_ _ PP 11 1
D (e W) = T WY = £ 5,1 = 5.0} e som)
= Composition of two semi-continuous functions is not a semi-
continuous.

Remark 13:-

The algebraic sum and product of semi-continuous functions are
not in general semi-continuous.
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Theorem 16:-

Let f,,: M — M*,where M and M™ are metric spaces with
metrics d and d*, be semi-continuous forn = 1,2,3,4, ... ... , and let
f.: M — M* be the uniform limit of {f,,} then f,: M — M is semi-continuous.

Proof:-
Let O* be openin M* and f,(x)e0".
As (M*,d") be metric spaces then there exit n > 0 s.t.
() eS;(fo(x) € 07

As f,: M — M"is uniform limit of {f; }, then for e = n/2 there exit n* s.t.
d*(fy' (%), fo(x) < g Vx€EM
= fi(x) € S%*(fo(x)) cor

As f, is semi-continuous, then by a well known theorem there exit A € SO(X)
such that x € A and f,; (A) < Sy {f.(x)}
2

Theorem will be prove if we show f,(A) € 0"

Let y € 4, then

UG, AO] < UG O] = dIff 0. ) <F+3 =1
= f(A) € S{f.(x)} € 0
= f, is semi-continuous (proved)
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SEMI-CONTINUOUS MAPPINGS

This course was established in 1973 by “Nota di Takashi Noire” and published by
“Academia Nazionale Dei Lincei”

Introduction:-

In 1963 N-Levine defined a subset A of a topological space X’ to
be semi-open if there exit an open set u in X such thatu € A < CI(0), where
Cl(u) denotes the closure of u. He also defined a mapping f of a topological
space X into a topological space Y to be semi-continuous if for every open set V
inY, f~1(V) is a semi-open set in X. The purpose of present note is to give a
generalization of the following two theorems and to investigate some
properties of semi-open sets and semi-continuous mappings.

+¢* Theorem A:-

Let X; and X, be topological spaces. If 4; is a semi-open set
inX; for i = 1,2 ; then A; X A, is a semi-open set in the product space
X1 XX,

+¢* Theorem B:-

Let X; and Y; be topological spaces and f;: X; — Y; be semi-
continuous mapping for i = 1,2. Then a mapping f: X; X X, —= Y} XY,
defined by putting f (x;, x;) = (f1(x1), f>(x,)) is semi-continuous.
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Semi-Open Sets
Lemma 1:-
If U is open and A is a semi-open set, then UNA is semi-open.
Proof:-
As A € SO(X), Then there exit an open set O in X such that,
0c AccCl(o)

> UN0OCSUNACSUNCIO)<SClI(UNO)

Since UNAisopeninXandUNO S UNAC< (UNDO)

= UNAeSO0(X) (proved)

Theorem 1:-

Let A and X, be subsets of X such that A € X, and X, € SO(X), then
A € SO(X) ifand only if A € SO(X.,)

Proof:-
As A € X, and X,e SO(X).
So X, is a subspace of X by a well known theorem.
Hence, AeS0(X.,)
So we need only to prove that A € SO(X)
Let A € SO(X,),

Then by definition there exit an open set U, in X, s.t.
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U, € AcClU.,)
Since U, in X,, then there exit an open set U in X such that U, = U N X,
= UnX,€AcCCl(UNnX,)
Since U is open and X,is semi-open so U N X,is semi-open in X

5 AeS0(X) (proved)

Lemma 2:-
A is semi-open if and only if CI(4A) = Cl{Int(A)}
Proof:-
Suppose A is semi-open then by a well known theorem
A € Cl{Int(A)}

= Cl(A) € CI{Cl(IntA)} = Cl{Int(A)}
= Cl(A) € Cl{Int(A)} -----mmmmmmmmmmmmmmmee €

As Int(A)c A
= Cl{Int(A)} S CI(A) ~---mmmmmmmmmmmmmmmmeaee ©)
By relation (1) and (2) we get
Cl(A) = CY{Int(A)}
Conversely,
Let, CI(A) = Cl{Int(A)}
To prove A is semi-open.

As Int(4) € A € Cl(A)
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= Int(A) € A € Cl{int(A)} v CL(A) = Cl{Int(A)}
As Int(A) is open set and Int(A) € A € Cl{Int(A)}

= Ais semi-open (proved)

Lemma 3:-

Let {X,: aef} be any family of topological spaces and [[X, denotes
the product space, then

@ /1t [14, = [[IntA, if A, = X, Except for finite aef-and [[IntA, # ¢.
O Ci[]4, =TICIA,
Proof:-
€@ 4s A, = X, Except for a finite o € B.
So the result is obvious forall 4, = X,
So we prove this lemma just for finite case,

AsInt(A,)isopeninX, Va =123 ..,n

n n
So nlnt(Aa) is open in HX“
a=1 a=1

n n
Also nlnt(Aa) QnAa
a=1 a=1

= ngl Int(Aa) c Int HZ:l Aa’ ________________________ @
Now, Let (x1, X3, Xx3,...,x,) € Int[[}=1 A,

As Int][}-1A, isopenin [[loq X,

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VW Ranaé\é?t hs. comr

= There exitopensetU, inX, Va =1,2,3,...,n s.t.

n n n
(X1, X2, ey Xy )€ HU“ c Intl_[Aa c ﬂXa
a=1 a=1 a=1

SinceU, €A, Va=1,2,3,..,n; Itfollowsthatx, e Int(4,) Va =123,..,n

= (Xq,X9,X3, .., Xy) €[22 IntA,
g = N T @

From equation (1) and 2) Int[[*_; 4, = [1*— Int(4,)

@As A, = X, except for finite o € f and X,, are topological spaces,
So result obviously for all 4, = X,,.
So we prove this lemma just for finite case,
AsA, € Cl(A,))Va=123,..,n

= [lz=14, € [15=1Cl(Ay)
Also, (TT—y X)\ITees CU(AL) = Uy (Xy X (X, \Ay))

a+w, 1<aw<sn

Which is openin [[} -, X,

= [[i_;ClA, isclosedandso CI[[}_; A, S [I,-; Cl(A,) -------- ©)
Now let, (xq1, x5, X3, ..., X, )€ [[h—1 CL(A,)
Let, w be a neighborhood of (x1,%3, ..., x,)in [1h-1 X,

Then there exit opensetU, inX, Va = 1,2,3,...,n s.t.
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n
(x1, %7, . Xy )E HU"‘ Cw
a=1

Then,x, eU, Va =123, ..,n

ButX,e4, Va=123..,n

AndU,NA,# ¢ Va=123..,n

Since [[l!-,U, € w andwe knowthatw N[[}_1 4, # ¢

SN CHESNIE R 1Yo/ | Y JH—— @

From equation (3) and (4) we have

n n
ch(Aa) - Cll_[Aa
a=1 a=1

Lemma 4:-
If A is a non-empty semi-open set, then Int(4) # ¢
Proof:-

Since A is semi-open,

Then, CI(A) = Cl{Int(A)}

Suppose, Int(A) = @

Then, Cl(A) = ¢
= A= ¢

Which is a contradiction, and hence Int(4) # ¢
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Theorem 2:-

Let {X,: a € } be any family of topological space, X = [[ X, the
product space and A =[]/, Ay X ]‘[aiaj X,, anon-empty subset of X, where

n is a positive integer. Then Ay €50 (Xaj) for each j(1 < j < n) if and only if
AeSO0(X)

Proof:-
Suppose A, € SO (Xaj) Vil<j<n)
Since A # ¢ this implies Ay, # @ Vil<j<n)
As Ag €S0 (Xy) So Int(Ay)# ¢ (v Ay #0)
Thus [T, Int(Aq;) X ]"[amj X, # @

Now,  CU{Int(A)} = [T/, Cl{mt (Aq, )} X Mare, X

= ]T'l=1 Cl(Aaj) X Haiaj Xa .'.Aaj ESO(Xaj)
= Cl{int(A)} = ClL(A)
= AeSO(X)
Conversely,

Let AeSO0(X)
Then, Int(A) # ¢ vAFE @
As Int(4) < [I/- Int(Aaj) X Haiaj X,
So Ty Int(Ag) X [ase, Xa # @

Since, A€ SO(X) sobyawell known theorem,

[T, Cl {Int (Aaj)} X [are, Xe = CU{INt(A)} = CI(A)
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= H]r'lzl Cl(Aaj) X Haiaj Xa

= (l (Int (Aaj)) = cl(4,,) Vi(l<j<n)
= Aa}_ €eSO0(X,) Vi(l<j<n)

Semi-Continuous Mapping

Theorem 3:-

If f: X — Y is a semi-continuous mapping and X, is an open set

in X, then restriction f| X.: X, — Y is semi-continuous.
Proof:-
Since f is a semi-continuous mapping,
= ForanyopensetVinY, f~(V) is semi-open in X.
Since X,isopen.So f~1(V)NX, issemiopeninX.
Therefore, (f|X.)"1(V)=f"1(V)nX. issemi-openin X..

= f|X° [s semi-continuous.

Remark:-

In above theorem if X, € SO(X) then f | X, is not always semi-
continuous.
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Example:-

Let X =Y =[0,1] with usual topology and X, = [%, 1]

Let, f:X — Y be mapping as follows,

1
1 ifosx<;
fx) =

Then fis semi-continuous.
1 . . _ 1 1
However, (5’ 1] isopeninYand f 1 ((E’ 1]) Nnx, = {5} ¢ S0(X.)

Therefore, f | X, isnotsemi-continuous.

Theorem 4:-

Let f:X — Y be amappingand {4,:aef} semi-open cover for
X i.e.A, €50(X) foreachaef and Ugyep A, = X. if the restriction

f | A,:A, — Y issemi-continuous for each aef3, then fissemi-continuous.
Proof:-

Suppose V is an arbitrary open set in Y, then for each a € § we have

(FlA)7 W) = f71 (V) N Ag € SO(AL)
Because f | A, is semi-continuous. Hence by a well known theorem,
W)Y nA, e SOX) for each aef

As union of any number of semi-open sets is semi-open so,
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Jrtwnad= rimesow
aef

= f is semi-continuous.

Theorem 5:-

Let {X,: aef} & {Y,: aef} be any two families of topological
spaces with the same index set (3. For each «ef, Let f,: X, — Y, bea
mapping. Then a mapping f:[[X, — [1Y, defined by,

f(x,) = (fy(x,) Issemi-continuous if and only if f, is semi-continuous for
each aef.

Proof:-
Let f, is semi-continuous for each aef
Suppose V is the basic open set of the topology of []Y,.

Then there are a;ef (1 <j <n) and open sets Vo, In Yy, s.t.
n

[T I

j=1 aFa;

Since faj is semi-continuous. So faf (Vaj) is semi open Xaj for each

j(A<j<n)
: _1 _
If there exit o; s.t. fy, (Vaj) =¢
Then, f71(V) =TTj= fi* (Vey ) X Tawa, Xa = @
Hence f~1(V) issemi-openin [[X,.

It f! (Va],) #+ ¢ foreachj(1<j <n)
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Then, f'(V) =Tt fig' (Ve ) X Tlase X # @
Hence by a well known theorem, f~1(V) is semiopenin[][X,.

Now, for any open set w in Y there exit a family {Y;: AeA} of basic open sets
suchthat w = UV

Hence by a well known theorem,
W) = Ugep fHV) is semi-openin []X,.

= F is semi-continuous.
PREPAIRED BY
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Conversely,

Let f is semi-continuous.

Let for each fixed aep,

Let p,:[1Y, — Y, be the projection.
Suppose V, is the arbitrary open setin Y,,
Then, p;1(V,) =V, X[l,+.Y, isopenin []Y,.

Since f is semi-continuous then,

sl = v x| X

r¥a

[s semi-continuousin [] X,

If £71(V,) = ¢ thenitis obvious that f, issemi-continuous.
If f ') # o

Then, fi ' Vo) X Iz X # @

Hence by a well known theorem,
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fo1(V,) is semiopenin X,

= f, issemi-continuous V aef

Theorem 6:-

Let {X,: aeB} be any family of topological spaces. If f: X — [[ X,
is semi-continuous mapping, then p,.f:X — X, is semi-continuous, where
Dy is projection of [[X, onto X,.

Proof:-
Let for a fixed aep,
Suppose U, is an arbitrary open setin X, then,
p;1(U,)isopenin []X,.
Since f is semi-continuous, we have
fH pa (U] = Paof) ™' (Uy) € SO(X)

= DPaof 1S semi-continuous.

Theorem 7:-

If f:X — Y isanopenand semi-continuous mapping, then
f~1(B) € SO(X) for every BeSO(Y).

Proof:-
For an arbitrary BeSO(Y),
There exit an open set V in Y such that,

V S BcClV)
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Since f is open and continuous,
> fRW) B s fICUW) S Cif (M)
Since f is semi-continuous and V is an open setin Y,
= (V) eS0X)

Hence f~!(B) issemi-openinX.

» The composition mapping of two semi-continuous mappings is not
always semi-continuous.

Corollary:-

Let X, Y and Z are three topological spaces. If f:X — Y isan open
and semi-continuous mapping and g: ¥ — Z is semi-continuous mapping,
then g.f:X — Z is semi-continuous.

Proof:-
Since g:Y — Z is semi-continuous.
Then for any opensetVinZ g~ 1(V) e SO(Y)

And since f is open and semi-continuous, then by theorem 7.
fHg ' (M}esoX)

= (fag V) €SO(X)
PREPAIRED BY:-
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Semi-Topological Properties

This course was established in 1973, by “S.Gene Crosseley and S.K Hildebrand” and
published by “Texas Journal Math (1973).

Introduction:-

In [1] Norman Levine defined a semi-open set in a topological
space as a set A such that there exit an open set O so that 0 € A € CI(0). He
also defined a function to be semi-continuous if and only if the inverse of open
sets is semi-open. Also in [1], among others, the following two results were
obtained.

Theorem 0.1:-
Let (X, 1) be topological space then,

1. 7 € SO(X), where SO(X) denotes the class of semi-open sets in (X, T)
2. For AeSO(X,t)and A € B € A, Then B € SO(X, 1).

Theorem 0.2:-

Let f: X — Y be a continuous and open mapping, where X and Y
are topological spaces. Let A € SO(X), Then f(A) € SO(Y)

In [2] the author defined a set to be semi-closed if and only if its
compliment is semi-open. Semi-closure and semi-interior were defined in a
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manner analogous to closure and interior. Also in [2], among others, the
following four results were established.

Theorem 0.3:-

In a topological space all non-void semi-open sets must contain
semi-open set.

Proof:-

Let (X, T) be a topological space and A € SO(X) be a semi-open set such
that A # .

Then there exit an open set O in X such that,
0c AcCl(0)
Then O must non empty i.e.0 # ¢

Becauseif 0 = ¢

= Cl(0)=¢ TO=9
And in thiscase A € 0 A+ @
= 0 # @
Hence A # @ is semi-open set must contain a non-empty open set.

Semi-Interior of a Set:-

Let (X, T) be a topological space and A # ¢ is a subset
of X. Then semi-interior of A is denoted by sint(A) or A_and is the union of all
semi-open sets contained in A.
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Note:-

(1) sInt(A)is a semi — open set.
(2) sInt(A) is the largest semi—open set contained in A.

Semi-Interior Point:-

Let (X, T) be topological space and A € X. A point xe€A is
called semi-interior point of A if there exit a semi-open set uin X s.t.
xeuCc A

Note:-

(1) Collection of all semi-interior points of A is called sInt(A)
(2) If AeSO(X),then every point of A is semi-interior point of A.
Because Vxed, xeA CA.

Semi-Closure of a Set:-

Let (X, T) be a topological space and A is a non-void
subset of X. Then semi-closure of A is denoted by sCl(A) OR A and is the

intersection of all semi-closed sets containing A.

Note:-

(1) sCI(A) Is a semi-closed set.
(2) sCI(A) Is the smallest semi-closed set containing A.
(3) Int(A) € sint(A) € A € sCI(A) < Cl(A)
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Semi-Limit Point:-

Let (X, T) be a topological space and A is a subset of X, a
point xeX is called semi-limit point of A if for each semi-open set u containing
x,wehave unAd+¢, un(4-{x}) + o.

Note:-

A is semi-closed if A contains all semi-limit points.

Theorems 0.4:-

1. Ais semi-openifandonlyif A = A
2. Ais semi-closed ifand onlyif 4 = A4

Proof:-
cLet A be a semi-open set in X, PREPAIRED BY:-
Then ACA, But A, S A (always) | MUHAMMAD TAHIR
> A=A, M.S Mathematics
C 1 COMSATS Institute of
onversely, Information technology
Let A=A, (semi— open) Islamabad.

Since A,s semi-open, therefore A is semi-open.
@ Let A be a semi-closed set in X,
Then ACA ButAc A (always)

> A=A

Conversely,
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Let A=A

Since 4 is semi-closed, therefore A is semi-closed.

Theorem 0.5:-
If Ais open and S is semi-open, then A N S is semi-open.
Proof:-
Let S be semi-open in X, Then there exit an open set OeX such that,
0cSccClo)
2 ONASSNACCI(O)NACSCI(ONA)
SinceONAisopeninXand ONACSSNACCI(ONA)

= SNAis semi-open in X.

Theorem 0.6:-

Let (X, t) be a topological space and A € X, then prove that

X-(A-4)]=X

Proof:-

PREPAIRED BY

L.H.S

A — A Contains no semi-interior points. -

> sint(A—A4) = ¢ M.S. MATHEMATICS

> X—sint(A—A) =X CIIT ISLAMABAD
= sCI[X — (A - A) =X 03448563284
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> [X-(A-Al=X

Irresolute Function:-

Let (X, 7,) and (Y, 7, ) be topological spaces. A function
f:X — Y is called irresolute if f~1(B) is semi-open in X for every semi-open
setBinY.

Theorem 1.1:-
Let f: (X,7,) — (Y, Ty) be continuous and open, then
fH(A) =714
Proof:-
f:X — Y is continuous and open.
Let A be any subset of Y.

= Alsaclosed set of Y.
= f~1(A)Isa closed subset of X.

As AcA
= f71(4) c f1(4)  f is continuous
> [ c[f1(4)] =r1(4) v f71(A) is closed
D [f1(A) S fTI(A) --mmemmeemmeem e (1]
As f is open, Let (X, 7, )and (Y, 1)) be

two topological spaces, A
function f: X — Y is
continuous iff for every

Prepared BY:- Wubammad Takin Wattoo (03 A — N C F(A)
M.S. MATH From CIIT Islamabs: ASX f (A) = f (A)

= Image of every open set is open under f.
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= f~!isa continuous function.

Then by a well known theorem for every ACY,

FH(A) € FI(A) ~oromemmermeemmeoeeaes 12

By relation € and @

f71(4) = f1(4)

Theorem 1.2:-

Let f:(X,7,) — (Y, Ty) be continuous and open then f is

irresolute.
Proof:-
Let Ae SO(Y)
Then by definition there exit O € 7,, such that,
0 C AcCl0)
> f710) cf 1) cfH(4) = [F~1(0)] = fis continuous & open
As O is open,

= f~1(0) is open because f is continuous.
= f71(0) < 1A < (F1(0)

= f1(A) e SO(X)

= f isirresolute function.

Example 1.1:-

A continuous irresolute function need not be open.
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Proof:-
Let X ={a,b,c},

T = {p,{a},{a,b},{a,c}, X} and t* = {g,{a},{a, b}, X}
Let f: (X,7,) — (Y, Ty) be defined by f(x) =x V xeX
Then this function is continuous and irresolute but not an open function.
See,

fTie)=per = fl(p)isopen

f*{ah) ={a} open in (X, 1)

f~1({a,b}) ={a,b} openin (X, 1)

A1) =x open
As inverse image of every open set is open,

= f is continuous.
Now,  P(X) = {p,{a},{b} {c}{a b} {a c} {c b} {ab,c}}
Closed sets of (X, 1) are  {X, {b, c},{c},{b}, p}
Now, Cllp) =¢p, Cl(X)=X, CHa}=X

Cl{a,b} =X, and Cl{a,c}=X

= SOX, 1)={¢,{a},{a, b}, {a,c}, X}
Now, closed sets of (X, t*) are {¢, X, {b, c},{c}]

= SO(X,1y) = {¢,{a},{a, b}, {a,c}, X}
And, f~1(¢) =@ eSO0(X,1)

f({a) ={a}eSO(X,7)
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f~1({a,b}) = {a,b} e SO(X, 1)
f1{a,c}) ={a,c}eSO(X, 1)
LX) =XeS0X)
As inverse image of every semi-open set is semi open,
= f isirresolute.
Now as {a,c}isopenin (X, 1)

=2 f({a,c}) ={ac} € S0X,77)
= Image of every open set is not open.
= f is not open.

Theorem 1.3:-

Let C(X,Y), SC(X, Y) and I(X, Y) denote respectively, the classes
of continuous, semi continuous and irresolute functions from X to Y, where X
and Y are topological spaces. Then,

C(X,Y) € SCX,Y) and I(X,Y)<SC(X,Y)
Proof:-

@ Lt feCX,Y)

= f isirresolute function.
= Inverse image of every open set (say A) of Y is open in X.
= f~1(4)isopeninX.

As every open set is also semi-open,

= f~1(4) is semi-open in X.
= Inverse image of every open set of Y is semi-open in X.
= feSCX,Y)
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2 C(X,Y) S SC(X,Y)

O let gel(X,Y)

= g isirresolute function.
= Inverse image of every semi-open set (say B) of Y is semi-open in X.
= f~1(B) is semi-open in X.

As all open sets of Y € semi-open sets of Y

= Inverse image of every open set (say B) is semi-open in X.
= g is semi-continuous.

= geSCX,Y)

= I(X,Y) € SC(X,Y) (proved)

Theorem 1.4:-

A function f:(X,t,) — (¥, ;) isirresolute if and only if, for

every semi-closed subset Hof Y, f=!(H) is semi-closed in X.
Proof:-
Let f: X — Y be irresolute.
Let H € SC(Y), then Y — H is semiOopen in Y.
or, f'Y-H)=f"M - fT'H)=X—-f7(H) ~ f¥)=X

= X —f"1(H)issemiopeninX. - f isirresolute.
= f~1(H) is semi closed in X.

Conversely,
Let f~1(H) is semi-closed in X, for every semi-closed set Hin Y.

We have to prove that f isirresolute.

As BeSO(Y)
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(Y—-B)eSC(Y)

fY(Y = B) e S(X) v fTY(H)eSC(X) VY HeSC(Y)
fY) = f71(B) e SC(X)

X—f1(B) e SC(X)

f1(B) e SC(X)

f isirresolute. (proved).

44333383

Theorem 1.5:-

A function f:S — T, where S and T are topological spaces is
irresolute if and only if for every subset A of S, f(é) c f4a

Proof:-
Let f:S — T be irresolute function.

Let A€ S, Then @eSC(T)
= f1 [@] is semi-close in S. ~ f is irresolute.
Now, ACf-lf(A)cf! [@] s f(A) € f(A)

= ASSCUTIfA]=fTfA) + fTHf(A)is semi closed.

> fla) s flrif@] s r
> flA)sf@

Conversely,
PREPAIRED BY
Assume that f(é) C f(A)
- MUHAMMAD TAHIR
We have to prove that f is irresolute. M.S. MATHEMATICS

Let He SC(T)
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Then f [f‘l(H)] CffY(H)cHCH  H is semi closed

Now, fY(H) < fifIf*(M)] < f Y (H)=f"1(H)

= f~Y(H) € f~1(H) But f~l(H)<cfY(H) always.
= fTHH) = fTH(H)

= f~1(H) e SC(S)

= f isirresolute.

Theorem 1.6:-

Let (X,7,) and (Y, 1)) be topological spaces. A function
f:X — Y isirresolute if and only if for all BEY, f~(B) < f~1(B).

Proof:-
Assume that f is irresolute.
Let B be any subset of Y. Then B € SC(Y),
Hence, f~1(B) e SC(X)
But we know B cB
> f1(8) < f7(B)

> SC(f71(B) €sc(f1(B)) = F(B)
= f1(B) < f(B)

Conversely,

Let, f~Y(B) € f~1(B) for every subset B of Y.

We will prove that f isirresolute.
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For this we will show that the inverse image of semi-closed set is semi-closed.

Let BeSC(Y) then, B=B
By hypothesis,  (f7'(B)) € f}(B) = f~1(B)
And f7Y(B) € (f'(B)) < f1(B) € f'(B)

= fB) < (f'B®) (B
= f~1(B) = f~'(B)

2 f~1(B) e SC(X)

= f isirresolute.

Theorem 1.7:-

Let (X,t,) and (Y, Ty)and (Z,1,) be topological spaces. If
f:X —Yand g:Y — Z are both irresolute then g,f: X — Z is irresolute.

Proof:-
Let BeS0(Z)
= g !(B)issemiopeninY = gisirresolute.
Nowas g '(B)eSO(Y)and f isirresolute from X—Y

> (g7 (B)) € SO(X)
> (g7 (B)) = (guf) "' (B) € SO(X)

Nowas BeSO0(Z) and (gof) *(B) e SO(X)

= g.f isirresolute from X—Z.
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Pre-Semi-Open Function:-

Let X and Y be topological spaces, a function
f:X — Y is said to be pre-semi-open if and only if, for all A € SO(X),
f(A) e SO(Y).

Theorem 1.8:-

Let (X,7,) and (Y, t,) be topological spaces. If f;X — Y is

continuous and open, then f is irresolute and pre semi open.
Proof:-
Let f: X — Y be continuous and open mapping.
To prove that f isirresolute.
Consider a semi open set B in Y. Then there exit an open se u in Y such that,
u € B cCl(u)
> flw) ¢ fYB) ¢ fICl(w) = Cl(ft(w))  ~ fiscont & open
Since f is continuous, therefore f~!(u) is open in X and
f7fw € 7B cCl(f'w)

= f1(B) e SO(X)
= f isirresolute.

Now we prove that f is pre semi open.
Let Ae SO(X)
= There exit an open set O in X such that,

0 €A < Cl0)
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= f(0) € f(A) <€ f[Cl(0)] < ClIf(0)] ~ f is continuous.
= f(0) € f(4) < Clf(0)]

Since f is open mapping, therefore f(0) is openinY.

Hence, f(A) € SO(Y) thisimplies f is pre semi open.

Semi-Homeomorphism:-

Let (X,t,) and (Y, t,) be topological spaces. X and Y

are said to be semi-homeomorphism if and only if there exit a function
f:X — Y such that,

(1) f isbijective (2) f isirresolute

(3) f ispresemiopen.

Theorem 1.9:-

Let (X,t,) and (Y,7,) be topological spaces. If f:X — Y is

homeomorphism then f is semi homeomorphism.
Proof:-
Let f: X — Y be homeomorphism, then
1. f isbijective 2. f iscontinuous 3. f isopen.
Since f is continuous and open bijection,
Therefore it is irresolute and pre semi open bijection.

Hence f is semi-homeomorphism.
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Example 1.2:-
A semi-homeomorphism need not be homeomorphism.
Solution:-

(See example 1.1)

Remark 1.1:-

Image of T, space under semi homeomorphism may notbea T,
space.

Remark 1.2:-

The image of a T; space under a semi homeomorphism is not
necessarily a Ty -space.

Example 1.4:-
Let X=(RXR), where R denote the set of real numbers and let,

7, = {p, Together with all subsets of X whose compliments are subsets of a
finite number of lines parallel to the x-axis}

Note that, SO(X,71) = 14

And let. T, = {¢, Together with all subsets of X whose compliments are a
finite number of lines parallel to x-axis}

Note that, SO(X,7,) =S0(X,1¢)

Furthermore, defining f: (X,7;) — (X, 1) by f(p) = p for peX,
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We see that f is a semi-homeomorphism.

Observe that (X, 7;) is a T; space where (X,1,) is not.

Theorem 1.10:-

If f:X — Y isasemi homeomorphism,then f~1(B) =

ft (Q) for all B subset of Y.

Proof:-
f:X — Y is semi homeomorphism.

= fis 1) bidective. 2) irresolute. 3) pre semi open.
Let B be any subset of Y.
Then B e SC(Y),
Hence, f~1(B) € SC(X)
Asweknowthat B € B

> f1(B) € f(B)

> sCl(f(B)) < scl(f1(B)) = F~(B) + £71(B) € Sc(X)
RO (-] E— o

As f is semi homeomorphism,

= f is pre semi open and bijective.
= Image of every semi open set is semi open under f
= f~1isirresolute.

Then by theorem 1.5 forevery B e Y

fTHB) € fT1(B) oo (2
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From equation @) and @

f7(8)= f(B)

Corollary 1.1:-

If f: X — Y is semi homeomorphism, then f(B) = f(g) for all
B < X.

Proof:-
f:X — Y is semi homeomorphism.

= fis 1) bijective. 2) irresolute. 3 )pre semiopen

Let B € Xthen f(B)eSC(Y)

= f~1[f(B)] is semi closed in X. *+ f is irresolute.

Now, B < f~'(f(B)) € f'(f(B) v f(B) € f(B)

= B <€ sCl (f_l(f(B))) = f‘1@ f‘lwis semi closed.
> f(B) £ (f®)| < f®
S f(B) € f(B) o

Since f is bijective and irresolute,
= f~1is exit and also irresolute.

Then by theorem 1.6, for BeX

f(B) € f(B) wrrrrrrommmmmm e 2

From relation @) and @
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f(B) = f(B)

Corollary 1.2:-
If f:X — Y issemi homeomorphism, then f(B,) = (f(B))O for
all B € X.
PREPAIRED BY
Proof:-
MUHAMMAD TAHIR
B, = (X - (X - B)) M.S. MATHEMATICS
Thus, f(B,) = f [X X - B)]
=|v-rx-5)|
= :Y —f(X - B)] v fis irresolute
=y -1 - £®]
= f(Bo) = [f(B)lo
Corollary 1.3:-

If f:X — Y is semi homeomorphism, then f~1(B,) = (f_l(B))o
forallBCY.

Proof:-
As f:X — Y is semi homeomorphism,

= f~1:Y — Xisirresolute (bijective and pre semi open)
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LetBSY, B,=[V—(Y—5B)]

Thus, f~1(B,) = f~[Y — (Y = B)]

=[x - f(x=8)]
=[x - [f‘l(Y — B)]- v flis irresolute
_ :X _ [X _ f‘l(B)]:

= f71(Bo) = [ (B)], (proved)

Theorem 1.11:-
(A)o = ¢ ifand only if A is nowhere dense set.
Proof:-
Let A is nowhere dense set.
As we know that, A° €A, €A C A C Z,

As A is nowhere dense set,

= (Z)° = Q. This implies, A contains no open set.
= A Contains no open set. vACA
= A Contains no semi open set.
= (é)o = .
Conversely,
Let, (4)0 =

We know by a well known theorem, (theorem 0.7)
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(4)° < (4),

Since (A),= ¢ thisimplies (A)°CS ¢

> (4)° = ¢
= A is nowhere dense set.

Theorem 1.12:-

If f:X — Y isasemi homeomorphism and A € X is nowhere
dense in X. Then f(A) is nowhere dense in Y.

Proof:-

As A is nowhere dense in X. Then by theorem 1.11
(4)0 =9
We have to show (f(A)) o= @

As f:X — Y is semi homeomorphism,

> f(4) = f(4)

= [@] o= [f(4)]o = F(4), » corollary 1.2
= f(e)

> [fW)]o= o

= f(A) is nowhere dense set.
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Semi-Topological Properties:-

A property which is preserved under semi
homeomorphism is said to be a semi-topological property.
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SEMI WEAKLY CONTINUOUS MAPPINGS

This course was established in 1985 by “T. Noiri and B. Ahmad” and was published by
“Kyungpook Math Journal vol.25, No.2 page 123-126.

Weakly Continuous Function:-

Let (X, 7,) and (Y, 7)) be topological spaces. A
function f:X — Y is said to be weakly continuous at X if for each x € X and
for each open set V containing f(x), there exitu € SO(X, t) such that
fw) < cluwy).

Almost Continuous Function:-

Let (X,7,) and (Y, t,) be topological spaces. A
function f: X — Y is said to be almost continuous if for each xeX and for each

open set V containing f(x), there exit a semi-open set u in X containing
x such that f(u) € Int[CL(V)]

Note:-
Almost continuous function is also weakly continuous,
w Int[CL(V)] € CL(V)

But converse is not true in general.
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Semi-Weakly continuous Function:-

Let (X,7,)and (Y,1)) are topological
spaces, a function f: X — Y is said to be semi-weakly continuous function

(s.w.c) at X if for each xeX and for each open set V containing f(x) there exit
u € SO(X) such that, f(u) € sCI(V)

Note:-

¢ Semi-continuous — Semi-weakly continuous — Weakly-continuous.
¢ Almost continuous — Weakly-continuous.

Example:-
LetX=Y =R,

Let 7 be the usual topology on X and ¢ be the countable topology on Y. Then
the identity mapping f: X — Y is semi-weakly continuous but not semi-
continuous.

Theorem 1:-

Let (X,7,) and (Y, 7,) be topological spaces. A mapping
f:X — Y is semi weakly continuous if and only if for every open setVinY,

fLWV) S sint[f~1(sCL(V))]
Proof:-

Let xeX and V be an open set containing f(x), satisfying the relation,
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f7YV) € sint[f1sCl(V)]
We will prove that f is semi weakly continuous.
Put  u=sint[f1(sCl(v))],
Then, xeueSOX, x)

> u=sint[f(sCl(V))] € F(sCL(V))
2 f(w) € ffsCL(V)] € sClL(V)

= fw) € sCl(V)

=  f is semi weakly continuous.

Conversely,
Let f: X — Y be semi weakly continuous.
Let xeX andV be an open set containing f(x).
= xef~ (V)

By hypothesis (f is semi weakly continuous), there exit a semi open set u in
X containing x such that f(u) < scl(V)

> xeu S f1[sCl(V)]
= u = sint(u) U is open

c sint[f~(sCL(V))]

= x e sint[f~1(sCL(V))]
> f71V) < sint|[f~(sCl(V))]

Theorem 2:-

Let (X,7,) and (Y, t,) are topological spaces. A function

f:X — Y be afunction and g: X — X XY be the graph mapping of f given
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by, g(x) = (x,f(x)) for every xeX .If g is semi weakly continuous, then f is
semi weakly continuous.

Proof:-
Let xeX and V be an open set containing f(x).
= XXV containing (x, f(x)) = g(x).
Since g is semi weakly continuous, therefore there exit ueSO (X, x) s.t.
gu) S sCl(X X V) =sCl(X) XsClL(V)
=X X sCL(V)
Or (u,f(u)) € X X sCLV) 2w g(x) = (x, f(x)) so gw) = (u, f(w))

= f(u) € sCl(V) g is graph of f.
= f is semi weakly continuous.

Theorem 3:-

Let (X,t,) and (Y,t,) be topological spaces and if f:(X,t,) —
(Y,7,) is semi weakly.continuous mapping and Y is housdorff space. Theen
the graph G(f) is a.semi closed set of XXY.

Proof:-
Let (x,y) € G(f)
We will show that (X, y) is not semi limit point of G(f).
Now, since (x,y) & G(f) so y+ f(x)
Since Y is a T,-space therefore there exit open sets W and V in Y such that,

feW; yeV and WnV=¢g
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Since f is semi weakly continuous, therefore there exita u € SO(X, x)
Such that fuw) € scl(w)

Since rnw =g

> VN sCUW) = ¢ PREPAIRED BY
SVnfw)=¢ = f(u) < sCl(W) MUHAMMAD TAHIR
= UXV)NGe(f)=¢ M.S. MATHEMATICS

Where U XV eSO(X XY, (x,y))

= (X,y) is not semi limit point of G(f).
= G (f) contains all of its semi limit points.
= G(f) is semi closed set of XXY.

Semi-Connected Space (s-Connected Space):-

A topological space (X, ,.) is said
to be semi connected space if it cannot be expressed as union of two non-
empty disjoint semi open sets.

Note:-

» Every semi connected space is connected.
» A connected space may not be semi connected.

Example:-

X ={a,b,c}

v = {p,X, {a}, (b}, (@, b})

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VWV Rana%at hs. con

[t is connected because we cannot write it as union of two non empty disjoint
open sets.

Now, SO(X) = {e, X, {a},{b},{a b}, {a c}{b,c}}
And, {a}u{b,c}=X & {a}n{b,c}= ¢

= This is semi disconnected.
= This is not semi connected space.

Theorem 4:-

Let (X,7,) is ans-connected space and f: (X,7,) — (¥, 7,)isa

semi weakly continuous surjection, then Y is connected.
Proof:-
Suppose that Y is disconnected.

= There exit open sets U and V in Y such that,
UuvV=yY & UnV=g
> fHY)=fUuY)

D> X =Ff W)U fLHV) - (1]
And UNV =9

> [ UNY) = (p)

D fTHU N fTUY) = @ wormmerermmeeemeeene 2]

Since f isontoand U#¢ &V #¢

>fW#Ee & %o
Now, since f is semi weakly continuous and U, V are open in Y, therefore,

f~YWU) € sint[f~LsCl(w)]
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And (W) € sint[f~1sCl(v)]

2 f~YU) € sint{f1(UV)} and f~1(V) Csint{f~1(V)}
> fHU) =sint[f'()] and fHV) = sint{f 1 (V)}
= f~1(U) and f~1(V) are semi open sets.

So by relation @) and @ we arte get that X is semi disconnected.
A contradiction.

Hence, the proof.
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s-Continuous, s-Open, s-Closed Functions

This course was established in 2001 by “M. Khan (Department of Mathematic, Govt.
College Multan-Pakistan) and B. Ahmed (B.Z.U. Multan Pakistan)”

s-Continuous Function:-

A function f:X — Y issaid to be s-continuous
function (also called strongly semi-continuous) if the inverse image of every
semi open set is open.

Note:-

[t is known that that an s-continuous function is irresolute, semi
continuous and continuous.

Regular Space(*):-

A topological space (X, 1) is said to be regular if for every
xeX and for any closed subset A of X such that x € A

There exit two open sets U and V such that, xeu, ACSV andUNV =¢

p-Regular Space:-

A topological space (X, t) is said to be p-regular space if for
each semi closed set F and xeX — F, there exit disjoint open sets U and V such
that xeU and FCV
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Semi-Regular Space:-

A space (X, 7) is said to be semi-regular if for each semi
closed set F and x € X — F there exit disjoint semi open sets U and V such that
xeU and FCV

¢ Clearly p-regular space is semi-regular as well as regular but the
converse is not true in general.

Example:-

Let X ={a,b,c}and 1 = {¢p,{a},{b},{a, b}, X}. Then X is semi
regular but not p-regular.

Solution:-

T = {p,{a},{b},{a, b}, X}

Closed sets of X={X, {b, c},{a, c},{c}, ¢}

p=9, X=X, {ay={ac}, {b}={bc},

{a,b} =X

= S0(X) ={¢p,{a},{b},{a, b}, {a,c},{b,c}, X}
= SC(X) = {X,{b, c},{a, c},{c},{b},{a}, ¢}

Then for each semi closed set (say F) of X and xeX — F, there exit two disjoint
semi open sets (say U and V) such that xeU and F €V

= (X, 1) is semi regular.

Now for {b,c} e SC(X) and a € X — {b,c} we cannot find two open sets U and
Vin X suchthat aeU and {b,c} SV

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VWV Rana}\fftt hs. con

= (X,7) is not semi regular.

Theorem 1:-

The image of a regular space under a clopen and s-continuous
surjection is p-regular space.

Proof:-
Let FeSC(Y)and yeY — F,

Let x € f1(y)

Since f is s-continuous therefore by a well known theorem, f~1(F) is closed
inXand xeX — f~1(F).

Since X is regular therefore there exit open sets U and V in X such that.
xeU and fY(f)SV andUnV =g

Since f is closed, therefore by a well known theorem there exit an open set W
of Ysuchthat FEW and f(W)cV

Therefore, UN f~1(W) = ¢ ~UNV=¢ & ftW)cv
And hence, f(u)nV = ¢,
Since f isopen,so f(u)isopeninY. And yef(u) =~ f(x) =y & f(x)ef(u)
i.e. there exit two open sets f(u) and W in Y such that,
FCW & yef(u)

= Y is p-regular.

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VWV Rana}\?t hs. con

Theorem 2:-

Let f: X — Y be s-continuous and semi closed surjection with
compact point inverses and X is a regular space, then Y is semi regular.

Proof:-
Let CeSC(Y) and yeY —-C

Since f is s-continuous therefore by a well known theorem f~1(C) is closed
in X.

Moreover, the compact sets f~1(y) and f~1(C) are disjointin a regular
space.

As X is regular space, therefore there exit two disjoint open sets F and G in X
suchthat, f'(y) €F and f1(C)cG

Since, f is semi closed then by a well known theorem there exit two semi
open sets V. and W containing y and C respectively such that,

fFIWSF and fY'(W)ca
Since FNG = ¢,

> NI W) =9
>V nW=g¢

i.e. for Ce SC(Y) and yeY — C, there exit two semi open sets Vand WinY
suchthat yeV and C cW andV N W = ¢

= Y is a semi regular space.

Corollary:-

Let f: X — Y be s-continuous and closed surjection with compact
point inverses. Then Y is p-regular if x is regular.
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Proof:-
Let C e SC(Y) and yeY—C

Since f is semi continuous, therefore by a well known theorem f~1(C) is
closed in X. Moreover, the compact sets f~!(y) and f~1(C) are disjointin a
regular space.

As X is regular space, therefore there exit two disjoint open sets F and G in X
suchthat, f'(y)SF & f1(C)caG

Since f is closed surjection, therefore by a well known theorem, there exit
two open sets Vand W in Y containing y and C respectively such that,

fFlWycrFr & fWwW)ca
Since, FNG=¢ thisimplies f'W)nf1(W)=¢

And hence, VNW =¢ i.e. for CeSC(Y)&yeY — C, there exit two open
setsVand Wsuchthat yeV and C €W & VnW=g¢

= Y is a p-regular space.

Open Function (*):-

A function f is said to be open function if image of each
open set is open.

Semi-Open Function (*):-

A function f:X — Y is said to be semi-open function
if image of every open set of X is semi-openinY.
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Pre Semi-Open Function (*):-

Let X and Y be topological spaces, a function
f:X — Y issaid to be pre-semi-open if and only if for all AeSoX),
f(A)eSO(Y).

s-Open Function:-

A function f:X — Y issaid to be s-open if the image of

every semi-open set is open.

¢ It is known that every s-open function is open, semi-open and pre-semi-

open.

Theorem 3:-

For a function f:X — Y, the following are equivalent.

1) f is s-open

2) flsint(A)] € Intf(A) foreachA C X
3) sint[f1(B)] € f 'Int(B) foreachB<CY
4) fHcuB)}<c scif 1 (B) foreachBCY
5) f~[Bd(B)]) € sBd[f~'(B)] foreachBCY

Proof:-
(1D)=(2) Obviously f[sint(4)] € f(A)
Now sInt(A) is a semi open setin X.

= f[sInt(A)] isopeninY v f is s-open.
= f[sInt(A)] is open subset of f(A) inY, But Int(A4) is the largest open
set contained in f(A)
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= f[sint(A)] € Int f(A)
(2=@) ForanyBc Y, put f"1(B)=4 € X
Thenby 2), f[sintf~*(B)] € Intff~1(B) < Int(B)

=2 f[sintf~1(B)] € Int(B)
= sintf~1(B) € f~[Int(B)]

(3) =) By 3 sintf~'(B) € f~![Int(B)]

2 X — fInt(B)] € X —sintf~1(B) = sCI[X — f~1(B)

= 1Y) = f Int(B)] € sCI[f ' (Y) - f~1(B)] X =f7I(Y)
= f1Y — Int(B)] € sClf ~'[Y — B]

= f~ICI[Y — B] € sCIf~1[Y — B]

= f1CI(C) € sClf~1(0), whereY —B=CeY

(@)=(G)ForBcY,

Bd(B) = CL(B) N CI(Y — B) is closed setin Y.

Now, f~'Bd(B)= f~'Cl(B)n f~1CI(Y — B)
csClf Y(B)nsClf Y (Y—-B) by (@
= sClf Y (B) n[sClf~1(Y) = sCIf 1 (B)]
= sCIf~1(B) n [sCL(X) — sCIf ~1(B)]

= f~'Bd(B) € sClf 1(B) nsCI[X — f~Y(B)] = sBd(B)
= f~1Bd(B) € sBdf~1(B)

(5)=(1) Let U be an arbitrary open set in X,
Put Y- f(U)=B
Now we show that B is closed in Y.

By5 Un f'Bd(B) € UnsBdf 1(B)
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= f[UN f1Bd(B)] € f[U nsBdf~1(B)]
Since f(U) N Bd(B) = f[U N f~'Bd(B)]
Therefore we have,
f(U) NBd(B) € f[UNSBAf ' (B)] -------mrmmeemmeennee (1)
B =Y —f(U) gives,
@)=Y -fWl=f"0)—ffU)
CX-U ~UCSf W)= fW) cu

= fI(B)ecX-U

2 sCIf Y(B) S sCl(X—U)=X—sInt(U)=X—U - U is semi open.
= sCIf'(B)cX—-U

D SCIf TU(B) N U = @ =---emmmmmmmmcemeeesome N e (2]

Now, UNsBdf~1(B) =U n[sClf1(B) nsCl(X — f~1(B))]
=UNnsClfY(B) nsCIl[X — f~Y(B)]
= ¢ N sCIX — f~1(B)] by @
= ¢

Using U N sBdf~Y(B) = ¢, @ becomes

f(U) N BA(B) € ¢
PREPAIRED BY
> f(U) N Bd(B) = ¢

= Bd(B) Y- f(U)=B MUHAMMAD TAHIR

= B contains all of its boundary points. M.S. MATHEMATICS

= B is closed.
= f(U)isopenin.

This proves that f is s-open function.
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Theorem 4:-
For any function f:X — Y and g:Y — Z, we have,

(1) gof iss-openif f iss-openand g isopen.

(2) gof iss-openif f ispresemiopenand g iss-open.
(3) gof isopenif f issemiopenand g iss-open.

(4) gof is pre semiopenif f iss-openand g is semiopen.

Proof:-

Proves of these statements are obvious by definition.

s-Closed Function:-

A function f:X — Y is said to be s-closed if the image o
every semi-closed set is closed.

Theorem 5:-

A function f:X — Y iss-closed if and only if CIf (A) € f[sCL(A)],
foreach A C X.

Proof:-

Let f is s-closed.
Obviously, f(A4) € f[sCL(A)]
Now, sCI(A) is semi closed in X.

= f[sCI(A)] isclosedinY. = fiss — closed
= f[scl(A)] is closed superset of A.

But CIlf(A) isthe smallest closed set containing f(A4)
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= CIf(A) € f[sCl(A)]
Conversely,
Let Ae SC(X)

We show that f(A) is closed in Y.

By hypothesis, Clf(A) € f[sClL(A)] = f(A) " AeSC(X)
= Clf (A) € f(A) ----mmmmmmmmmmmmmmmmmss oo (1]
But, f(A) € CIf(A) (always) -----------===-mn=smmm- (2]

By relation @ and @ f(A) = CIf(A)

= f(A) is closed.
= f iss-closed. (The proof)

Theorem 6:-

A surjection function f: X — Y is s-closed if and only if for each
subset B in Y and each semi closed set U in X containing f~!(B), there exit an
open set V in Y containing B such that, f~1(V) € U.

Proof:-
Let U be an arbitrary open set in X containing f~*(B),
Where BCY.
Clearly, Y —f(X —-U) = V (say)isopenin.
Since f~1(B) € U and f is onto, then simple calculations gives, B V.,

Moreover, we have

fffex-f'fx-mlcu

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VW Ranaé\ﬁat hs. comr

= v cu
Conversely,
Let F be an arbitrary semi closed setin Xand yeY — f(F)
Then, f71(Y) € f7[Y — f(F)]

> O EX—ff(FHSX-F
2> fly)€X-F

Since X — F is semi open, therefore there exit an open set I}, containingy
such that, f~1(V,) € X —F.

> yeV, Y —f(F)

> Y —f(F) = U{Vy:ye Y — f(F)} isopeninY.
= f(F) isclosedin.

= f iss-closed. (This completes the proof).

Remark 1:-

If f:X — Y iss-continuous and closed (or irresolute and s-closed)
surjection, then using theorem 2.2(iii) [2], one can easily see that the class
SC(X) and C(X) (closed sets of X) coincide.

Remark 2:-

In general, an s-open function need not be s-closed.

Example:-

Let X ={a,b,c}, 1, ={p, {a},{b},{a b}, X}
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And Y ={a,b,c,d} and t, ={p,{a},{b}{a b} {a c},{b c}{ab,c},Y}

Let f:X — Y be an identity function. Then f is s-open but not s-closed.

Remark 3:-

However, for bijection, it is easily seen that the notations of s-open
and s-closed coincides. Moreover, f iss-open if and only if f~! iss-
continuous.

Proof:-
Let f:X — Y iss-open.
= Image of every semi open set of X is openin Y.
As image of every semi-open set is open under f.

= By a well known theorem f~! is s-continuous. (Since f is s-continuous
if inverse image of every semi-open set is open).

Conversely,
Let f~! iss-continuous.

= Image of every semi-open set of X is open in Y under f.
= f iss-open.

s-Closed Space:-

A space X is said to be s-closed if for every semi-open cover of
X, there exit a finite subfamily such that the union of their semi-closures cover
X.
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Compact Space (*):-

A topological space (X, ) is said to be compact if every
open cover for X has a finite sub cover.

Semi-Compact Space:-

A topological space (X, 1) is said to be semi-compact, if
for every semi open cover of X, there exit a finite sub family such that there
union cover X.

Almost Compact Space:-

A topological space (X, 1) is said to be almost compact
if for every open cover of X, there exit a finite sub family such that union of
their closures cover X.

Note:-
Every compact space is almost compact, as well as semi-compact.

¢ Moreover, every semi-compact space is s-closed.

Theorem 7:-

The inverse image of an almost compact space under s-open
bijection is s-closed.

Proof:-

Let {V,:a € I} be semi open cover for X.
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= Uael Va =X
As V, are semi-openinXand f:X — Y iss-open.

= f(V,): ael are openinY.

= Uael f(Va) = f(X)
= Uae[ f(Va) =Y
= f(V,) is an open cover forY.

As Y is almost compact, therefore there exit finite sub family of U, f(V,)
such that the union of their closures coverY.

= UL, ClIf (V)] =Y

= Y = UL, CLIf (V)]

= fHY) = fHUL, Clf (V)]

= X = fTHUL, CIf (V)] € F71 UL, f{sCL))]
= X € f1f UL, sCL(V,) € UL, sCL(V,)

> X € UL, sCL(V,)

As Uy (V,) is semi-open cover for X and we have find a finite sub family such
that union of their semi closures cover X.

= X is s-closed.
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s-Regular Space:-

A topological space (X, 1) is said to be s-regular if for each
closed set F and X € X — F, there exit semi-open sets U and V in X such that
xeU FCV and unv = g.

% Every regular space is s-regular.
% Every semi-regular space is s-regular.

Almost Regular Space:-

A topological space (X, 1) is said to be almost regular
space if for each regular closed set F and x € X — F, there exit open sets U and
Vsuchthat, xelU, FSV and UNV =g.

Fis regular closed in (X, 1) if F = Cl[Int(F)]

Fisregular openin (X, 1) if F = Int[CI(F)]

¢ Every regular closed set is closed and semi-open.

¢ A set which is semi-closed as well as semi open is called semi-regular
set.

Semi Compact/s-Compact Space:-

A topological space (X, 1) is called s-compact
if for every cover {U,:a € V} of X by sets U, € SO(X), there exit a finite
subset V_ of V suchthat X = U,y U,
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Theorem:-

Let (X,7) be atopological space, prove that an s-compact set A and
disjoint regular closed set B in an s-regular space can be separated by semi-
open sets.

Proof:-
Let ae A
Since Xis s-regular and B is a regular closed set such that a € X — B,
Therefore there exit semi-open sets G, and H, s.t.
aeG,; B<H, and G,NH,=¢
Clearly, {G,:a € A} isa cover of A by semi-open sets of X.
Since A is s-compact, therefore there exit a finite sub collection (say)

Gayr Gay Gayy ey Go SuL.

n
Ac Uaai = G eSO(X)
i=1

Now corresponding to these «;;i =1,2,3,..,n wehaveH,, s.t. B < H,,

foreach i =1,2,3,...,n

= B C Hy, N Hy, N ... H,
= B =sint(B) S sInt[Ha1 NH,, N...N Han] ~ B is semi — open

=H
= B C HeSO(X); H issemiopen.

Consequently, G and H are required disjoint semi-open sets.
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Completely Continuous Function:-

A function f:(X,7,) — (¥,7,) issaidtobe
completely continuous if f~1(V) e RO(X) for each opensetVinY.

Note:-

f:X,7,) — (Y,7,) is completely continuous if and only if
f~1(V) e RC(X) for each closed set BinY.

Theorem:-

Let f: X — Y be a completely continuous-and semi closed
surjection with s-compact point inverses, if X is s-regular then Y is s-regular.

Proof:-
Let X be s-regular.

Let Fbeaclosedsetand yeY — F,then f1(V) e RC(X) & f 1 (V) iss-
compact.

Clearly, f'(y) ¢ f~1(F)

Since X is s-regular, therefore there exit semi-open sets U, and Uy in X such
that f'(eU, & fU(F)SUr and U,NUp=¢

Since f is semi closed preserving, therefore there exit semi open sets
V,and Vg s.t. yeV, and F S Vg

And f'(v,)cU, and f'(Vp)SUr and U,NUp=¢
Gives VNV =9

This proves that Y is s-regular.
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Theorem:-

Let (X, t,) be atopological space then X is s-regular if and only if for
each open set V containing x € X, there exit a semi open set U containing x
suchthat xeU € sClI(U) € V.

Proof:-

Let (X, 1,) be s-regular space and V is an open set containing
xi.exeV.

> x ¢ X—V (closed set)
Since space is s-regular, therefore there exit U,L € SO(X) s.t.
xeU, X—-VCL

> X—-LEV and UNL=¢
> UcCX—-1L (semi — closed)
= sCl(U)cX-L X — L is semi closed.

Thus, xeUCSCI(U)SsX—LCV

> xelUCSsCl(U)cV (proved)
Conversely,

We prove that X is s-regular.
Let F be aclosed subsetof Xand x ¢ F = xeX—F,
Where X — F is open inX.
By hypothesis, there exit a semi-open set U in X containing x such that,
xelU SsCl(U) €X-F
> xelU and F € X —sCl(U) (semi— open set)

Let V =X — sCL(U),
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Then, xeU, FCSV and UNnV=¢

= Xis s-regular.

Theorem:-

Let f:(X,7,) — (¥,7)) be a continuous and semi closed preserving
surjection. If f is s-regular thenY is s-regular.

Proof:-
Let X be s-regular.
Let U be an open setin Y suchthat ye U
Let xef~'(y). Now f~1(U) isopeninXand x e f~1(U)
Since X is s-regular, therefore there exit Ve SO(X, x) s.t.
xeV csCl(V) € f~1(U)

= f(x)ef(V) € fsCL(V) < ff~1(U) €U
Where f(V) is semi-open and, sCI[f(U)] <€ f[sCI(V)]
Thus, yef(V) €sClf(V)] < f[sCl(V)] €U

= yef(V) €sClf(V)] €U

His proves that Y is s-regular.

Prove That:-
sBd[sBd{sBd(A)}] = sBd[sBd(A)]
Proof:-

sBd[sBd{sBd(A)}] = sCl[sBd{sBd(A)}] N sCI[X — sBd{sBd(A)}]
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= sBd[sBd(A)] N sCI[X — sBd{sBd(A)}] ------ (1]

Consider, X — sBd[sBd(A)] = X — [sCl{sBd(A)} N sCI{X — sBd(A)}]
= X — [sBd(A) N sCI{X — sBd(A)}]

v sBd(A) is semi — closed
= [X — sBd(A)] U [X — sCI{X — sBd(A)}]

Now, sCI[X — sBd{sBd(A)}] = sCI[{X — sBd(A)} v {X —sCl(X — sBd(A))}]
= sCI[X — sBd(A)] U sCI[X — sCL{X — sBd(A)}]
=DUsCI(X—-D)=X

Where, D = sCI[X — sBd(A)]

= SCI[X — sBA{sBd(A)}] = X --------mmmmemmmmmne- (2]

By equation € and @

sBd[sBd{sBd(A)}] = sBd[sBd(A)] N X

= sBd[sBd{sBd(A)}] = sBd[sBd(A)] (proved)

s-Closed Space:-

A topological space (X, t) is said to be s-closed if for every
cover {I,:a € V} of Xbysets I, semiopen in X for each a €V, there exit a
finite subset V_ of V s.t. X = Ugey sCU(V,)

S-Closed Space:-

A topological space (X, 1) is said to be S-closed if for each
covering {V,: a € V} of X by semi-open sets of X, there exit a finite subset V_
of Vs.t. X = Ugev Ccl(V,)
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Note:-

Every S-closed space is s-closed and every s-closed space is s-compact
and every s-compact space is compact.

s-Regular Space:-

(Already defined)

Theorem:-

A topological space (X, 1) is s-closed if and only if every proper
semi-regular subset of X is s-closed relative to X.

Proof:-

Let (X,7) be s-closed space. And G € F be a proper semi-regular
subset of X.

We prove that G is s-closed relative to X.
Let {V,: « € V} be a cover for G, where V,eSO0(X) VaeV

= G S UaeVVa
> X = UgvV, UX —G), where X — G € SO(X)

Since X is s-closed, therefore there exit a finite subset V_of V s.t.
X = Ugey sCU(Vp) U sCL(X — G)

> G S Ugey SCL(V,)

= G is s-closed relative to X.
Conversely,
Let every proper semi-regular subset of X be s-closed relative to X.
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We prove that X is s-closed.
Let {V,: a € V} be acover for X by sets semi-open in X.
Forsome B eV, sCl(V3)eSR(X)
Let G =sCl(V)eSR(X)
= X — G e sR(X)
By hypothesis, X — G is s-closed relative to X.
Since, X — G CU{V,:a eV}
Hypothesis = X — G = Ugey sCI(V,) for some finite setV_of V
= X = Ugey, SCL(V,) U sCL(Vg)
= Ugev ugsy SCL(V,)

This proves that X is s-closed space.

Exercise:-

Let A and B be subsets of a topological space (X, t) such that
A € B € X and B eSO(X). If Ais s-closed relative to X then prove that Ais
s-closed relative to B.

Proof:-
Let {V,: a € V} be a cover for A, where V, € SO(B) V aeV
= A C UaeVVa

As BeSO(X) = A S UyvV, s.t. V,eSOX) VaeV
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As A is s-closed relative to X, therefore there exit a finite subset V_of V such
that, A = Ugey sCL(V,)

= ANB = Ugey sCl(V,)NB
> A= UaevosClB(Va), where V, € SO(B)

= A is s-closed relative to B.
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Almost Open Mapping:-

A mapping f:(X,7,) — (¥,7,) is said to be almost

open if for every open set U of Y,

frHew)] < cllf )]

Note:-

*» Every open mapping is almost open mapping. The converse is not true
in general.

¢ Composition of two almost open mappings is not almost open mapping
in general.

Example:-
Let X=Y =7 ={a,b,c}
7, = {p,{a}{a, b} {a,c}, X}, 7, ={p{a}{a b}Y}
T, ={p.{c},Z}
f:X — Y be identity mapping.
g:Y — Z be defined by g(a) = b,g(b) =c,g(c) =c

Then f & g are almost open mappings but g,f is not almost open.

Almost Closed Mapping;:-

A mapping f:(X,7,) — (¥,7,) is said to be almost
closed if for every closed set V of Y,

Int[f (V)] € fHInt(V)]
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Theorem:-

Let f:(X,7,) — (¥,7)) be almost open mappings, prove that g.f is

almost open if g is continuous.
Proof:-
Let U be an open set of Z.
As g:Y — Z is continuous so g~!(U) is openin.
Now as f:X — Y is almost open mapping and g~ (U) is openinY.
> FHCUgT W € CUF g™ (U)}] -rooeeemmmmeeeeee ®
Since g:Y — Z is almost open mapping and U is open in Z.

= g~ [Cl)] < Cllg~ (V)]
= fHg U} € fHCHg (WY

Put in equation ® implies.
fHg~ '} < fHClg~ W] € Cllf g~ (U))]

= fHgau] < clf~ (g7 (W))]
= (f g™ HCUU) € Cl(fTog™HU)
= (gof)TICLU) <€ Cl(gof) ™ (U)

Now as U is open set in Z and,

(go)TICUU) < Cl(gof)™H ()]

= gof is an almost open mapping.
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s-Normal Space:-

A topological space (X, ) is said to be s-normal if for every
pair of disjoint closed sets A and B of X, there exit disjoint semi-open sets U
andVsuchthat AC€U, BCV

Note:-

Ac XissemiclosedinX iff Int[Cl(A)] = Int(A)

Theorem:-

Let f: X — Y be a continuous semi-closed function. If X is normal
then Y is s-normal.

Proof:-
Let F; and F, be disjoint closed sets of Y.

Since f is continuous therefore f~1(F;) and f~'(F,) are disjoint closed sets
of X.

As X is normal, therefore there exit disjoint open sets U; and U, in X such
that, f_l(Fl) c Ul & f_l(Fz) c U2 and U1 N U2 =@

Since f is semi-closed, therefore there exit two semi open sets V; and V, in
Y containing F; and F, respectively such that,

f7'(vy) €Uy and  f1() € U,
Since, UynNnU, =¢

> V)N ) =9
= Vl ﬂVz =Q
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That is for two disjoint closed sets F; and F, ofY there exit two semi-open
sets V; and V, inYsuchthat F; €V, and F, SV, and VinNnV,=¢

= Y is s-normal-

Semi T,-Space:-

A topological space (X, 1,) is said to be semi T,-space if for
X1,X, € X s.t.x; # x,, there exit semi open sets U and V of X such that,

x1€U & xyeV and UnNV=¢p

PREPAIRED BY:-
MUHAMMAD TAHIR

M.S Mathematics

COMSATS Institute of
Information technology
Islamabad.

0344-8563284

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

VWV Ranad\@t hs. con

Prepared By:- Zutammad Taticn Wattoo (03448563284)
M.S. MATH From CIIT Islamabad


http://www.ranamath.com

