

Prepared By:- Muhammad 7ahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad

TOPOLOGY:-

Let 'X' be a non empty set and ' τ ' be a collection of subsets of 'X'. Then ' τ ' is called topology if

- (i) φ and X belongs to τ .
- (ii) The intersection of any two sets in τ' belongs to τ .
- (iii) The union of any number of sets in τ' belongs to τ .

The members of τ are then called τ -open sets or simply open sets (and compliment of open sets is called a closed set). X together with τ i.e. (X, τ) is called a topological space.

The set 'X' is called its ground set and the element of 'X' is called its points.

- φ and X are always open as well as closed (clopen).
- ★ Neighborhood of a point $x \in X$ is a set 'N' s.t. $x \in O \subseteq N$ where O is an open set.
- ✤ An open set is neighborhood of each of its points.
- Each point of a topological space has at least one neighborhood and that is X.
- ✤ A point of a topological space may have more than one neighborhood.

Example:-

Let $X = \{a, b, c, d\}$

 $P(X) = \phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\},$

 $\tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

 $\tau_2 = \{\phi, X, \{b\}, \{d\}, \{b, c\}, \{b, d\} \{b, c, d\}\}$

 τ_1 and τ_2 satisfy all the conditions of a topological space.

Interior of a Set:-

Let (X, τ) be topological space and 'A' is a non-empty subset of 'X'. A point $x \in A$ is an interior point of 'A' if there exits an open neighborhood $0 \ s.t. \ x \in O \subseteq A$.

Example:-

Let X = R

 τ is the collection of all possible open intervals of R and ϕ . Then τ is a topology on R. This topology is called usual topology on R or standard topology on R.

0

A= [0, 1]

X=0∈A.

Here $0 \in A$ but not interior point of A. $1 \in A$ but not interior point of A. All other points of A are interior points of A.

B = (0, 1)

Every point of B is interior point o B.

PREPAIRED BY

1

MUHAMMAD TAHIR

M.S. MATHEMATICS

Note:-

- Every point of an open set is an interior point of that set.
- Interior of a set is a collection of all interior points of that set and is denoted by *Int(A)*.
- ♦ A set 'A' is open if and only if Int(A) = A.
- ♦ $Int(A) \subseteq A$.

Limit Point of a Set:-

Let (X, τ) be a topological space and 'A' is a subset of 'X'. A point $x \in X$ is called a limit point of A if every open neighborhood of 'x' contains a point of A other than x. i.e. $\forall u \in N(x)$; $A \cap u - \{x\} \neq \phi$.

- Limit point of a set may not be member of that set.
- ✤ A set is closed if it contains all of its limit points.
- Collection of all limits points of 'A' is called derived set of A and it is usually denoted by A^d

Closure of a Set:-

Let (X, τ) be a topological space and A \subseteq X then closure of 'A' is denoted by Cl(A) and is defined by $Cl(A) = A \cup A^d$

★ A is closed iff A = Cl(A).
★ A ⊆Cl(A).

Exterior Point:-

Let (X, τ) be topological space and A $\subseteq X$. Then x $\in X$ is said to be an exterior point of A if x is an interior point of Á. i.e. x is said to be exterior point of A if there exit some open set 'u' such that x \in u \subseteq Á.

OR x is exterior point of A if there exit open set u containing x such that $u \cap A = \phi$.

Boundary Point:-

Let (X, τ) be a topological space an A subset of X then $x \in X$ is said to be boundary point of A if x is neither the interior point of A nor the

interior point of \dot{A} . In other words x ϵ X is said to be boundary point of A \subseteq X if for every open set u containing x, $u \cap A \neq \phi$ and $u \cap \dot{A} \neq \phi$.

Dense Set:-

Let (X, τ) be topological space and A $\subseteq X$, then A is called dense in X if \bar{A} =X.

Example:-

Let X =
$$\{1, 2, 3, 4, 5\}$$
 and $\tau = \{\varphi, X, \{1\}, \{2\}, \{1,2\}\}$.

Let $A = \{1, 2\}$

Closed sets of X are {X, φ , {2,3,4,5}, {1,3,4,5}, {3,4,5}}.

Closed super set of A is X only. Therefore $\overline{A} = X$.

 \Rightarrow A is dense in X.

PREPAIRED BY:-

MUHAMMAD TAHIR

M.S Mathematics

COMSATS Institute of Information technology Islamabad.

0344-8563284

SEMI OPEN SETS AND SEMI CONTINUITY IN TOPOLOGICAL SPACES

This paper was published by American Mathematical Monthly vol.70 N-I (Jan 1963): pages (36-41).

Semi-Open Sets:-

Let (X, τ) be topological space, a subset U of X is said to be semi-open in X if there exit an open set O in X such that,

 $0 \subseteq U \subseteq Cl(0)$

Example:-

$$X = \{a, b, c, d\}$$
 and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}.$

Let $A = \{a, c\}$.

Here closed sets are $\{\varphi, X, \{b, c, d\}, \{a, c, d\}\}$.

$$Cl({a}) = {a, c, d}$$
, $Cl({b}) = {b, c, d}$ and $Cl({a, b}) = X$.

As 'A' is an open set and

$$\{a\} \subseteq \{a, c\} \subseteq \{a, c, d\} = Cl(\{a\}) => \{a\} \subseteq \{a, c\} \subseteq Cl(\{a\})$$

- \Rightarrow {a, c} is a semi-open set.
 - Every open set is also a semi open set.
 - ✤ A semi open set may not be an open set.

Equivalently:-

```
A sub set 'u' of X is semi open in X if and only if u \subseteq Cl[Int(u)]
```

Proof:-

Let 'u' be a semi open in X.

```
Put Int(u) = 0 ------(1)
```

And $Int(u) \subseteq u$ (obvious) => $0 \subseteq u \subseteq Cl(0)$ ----- by definition

 $\Rightarrow U \subseteq Cl[Int(u)] \quad By(1)$

Conversely,

Let $u \subseteq Cl[Int(u)]$

Since $Int(u) \subseteq u \implies Int(u) \subseteq u \subseteq Cl[Int(u)]$

i.e. $v \subseteq u \subseteq Cl(v)$, where v is open in X.

 \Rightarrow u is semi open in X.

Note:-

- Collection of all semi open sets in X is denoted by SO(X).
- The compliment of a semi-open set is called a semi closed set.
- Collection of all semi closed sets in X is denoted by SC(X).

Example:-

Let X=R with the usual topology on R.

Let E = (0,1), Then Cl(E) = [0,1].

If A=[0,1), B=(0,1], C=[0,1], Then each A, B, and C are semi-open in X.

Note:-

C = [0,1] is a closed set which is semi-open as well. This means closed set can be semi open as well [but open sets are always semi-open]

 $(0,1)\subseteq C=[0,1]\subseteq Cl(0,1)=[0,1]$ That's why C is semi-open.

Example:-

Let X=R with usual topology and let

 $A = (\frac{1}{2}, 1) \cup (\frac{1}{4}, \frac{1}{2}) \cup (\frac{1}{8}, \frac{1}{4}) \cup \dots \cup \cup (1/2^{m}, 1/2^{m+1}) \cup \dots$

And B={0} $\cup(\frac{1}{2},1)\cup(\frac{1}{4},\frac{1}{2})\cup(\frac{1}{8},\frac{1}{4})\cup\dots\cup(1/2^{m},1/2^{m+1})\cup\dots$

 \Rightarrow A is an open set. Since A is union of open intervals and every open interval is a open set and union of any number of open sets is a open set.

Here A=(0,1) and Cl(A)=[0,1] and B=[0,1]

- $\neg \neg = \cup(A).$ $\Rightarrow B \text{ is a semi-open set.}$

A is open so is semi open. In this case B is neither open nor closed (but is semi-open)

Example:-

Let X be the Euclidean Plane R^2 with usual topology.

Let E be the set suh that.

$$\mathsf{E} = \left\{ (x, y) : \frac{1 < x < 2}{1 < y < 2}, \quad \text{Then, } \mathsf{CI}(\mathsf{E}) = \left\{ (x, y) : \frac{1 \le x \le 2}{1 \le y \le 2} \right\}$$

Then semi open sets are,

$A = \left\{ (x, y) : \frac{1 < x \le 2}{1 \le y \le 2} \right\}$,	$B = \left\{ (x, y) : \frac{1 \le x \le 2}{1 < y \le 2} \right\}$
$C = \left\{ (x, y) : \frac{1 < x \le 2}{1 < y < 2} \right\}$	3	$D = \left\{ (x, y) : \frac{1 \le x < 2}{1 \le y \le 2} \right.$
$F = \left\{ (x, y) : \begin{array}{l} 1 \le x \le 2 \\ 1 \le y < 2 \end{array} \right.$	7	$G= \Big\{ (x, y) \colon \begin{matrix} 1 < x \le 2 \\ 1 < y \le 2 \end{matrix}$

And so on (so many semi open sets are available).

Theorem 2:-

Let (X, τ) be a topological space and $\{A_{\alpha} : \alpha \in \nabla\}$ be any collection of semi-open sets in X. Then $U_{\alpha \in \nabla} A_{\alpha}$ is semi-open in X. (i.e. union of any number of semi-open sets is semi-open in X).

Proof:-

Since A_{α} is semi open in X $\forall \alpha \in \nabla$

Therefore there exit an open set O_{α} in X such that.

 $O_{\alpha} \subseteq A_{\alpha} \subseteq Cl(O_{\alpha}) \; \forall \alpha \epsilon \nabla$

$$\Rightarrow \quad U_{\alpha \in \nabla} O_{\alpha} \subseteq U_{\alpha \in \nabla} A_{\alpha} \subseteq U_{\alpha \in \nabla} Cl(O_{\alpha}) = Cl(U_{\alpha \in \nabla} O_{\alpha})$$

$$\Rightarrow \quad 0 \subseteq U_{\alpha \in \nabla} A_{\alpha} \subseteq Cl(A) \quad Since \ O_{\alpha \in \nabla} = 0 \ and \ 0 \ is \ open \ set$$

$$\Rightarrow \quad U_{\alpha \in \nabla} A_{\alpha} \text{ Is semi-open set in X.}$$

Theorem 3:-

Let (X, τ) be a topological space and A is a semi-open subset of X. Suppose $A \subseteq B \subseteq Cl(A)$, then prove that B is also a semi-open in X.

Proof:-

www.RanaMaths.com $\sim 10^{-10}$

Since A is semi open in X,

Therefore there exit an open set 0 in X s.t.

 $0 \subseteq A \subseteq Cl(0).$ $0 \subseteq A \subseteq B$ ------ (1) by supposition $A \subseteq B \subseteq Cl(A)$ Now, Since $0 \subseteq A \subseteq Cl(0)$ $A \subseteq Cl(0)$ Now, $\Rightarrow Cl(A) \subseteq Cl[Cl(0)] = Cl(0)$ $\Rightarrow Cl(A) \subseteq Cl(0) \quad -----$ (2) $B \subseteq Cl(A)$ Since $A \subseteq B \subseteq Cl(A)$ by given Again, $Cl(B) \subseteq Cl[Cl(A)]$ ⇔ $Cl(B) \subseteq Cl(A)$ ------⇔ - (3) By relation 1, 2, 3 we get $0 \subseteq A \subseteq B \subseteq Cl(B) \subseteq Cl(A) \subseteq Cl(0)$ Since $B \subseteq Cl(B)$ always true $0 \subseteq B \subseteq Cl(0)$ ⇔ This proves that B is a semi-open set.

Theorem 4:-

Let (X, τ) be a topological space then,

(1) τ⊆ SO(X) (just by def.)
(2) For A∈SO(X) and A ⊆ B ⊆ Cl(A), then B∈SO(X) (already proved)

www.RanaMaths.com $\sim 11 \sim$

Theorem 5:-

Let $\beta = \{B_{\alpha} : \alpha \in \nabla\}$ be a collection of sets in X s.t.

(1) $\tau \epsilon \beta$ (2) If $B \epsilon \beta$ and $B \subseteq D \subseteq Cl(B)$ then $D \epsilon \beta$, Then $SO(X) \subseteq \beta$

Proof:-

Let $A \in SO(X)$,

Then by definition there exit an open set $0 \ \varepsilon \ \tau$ such that

Then by condition 1 $0 \in \beta$

So by condition 2 $A \in \beta$

 $\Rightarrow \qquad SO(X) \subseteq \beta \qquad (proved)$

Statement Continued:- Furthermore SO(X) is the smallest class of sets in X

Suppose GO(X) be another class of sets satisfying (1) and (2) such that

 $GO(X) \subseteq SO(X) ----- (3)$

Let $A^* \in SO(X)$ Then there exit $O^* \in \tau$ such that

 $0^* \subseteq A^* \subseteq Cl(0^*)$ ------(a)

Then by (2) $O^* \in GO(X)$ and $O^* \subseteq A^* \subseteq Cl(O^*)$

 $\Rightarrow A^* \in GO(X)$ $\Rightarrow SO(X) \subseteq GO(X) -----(4)$ So GO(X) = SO(X) by equation (3) and (4)

Hence SO(X) is the smallest class of sets satisfying conditions 1 and 2.

Relative Topology (OR) Subspace Topology:-

Let (X, τ) be topological space and Y be a subspace of X. Then the collection $\tau_y = \{U \cap Y : U \in \tau\}$ is a topology on Y. This topology is called relative topology.

Note:-

If τ_y is a relative topology on Y then (Y, τ_y) is subspace of (X, τ_x) .

Theorem 6:-

Let (X, τ) be topological space and $A \subseteq Y \subseteq X$, where Y is a subspace of X. Let $A \in SO(X)$ then prove that $A \in SO(Y)$.

Proof:-

Since A \in SO(X), Therefore there exit an open set O in X s.t.

 $0 \subseteq A \subseteq Cl_x(0)$

 $\begin{array}{ll} \Rightarrow & 0 \cap Y \subseteq A \cap Y \subseteq Y \cap Cl_x(0) \\ \Rightarrow & 0 \subseteq A \subseteq Cl_y(0), \text{ where 0 is open in Y.} \\ \Rightarrow & A \text{ is semi-open in Y.} \end{array}$

i.e. $A \in SO(Y)$

Lemma 1:-

Let (X, τ) be a topological space and O is open in X. prove that

Cl(0) - 0 is nowhere dense in X.

Proof:-

We have to prove

 $E \subseteq (X, \tau)$ Is nowhere dense in X If $Int[Cl(E)] = \varphi$

 $Int[Cl\{Cl(0) - 0\}] = \varphi$

Now, $Int[Cl{Cl(0) - 0}] = Int[Cl{Cl(0) \cap (X - 0)}]$

 $\subseteq Int[Cl\{Cl(0) \cap Cl(X - 0)$

 $\Rightarrow Int[Cl\{Cl(0) \cap (X - 0)\}] \subseteq Int[Cl(0) \cap (X - 0)] \text{ Since X-0 is closed.}$ $= Int[Cl(0)] \cap Int(X - 0)$ $= Int[Cl(0)] \cap (X - Cl(0))$ $= \varphi$ $\Rightarrow Int[Cl\{Cl(0) - 0\}] = \varphi$

 \Rightarrow Cl(0) - 0 is nowhere dense in X. (proved)

Theorem 7:-

Let (X, τ) be topological space and A \in SO(X). Then A = 0 \cup B,

where.

- (1) $0 \in \tau$
- (2) $0 \cap B = \varphi$ and
- (3) B is nowhere dense.

Proof:-

Given A is semi open in X. Then by definition there exit an open set O in the X such that. $O \subseteq A \subseteq Cl(O)$

But $A = 0 \cup (A - 0)$

Let $B = A \setminus 0$, Then clearly $A = 0 \cup B$, where

(1) $0 \in \tau$ (2) $0 \cap B = \varphi$

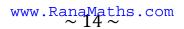
The only thing we need to prove is that B is nowhere dense set.

Now, $B = A \setminus O \subseteq Cl(O) \setminus O$, Since $A \subseteq Cl(O)$

 $\Rightarrow Int[Cl(B)] \subseteq Int[Cl\{Cl(0) - 0\}]$

Since O is open, therefore Cl(O) - O is nowhere dense and hence,

$$Int[Cl\{Cl(0) - 0\}] = \varphi$$



$$\Rightarrow Int[Cl(B)] \subseteq \varphi$$

$$\Rightarrow Int[Cl(B) = \varphi$$

$$\Rightarrow B \text{ is nowhere dense in X.}$$

Remark:-

The converse of theorem 7 is not true in general, that is, In a topological space (X, τ) a set 'A' is written as $A = O \cup B$, where O is open, B is nowhere dense and $O \cap B = \varphi$. Then A may not be semi-open.

Example:-

Let X = R with usual topology.

Let $A = \{x \in R : 0 < x < 1\} \cup \{2\}$. Then

- (1) $A = 0 \cup B$, where $0 = (0,1)\epsilon\tau$ and
- (2) $B = \{2\}$

(3)
$$0 \cap B = \varphi$$

Now we show that B is nowhere dense.

Consider, $Int[Cl(B)] = Int[Cl{2}] = Int{2} = \varphi$

 \Rightarrow B is nowhere dense.

Now if we let O = (0,1) Then $O \subseteq A$ But $A \notin Cl(O)$

Hence we cannot find an open set satisfying the relation $0 \subseteq A \subseteq Cl(0)$

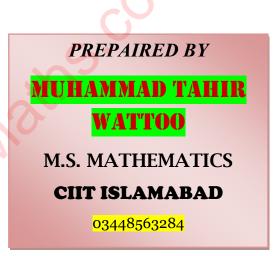
 $\Rightarrow A \notin SO(X)$

Remark:-

The converse of theorem 7 is false

Disconnected Set: - In a

Topological space (X, τ) a subset a of X is disconnected if it can be expressed as union of two nonempty disjoint open sets.



even when connectedness is imposed upon 'A'.

Example:-

Let $X = R^2$ with usual topology (open discs or open rectangles whose sides are parallel to coordinate axis form basis for τ .

Let $A = \{(x, y): 0 < x < 1, and 0 < y < 1\} \cup \{(x, 0): 1 \le x \le 2\}$

We note that $A = 0 \cup B$, where $0 = \{(x, y): 0 < x < 1, and 0 < y < 1\} \in \tau$

And $B = \{(x, 0): 1 \le x \le 2\}$ and $0 \cap B = \varphi$

And B is nowhere dense because $Int{Cl[1,2]} = \varphi$

And A is connected because it is not disconnected.

Moreover $A \notin SO(X)$ Since $O \subseteq A \notin Cl(O)$

Theorem 8:-

Let (X, τ) be a topological space and $A = O \cup B$, where

(1) $0 \neq \varphi$ is open (2) A is connected and (3) $B^d = \varphi$, where B^d is derived set of B. Then prove that A ϵ SO(X)

Proof:-

 $A = 0 \cup B \implies 0 \subseteq A$

The only thing we need to prove is that $A \subseteq Cl(O)$

 $OR O \cup B \subseteq Cl(O)$ OR We need to show $B \subseteq Cl(O)$, Since $O \subseteq Cl(O)$ obvious

Assume contrary, $B \not\subseteq Cl(0)$

Let $B = B_1 \cup B_2$, where

 $B_1 \subseteq Cl(0)$ and $B_2 \subseteq X - Cl(0) :: B \neq \varphi$

Now, $A = O \cup B = O \cup (B_1 \cup B_2)$

 $\Rightarrow A = (O \cup B_1) \cup B_2$

And $O \cup B_1 \neq \varphi : O \neq \varphi$ and $B_2 \neq \varphi : B_2 \nsubseteq Cl(O)$

And $O \cup B_1 \subseteq Cl(O)$ and $B_2 \subseteq B_2$, a closed set

 $B_2 \cap Cl(O) = \varphi$

 $\Rightarrow 0 \cup B_1$ and B_2 constitute a partition for A.

 \Rightarrow *A* is disconnected.

Which is not true, so our supposition is wrong and hence

$$B \subseteq Cl(0) \Longrightarrow 0 \cup B \subseteq Cl(0) \Longrightarrow A \subseteq Cl(0)$$

 $\Rightarrow 0 \subseteq A \subseteq Cl(0)$ $\Rightarrow A \in SO(X) \quad \because 0 \text{ is open.} \quad (\text{proved})$

Remark 4:-

It is not true that the components of a semi-open set are semi open.

Example 4:-

Let X = R and
$$A = \{0\} \cup (\frac{1}{2}, 1) \cup (\frac{1}{4}, \frac{1}{2}) \cup (\frac{1}{8}, \frac{1}{4}) \cup \dots \cup \bigcup$$

 $\left(\frac{1}{2^{n+1}},\frac{1}{2^n}\right)$ U

Then A is semi-open and $\{0\}$ is a component of A, But $\{0\}$ is not semi-open in X.

$$A - \{0\} \subseteq A \subseteq Cl[A - \{0\}]$$

 $A - \{0\}$ is open set $\therefore A - \{0\}$ is union of open sets.

 \Rightarrow A is semi-open \because open set \subseteq A \subseteq Cl(open set)

 $\{0\}$ is a component of A but $\{0\}$ is neither open nor semi-open.

Remark 5:-

- (1) In general the compliment of a semi-open set may not be semi- open.
- (2) Intersection of two semi-open sets may not be semi-open.

Example:-

 \clubsuit Let X = R with usual topology.

We consider, $A = [0, 1] \in SO(X)$ and $B = [1, 2] \in SO(X)$

♦ A∩B = {1} ∉SO(X)
Let X = [0, 1]
$$A = \left(\frac{1}{2}, 1\right) \cup \left(\frac{1}{4}, \frac{1}{2}\right) \cup \left(\frac{1}{8}, \frac{1}{4}\right) \cup \dots \cup \left(\frac{1}{2^{n+1}}, \frac{1}{2^n}\right) \cup \dots \dots$$

$$\Rightarrow A \in SO(X) \text{ and } \hat{A} = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots \dots\} \notin SO(X)$$

Theorem 9:-

Let (X,τ_x) and (Y,τ_y) be topological spaces. Let $f: X \rightarrow Y$ be continuous and open mapping. Let $A \in SO(X)$, prove that $f(A) \in SO(Y)$.

Proof:-

Since $A \in SO(X)$, Therefore there exit an open set 0 and nowhere dense set B such that $A = O \cup B : O \cap B = \varphi$ and $B \subseteq Cl(O) - O$

 $Cl(0) - 0 \subseteq Cl(0)$

Now, $0 \subseteq A = 0 \cup B$

$$\Rightarrow f(0) \subseteq f(A) = f(0 \cup B)$$

$$\Rightarrow \qquad = f(0) \cup f(B)$$

$$\Rightarrow \qquad \subseteq f(0) \cup fCl(0) \qquad \because B \subseteq Cl(0)$$

Prepared By:- Muhammad Tahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad

www.RanaMaths.com
$$\sim 18 \sim$$

$$\Rightarrow = Cl[f(0)]$$

$$\Rightarrow f(0) \subseteq f(A) \subseteq Cl[f(0)]$$

 $\begin{array}{l} \because f[Cl(0)] = Cl[f(0)] \\ \& f(0) \subseteq Cl[f(0)] \\ \Rightarrow f(0) \cup f[Cl(0)] = Cl[f(0)] \end{array}$

Since f is open, therefore f(0) is open in Y and hence $f(A) \in SO(Y)$

Remark 6:-

f Must be open in theorem 9, otherwise for $A \in SO(X)$; f(A) may not be semi-open in Y.

Example 5:-

Let X = Y = R with usual topology. Let $f: X \to Y$ be defined by $f(x) = 1 \forall x \in X$. Then X is semi-open in X but f(X) is not semi-open in Y.

Solution:-

1:- Since $f(x) = 1 \forall x \in X$.

Therefore f is a constant function and every constant function is continuous. Therefore f is a continuous function.

2:-Let 'u' be any open set in X, Then f (u) = $\{1\} \notin \tau_{\gamma}$.

This gives that f is not an open function.

Now X is open and hence semi-open. But $f(X) = \{1\}$.

Since {1} contains no open set therefore {1} cannot be semi-open in Y.

Lemma 2:-

Let τ be the collection of open sets in the topological space X. Then prove that $\tau = IntSO(X)$.

Proof:-

www.RanaMaths.com $\sim 19 \sim$

Let $0 \in \tau$.

Therefore O is an open set.

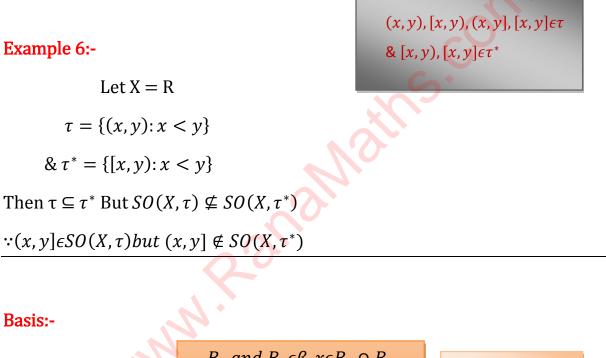
 $\Rightarrow 0 \in SO(X)$: 0 is open And since O = Int(O)∵0 is open $\Rightarrow 0 \in Int SO(X)$ $\Rightarrow \tau \subseteq Int SO(X) - 1$ Conversely, Let $O \in Int SO(X)$ Then O = Int(A) for some $A \in SO(X)$: Int of any set is open. And thus, $0 \in \tau$ \Rightarrow Int SO(X) $\subseteq \tau$ -----From 1 and 2 $\tau = Int SO(X).$ Theorem 10:-Let τ and τ^* be two topologies for X. Suppose $SO(X, \tau) \subseteq$ $SO(X, \tau^*)$. Then $\tau \subseteq \tau^*$. **Proof:-** $SO(X,\tau) \subseteq SO(X,\tau^*)$ \therefore Int[SO(X, τ)]are open sets in τ $\Rightarrow Int[SO(X,\tau)] \subseteq Int[SO(X,\tau^*)]$ $\Rightarrow \tau \subseteq \tau^*$ Int[SO(X, τ^*)] are open sets in τ^*

Corollary 1:-

Let τ and τ^* be two topologies for X. Suppose $SO(X, \tau) = SO(X, \tau^*)$ then $\tau = \tau^*$

Remark 7:-

It is interesting to note that converse of theorem 10 is false in general.



$$\forall x \in X \exists B \in \beta$$

Such that $x \in B$
$$B_1 and B_2 \in \beta, x \in B_1 \cap B_2$$
$$\cup B_i = X$$
$$x \in B_3 \subseteq B_1 \cap B_2$$

★ Let β and γ are two basis such that β is basis for (X, τ_x) and γ is a basis for (Y, τ_y) then β × γ = {B × C: Bεβ, Cεγ}

 There can be construct more than one basis corresponds to each topology but there is only one topology corresponds to each basis.

Theorem 11:-

Let (X, τ_1) and (X, τ_2) be topological spaces and $X = X_1 \times X_2$ be topological product. Let $A_1 \epsilon SO(X_1)$ and $A_2 \epsilon SO(X_2)$. Then prove that $A_1 \times A_2 \epsilon SO(X_1 \times X_2)$

PREPAIRED BY

M.S. MATHEMATICS

MUHAMMAD TAHIR

Proof:-

We have $A_i = O_i \times B_i$; i = 1,2

Where O_i is open in X_i ; i = 1,2

And B_i is nowhere dense in X_i ; i = 1,2

And $O_i \cap B_i = \varphi \ \forall i = 1,2$

Further,

$$B_i \subseteq Cl(O_i) - O_i ; \quad i = 1,2$$

Now,

 $\begin{array}{l} w, \qquad A_1 \times A_2 = (O_1 \cup B_1) \times (O_2 \cup B_2) \\ \Rightarrow \qquad = (O_1 \times O_2) \cup (O_1 \times B_2) \cup (B_1 \times O_2) \cup (B_1 \times B_2) \cdots \\ \Rightarrow \qquad = (O_1 \times O_2) \cup [Cl(O_1) \times Cl(O_2)] \cup [Cl(O_1) \times O_2] \cup \\ [Cl(O_1) \times Cl(O_2)] \qquad \because B_1 \subseteq Cl(O_1), B_2 \subseteq Cl(O_2) \\ \Rightarrow \qquad = Cl(O_1) \times Cl(O_2) \\ \Rightarrow \qquad O_1 \times O_2 \subseteq A_1 \times A_2 \subseteq Cl(O_1) \times Cl(O_2) = Cl(O_1 \times O_2) \quad from \ \ast \end{array}$

Since $O_1 \times O_2$ is open in the product space,

Therefore $A_1 \times A_2 \epsilon SO(X_1 \times X_2)$

Remark 8:-

If $A \in SO(X_1 \times X_2)$ then in general we cannot write $A = A_1 \times A_2$, where $A_1 \in SO(X_1)$ and $A_2 \in SO(X_2)$. Example 7:-

Let $X = R^2$ with usual topology.

Let $A = \{(x, y) : 0 < x < 1, 0 < y < 1\} \cup (1, 1)$

Then A is semi-open in R×R. But we cannot find two sets A_1 and A_2 s.t. $A = A_1 \times A_2$ and $A_1 \epsilon SO(R)$ and $A_2 \epsilon SO(R)$

Semi-Continuous Function:-

Let (X, τ_x) and (Y, τ_y) be topological spaces and $f: X \to Y$ be a single valued function then 'f' is said to be semi-continuous if and only if, for each open set V in Y, $f^{-1}(V)$ is semi-open in X.

Remark 9:-

Every continuous function is semi-continuous as well but a semicontinuous function may not be continuous.

Example 8:-

Let X = Y = [0,1] with usual topology and $f: X \rightarrow Y$ defined by,

$$f(x) = \begin{cases} 1 & if \ 0 \le x \le \frac{1}{2} \\ 0 & if \ \frac{1}{2} \le x \le 1 \end{cases}$$

This is a semi-continuous function but not a continuous function.

Let V be an open set in Y,

PREPAIRED BY MUHAMMAD TAHIR M.S. MATHEMATICS www.RanaMaths.com $\sim 23^{23} \sim$

$$V = \begin{cases} 1 \epsilon V, 0 \notin V \implies f^{-1}(V) = \left[0, \frac{1}{2}\right] \epsilon SO(X) \\ 0 \epsilon V, 1 \notin V \implies f^{-1}(V) = \left(\frac{1}{2}, 1\right] \epsilon SO(X) \\ 0 \notin V, 1 \notin V \implies f^{-1}(V) = \varphi \epsilon \tau_x \\ 0 \epsilon V, 1 \epsilon V \implies f^{-1}(V) = [0, 1] \epsilon \tau_x \end{cases}$$

Theorem 12:-

Let (X, τ_x) and (Y, τ_y) Be topological spaces and $f: X \to Y$ be a single valued function, then 'f' is semi-continuous if and only if for $f(p) \in V$, there exit an $A \in SO(X) s. t. p \in A$ and $f(A) \subseteq V$.

Proof:-

Let $f(p) \in V \in \tau_y$

$$\Rightarrow$$
 There exit an $A_p \in SO(X)$ s.t. $p \in A_p$ and $f(A_p) \subseteq V$

We have to prove that *f* is semi-continuous.

For this we show that $f^{-1}(V) \in SO(X)$

Now, $f(p) \in V \implies p \in f^{-1}(V)$

By hypothesis there exit an $A_p \in SO(X)s.t. p \in A_p$ and $f(A_p) \subseteq V$

 $\Rightarrow p \in A_p \subseteq f^{-1}f(A_p) \subseteq f^{-1}(V) \qquad \because A \subseteq f^{-1}f(A) \& ff^{-1}(A) \subseteq A$ $\Rightarrow p \in A_p \subseteq f^{-1}(V)$

Thus $f^{-1}(V) = \bigcup_{p \in f^{-1}(V)} A_p$

Since arbitrary union of semi-open sets is semi-open, therefore

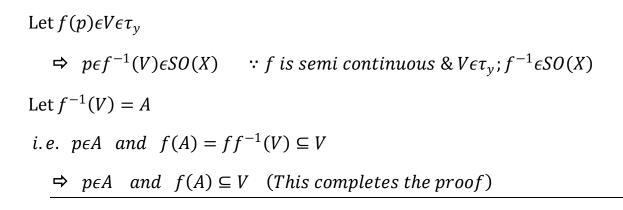
$$f^{-1}(V) = \bigcup_{p \in f^{-1}(V)} A_p$$
 is semi – open

 \Rightarrow *f* is semi-continuous

Conversely,

Let $f: X \to Y$ be semi-continuous

Prepared By:- Muhammad 7ahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad



Theorem 13:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. Let $f: X \to Y$ be a semi-continuous function and Y be 2^{nd} axioms space. Let P be the set of discontinuities of 'f' then prove that P is op 1^{st} category.

Proof:-

Given, **1** *f* is semi-continuous.

2 (Y, τ_y) is 2nd axioms space.

3 $P \subseteq X$: *P* is set of discontinuities of *f*.

We have to prove that P is of 1st category.

 $\Rightarrow P = \bigcup_{countable} G_{\alpha} \text{ ant } Int[Cl(G_{\alpha}) = \varphi]$

Let $p \in P$, Let $f(p) \in O_{ip} \subseteq (Y, \tau_y)$, where O_{ip} the countable union of basic open sets because (Y, τ_y) is a 2nd axioms space.

Now if O is open in X such that $p \in O$,

Then $f(0) \not\subseteq O_{ip}$ because 'f' is discontinuous at $p \in P$.

Now, since f is semi-continuous, therefore there exit

 $A_{ip} \in SO(X, p) \text{ s.t. } p \in A_{ip} \text{ and } f(A_{ip}) \subseteq O_{ip}$

As A_{ip} is semi-open in X, therefore, there exit U_{ip} and B_{ip} s.t.

2nd Axioms Space: - A topological space (X, τ_x) is said to be 2nd axioms space if it has countable basis.

First Category: - A set is of 1st category if it is countable union of nowhere dense sets.

 $A_{ip} = B_{ip} \cup U_{ip}$, where U_{ip} is open in X and B_{ip} is nowhere dense in X. Moreover, $B_{ip} \subseteq Cl(U_{ip}) - U_{ip}$

Thus, $p \in B_{ip}$ a nowhere dense set. $: p \notin open \ set \ i. e. U_{ip}$

- $\Rightarrow P \subseteq \cup_{p \in P} B_{ip}$
- \Rightarrow P is of 1st category.

Remark 10:-

The converse of theorem 13 is false in general.

Example 9:-

Let
$$X = (0,1]$$
 and $X^* = [0,1]$

Let
$$f: X \to X^* = \begin{cases} 0, & x \text{ is irrationan} \\ \frac{1}{a}, & x \text{ is rational} = Q \end{cases}$$

Where $Q = \left\{\frac{p}{q}; p, q \in \mathbb{Z}, q \neq 0, (p,q) = 1\right\}$

Then, f is continuous at irrationals and discontinuous at rational.

Hence the set of discontinuities is of 1st category [: the set of rational is countable set.]

Consider $u = \left(\frac{1}{2}, 1\right] \epsilon X^*$ is open as $0 \notin u$

$$\Rightarrow f^{-1}(u) = f^{-1}\left(\frac{1}{2}, 1\right] = \text{sub set of rational b/w } (0, 1]$$

And we cannot find an open set O in X such that

 $0 \subseteq$ sub set of rational between $(0, 1] \subseteq Cl(0)$

 \Rightarrow *f* is not semi-continuous.

Theorem 14:-

Let $f_i: X_i \to X_i^*$ be semi-continuous. Let $f: X_1 \times X_2 \to X_1^* \times X_2^*$ be defined as $f: ((x_1, x_2)) = (f_1(x_1), f_2(x_2))$. Then prove that

 $f: X_1 \times X_2 \longrightarrow X_1^* \times X_2^*$ is semi-continuous.

Proof:-

Given $f_1: X_1 \to X_1^*$ and $f_2: X_2 \to X_2^*$ are semi-continuous functions. Let u and v are open sets such that $u \subseteq X_1^*$ and $v \subseteq X_2^*$ As f_1 and f_2 are semi-continuous, Therefore, $f_1^{-1}(u) \in SO(X_1)$ and $f_2^{-1}(v) \in SO(X_2)$ *i.e.* Inverse images of open sets are semi-open. Now let, $u \times v \subseteq X_1^* \times X_2^*$ We have to prove $f^{-1}(u \times v) \in SO(X_1 \times X_2)$ Now, $f^{-1}(u \times v) = f_1^{-1}(u) \times f_2^{-1}(v)$ $\in SO(X_1) \times SO(X_2)$ $\in SO(X_1 \times X_2)$ $\Rightarrow f^{-1}(u \times v) \in SO(X_1 \times X_2)$ $\Rightarrow f^{-1}(u \times v) \in SO(X_1 \times X_2)$ $\Rightarrow f: X_1 \times X_2 \to X_1^* \times X_2^*$ is semi continuous.

Theorem 15:-

Let $h: X \to X_1 \times X_2$ be semi continuous, where X, X_1 and X_2 are topological spaces. Let $f_i: X \to X_1$ be defined as follows. For $x \in X$; $h(x) = (x_1, x_2)$. Let $f_i(x) = x_i$ then $f_i: X \to X_i$ is semi-continuous for i = 1, 2.

Proof:-

 $h: X \longrightarrow X_i$ is semi-continuous.

Let O_1 be open in X_1 . Then $O_1 \times X_2$ is open in $X_1 \times X_2$ And hence, $h^{-1}(O_1 \times X_2)$ is semi-open in X. But $f_1^{-1}(O_1) = h^{-1}(O_1 \times X_2) \in SO(X)$

 \Rightarrow f_1 is semi-continuous.

Similarly for f_2 .

Remark 11:-

The converse of theorem 15 is generally false.

Example 10:-

Let
$$X = X_1 = X_2 = [0,1]$$

 $f_1: X \to X_1 = \begin{cases} 1 & if \ 0 \le x \le \frac{1}{2} \\ 0 & if \ \frac{1}{2} < x \le 1 \end{cases}$
 $f_2: X \to X_2 = \begin{cases} 1 & if \ 0 \le x < \frac{1}{2} \\ 0 & if \ \frac{1}{2} \le x < 1 \end{cases}$
PREPAIRED BY
MUHAMMAD TAHER
M.S. MATHEMATICS

Then,

 $f_i: X \to X_i$ is semi-continuous but $h(x) = [f_1(x), f_2(x)]: X \to X_1 \times X_2$ is not semi-continuous.

Remark 12:-

Composition of two semi-

continuous functions is not a semi-

continuous function.

f is said to be continuous at $x = x_{\circ}$ if $\forall \varepsilon > 0 \exists a \delta > 0 s. t.$ $\mid f(x) - f(x_{\circ}) \mid < \varepsilon$ whenever $\mid x - x_{\circ}) < \delta$ Example 11:-

$$Let \ X = X_1 = X_2 = [0,1]$$

$$f_1: X \to X_1 = \begin{cases} x & if \ 0 \le x \le \frac{1}{2} \\ 0 & if \ \frac{1}{2} < x \le 1 \end{cases}$$

$$f_2: X_1 \to X_2 = \begin{cases} 0 & if \ 0 \le x < \frac{1}{2} \\ 1 & if \ \frac{1}{2} \le x \le 1 \end{cases}$$

$$Now, \quad (f_2 \circ f_1)^{-1}(x) = (f_1^{-1} \circ f_2^{-1})(x)$$
Let $u \in X_2; \quad 0 \in u \text{ and } 1 \notin u \implies f_2^{-1}(u) = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$

$$\Rightarrow \ (f_1^{-1} \circ f_2^{-1})(u) = f_1^{-1} \{f_2^{-1}(u)\} = f_1^{-1} \left(\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \right) = X \text{ open}$$
Now $0 \notin u \text{ and } 1 \in u \implies f_2^{-1}(u) = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$

$$\Rightarrow \ (f_1^{-1} \circ f_2^{-1})(u) = f_1^{-1} \{f_2^{-1}(u)\} = f_1^{-1} \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix} = \{\frac{1}{2}, 0\} \notin SO(X)$$

➡ Composition of two semi-continuous functions is not a semicontinuous.

Remark 13:-

The algebraic sum and product of semi-continuous functions are not in general semi-continuous.

Theorem 16:-

Let $f_n: M \to M^*$, where M and M^* are metric spaces with metrics d and d^* , be semi-continuous for n = 1, 2, 3, 4, ..., n and let $f_o: M \to M^*$ be the uniform limit of $\{f_n\}$ then $f_o: M \to M^*$ is semi-continuous.

Proof:-

Let O^* be open in M^* and $f_{\circ}(x) \in O^*$.

As (M^*, d^*) be metric spaces then there exit $\eta > 0$ *s*. *t*.

$$f_{\circ}(x) \in S_{\eta}^{*}(f_{\circ}(x) \subseteq 0^{*}$$

As $f_{\circ}: M \to M^*$ is uniform limit of $\{f_n\}$, then for $\varepsilon = \eta/2$ there exit $n^* s. t$.

$$d^*(f_n^*(x), f_\circ(x) < \frac{\eta}{2} \quad \forall x \in M$$

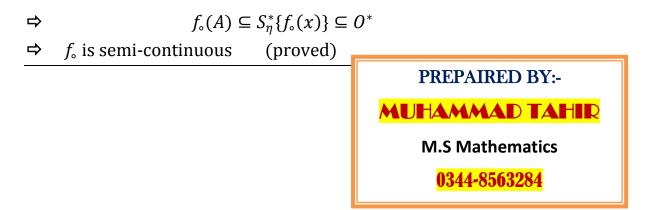
 $\Rightarrow f_n^*(x) \in S^*_{\frac{\eta}{2}}(f_\circ(x)) \subseteq O^*$

As f_n^* is semi-continuous, then by a well known theorem there exit $A \in SO(X)$ such that $x \in A$ and $f_n^*(A) \subseteq S_{\underline{n}}^* \{f_{\bullet}(x)\}$

Theorem will be prove if we show $f_{\circ}(A) \subseteq O^*$

Let $y \in A$, then

$$d^*[f_{\circ}(y), f_{\circ}(x)] \le d^*[f_{\circ}(y), f_n^*(y)] = d[f_n^*(y), f_{\circ}(x) < \frac{\eta}{2} + \frac{\eta}{2} = \eta$$



www.RanaMaths.com $\sim 30^{\circ}$

SEMI-CONTINUOUS MAPPINGS

This course was established in 1973 by "Nota di Takashi Noire" and published by "Academia Nazionale Dei Lincei"

Introduction:-

In 1963 N-Levine defined a subset A of a topological space 'X' to be semi-open if there exit an open set u in X such that $u \subseteq A \subseteq Cl(O)$, where Cl(u) denotes the closure of u. He also defined a mapping f of a topological space X into a topological space Y to be semi-continuous if for every open set V in Y, $f^{-1}(V)$ is a semi-open set in X. The purpose of present note is to give a generalization of the following two theorems and to investigate some properties of semi-open sets and semi-continuous mappings.

Theorem A:-

Let X_1 and X_2 be topological spaces. If A_i is a semi-open set in X_i for i = 1,2; then $A_1 \times A_2$ is a semi-open set in the product space $X_1 \times X_2$.

Theorem B:-

Let X_i and Y_i be topological spaces and $f_i: X_i \to Y_i$ be semicontinuous mapping for i = 1, 2. Then a mapping $f: X_1 \times X_2 \to Y_1 \times Y_2$ defined by putting $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$ is semi-continuous.

Semi-Open Sets

Lemma 1:-

If U is open and A is a semi-open set, then $U \cap A$ is semi-open.

Proof:-

As A ϵ SO(X), Then there exit an open set O in X such that,

 $0 \subseteq A \subseteq Cl(0)$

$$\Rightarrow U \cap 0 \subseteq U \cap A \subseteq U \cap Cl(0) \subseteq Cl(U \cap 0)$$

Since U \cap A is open in X and $U \cap O \subseteq U \cap A \subseteq \overline{(U \cap O)}$

 $\Rightarrow U \cap A \in SO(X) \qquad (proved)$

Theorem 1:-

Let A and X_{\circ} be subsets of X such that $A \subseteq X_{\circ}$ and $X_{\circ} \in SO(X)$, then A \in SO(X) if and only if $A \in SO(X_{\circ})$

Proof:-

As $A \subseteq X$, and $X \in SO(X)$.

So X_{\circ} is a subspace of X by a well known theorem.

Hence, $A \in SO(X_{\circ})$

So we need only to prove that $A \in SO(X)$

Let $A \in SO(X_{\circ})$,

Then by definition there exit an open set U_{\circ} in X_{\circ} s. t.

$$U_{\circ} \subseteq A \subseteq Cl(U_{\circ})$$

Since U_{\circ} in X_{\circ} , then there exit an open set U in X such that $U_{\circ} = U \cap X_{\circ}$

 $\Rightarrow U \cap X_{\circ} \subseteq A \subseteq Cl(U \cap X_{\circ})$

Since U is open and X_{\circ} is semi-open so $U \cap X_{\circ}$ is semi-open in X

 $\Rightarrow A \in SO(X)$ (proved)

Lemma 2:-

A is semi-open if and only if $Cl(A) = Cl{Int(A)}$

Proof:-

Suppose A is semi-open then by a well known theorem

 $A \subseteq Cl\{Int(A)\}$ $Cl(A) \subseteq Cl\{Cl(IntA)\} = Cl\{Int(A)\}$ ⇔ $Cl(A) \subseteq Cl\{Int(A)\}$ (1) ⇔

⇔

 $As \quad Int(A) \subseteq A$ $Cl{Int(A)} \subseteq Cl(A) ----- (2)$

By relation 1 and 2 we get

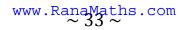
$$Cl(A) = Cl\{Int(A)\}$$

Conversely,

Let,
$$Cl(A) = Cl{Int(A)}$$

To prove A is semi-open.

 $Int(A) \subseteq A \subseteq Cl(A)$ As



$$\Rightarrow Int(A) \subseteq A \subseteq Cl\{Int(A)\} \qquad \because Cl(A) = Cl\{Int(A)\}$$

As Int(A) is open set and $Int(A) \subseteq A \subseteq Cl{Int(A)}$

 \Rightarrow A is semi-open (proved)

Lemma 3:-

Let $\{X_{\alpha} : \alpha \in \beta\}$ be any family of topological spaces and $\prod X_{\alpha}$ denotes the product space, then

1 Int $\prod A_{\alpha} = \prod Int A_{\alpha}$ if $A_{\alpha} = X_{\alpha}$ Except for finite $\alpha \in \beta$ and $\prod Int A_{\alpha} \neq \varphi$.

2 $Cl \prod A_{\alpha} = \prod Cl A_{\alpha}$

Proof:-

1 As $A_{\alpha} = X_{\alpha}$ Except for a finite $\alpha \in \beta$.

So the result is obvious for all $A_{\alpha} = X_{\alpha}$

So we prove this lemma just for finite case,

As $Int(A_{\alpha})$ is open in $X_{\alpha} \forall \alpha = 1,2,3..., n$

So
$$\prod_{\alpha=1}^{n} Int(A_{\alpha})$$
 is open in $\prod_{\alpha=1}^{n} X_{\alpha}$
Also $\prod_{\alpha=1}^{n} Int(A_{\alpha}) \subseteq \prod_{\alpha=1}^{n} A_{\alpha}$

 $\Rightarrow \prod_{\alpha=1}^{n} Int(A_{\alpha}) \subseteq Int \prod_{\alpha=1}^{n} A_{\alpha} - \dots$

Now, Let $(x_1, x_2, x_3, ..., x_n) \in Int \prod_{\alpha=1}^n A_{\alpha}$

As Int
$$\prod_{\alpha=1}^{n} A_{\alpha}$$
 is open in $\prod_{\alpha=1}^{n} X_{\alpha}$

 $\Rightarrow \text{ There exit open set } U_{\alpha} \text{ in } X_{\alpha} \forall \alpha = 1, 2, 3, ..., n \text{ s.t.}$

$$(x_1, x_2, \dots, x_n) \epsilon \prod_{\alpha=1}^n U_\alpha \subseteq Int \prod_{\alpha=1}^n A_\alpha \subseteq \prod_{\alpha=1}^n X_\alpha$$

Since $U_{\alpha} \in A_{\alpha} \forall \alpha = 1,2,3,...,n$; It follows that $x_{\alpha} \in Int(A_{\alpha}) \forall \alpha = 1,2,3,...,n$

- $\Rightarrow (x_1, x_2, x_3, \dots, x_n) \in \prod_{\alpha=1}^n IntA_\alpha$
- $\Rightarrow Int \prod_{\alpha=1}^{n} A_{\alpha} \subseteq \prod_{\alpha=1}^{n} Int(A_{\alpha})$

From equation (1) and (2) $Int \prod_{\alpha=1}^{n} A_{\alpha} = \prod_{\alpha=1}^{n} Int(A_{\alpha})$

2 As $A_{\alpha} = X_{\alpha}$ except for finite $\alpha \in \beta$ and X_{α} are topological spaces,

So result obviously for all $A_{\alpha} = X_{\alpha}$.

So we prove this lemma just for finite case,

As $A_{\alpha} \subseteq Cl(A_{\alpha}) \forall \alpha = 1,2,3,...,n$ $\Rightarrow \prod_{\alpha=1}^{n} A_{\alpha} \subseteq \prod_{\alpha=1}^{n} Cl(A_{\alpha})$ Also, $(\prod_{\alpha=1}^{n} X_{\alpha}) \setminus \prod_{\alpha=1}^{n} Cl(A_{\alpha}) = \bigcup_{\alpha=1}^{n} (X_{\alpha} \times (X_{\omega} \setminus \overline{A_{\omega}}))$ $\alpha \neq \omega, \ 1 \leq \alpha, \omega \leq n$

Which is open in $\prod_{\alpha=1}^{n} X_{\alpha}$

 $\Rightarrow \prod_{\alpha=1}^{n} ClA_{\alpha} \text{ is closed and so } Cl\prod_{\alpha=1}^{n} A_{\alpha} \subseteq \prod_{\alpha=1}^{n} Cl(A_{\alpha}) \dots 3$ Now let, $(x_{1}, x_{2}, x_{3}, \dots, x_{n}) \in \prod_{\alpha=1}^{n} Cl(A_{\alpha})$ Let, ω be a neighborhood of $(x_{1}, x_{2}, \dots, x_{n})$ in $\prod_{\alpha=1}^{n} X_{\alpha}$ Then there exit open set U_{α} in $X_{\alpha} \forall \alpha = 1, 2, 3, \dots, n \ s.t.$

$$(x_1, x_2, \dots x_n) \epsilon \prod_{\alpha=1}^n U_\alpha \subseteq \omega$$

Then, $x_{\alpha} \in U_{\alpha} \forall \alpha = 1, 2, 3, ..., n$ But $X_{\alpha} \in \overline{A_{\alpha}} \quad \forall \alpha = 1, 2, 3, ..., n$ And $U_{\alpha} \cap A_{\alpha} \neq \varphi \quad \forall \alpha = 1, 2, 3, ..., n$ Since $\prod_{\alpha=1}^{n} U_{\alpha} \subseteq \omega$ and we know that $\omega \cap \prod_{\alpha=1}^{n} A_{\alpha} \neq \varphi$ $\Rightarrow (x_{1}, x_{2}, ..., x_{n}) \in Cl \prod_{\alpha=1}^{n} A_{\alpha}$ ------ (4) From equation (3) and (4) we have

$$\prod_{\alpha=1}^{n} Cl(A_{\alpha}) = Cl \prod_{\alpha=1}^{n} A_{\alpha}$$

Lemma 4:-

If A is a non-empty semi-open set, then $Int(A) \neq \varphi$

Proof:-

Since A is semi-open,

Then, $Cl(A) = Cl{Int(A)}$

Suppose, $Int(A) = \varphi$

Then, $Cl(A) = \varphi$

 $Cl(A) = Cl(\varphi) \quad \because IntA = \varphi$ $\Rightarrow Cl(A) = \varphi \quad \because \ \overline{\varphi} = \varphi$ $\Rightarrow A = \varphi \quad \because Cl(\varphi) = \varphi$

 $\Rightarrow \qquad A = \varphi$

Which is a contradiction, and hence $Int(A) \neq \varphi$

Theorem 2:-

Let $\{X_{\alpha} : \alpha \in \beta\}$ be any family of topological space, $X = \prod X_{\alpha}$ the product space and $A = \prod_{j=1}^{n} A_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$, a non-empty subset of X, where n is a positive integer. Then $A_{\alpha_j} \in SO(X_{\alpha_j})$ for each $j(1 \le j \le n)$ if and only if $A \in SO(X)$

Proof:-

Suppose
$$A_{\alpha_{j}} \in SO(X_{\alpha_{j}}) \quad \forall j(1 \le j \le n)$$

Since $A \neq \varphi$ this implies $A_{\alpha_{j}} \neq \varphi \quad \forall j(1 \le j \le n)$
As $A_{\alpha_{j}} \in SO(X_{\alpha_{j}})$ So $Int(A_{\alpha_{j}}) \neq \varphi$ ($\because A_{\alpha_{j}} \neq \varphi$)
Thus $\prod_{j=1}^{n} Int(A_{\alpha_{j}}) \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha} \neq \varphi$
Now, $Cl\{Int(A)\} = \prod_{j=1}^{n} Cl\{Int(A_{\alpha_{j}})\} \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha}$
 $= \prod_{j=1}^{n} Cl(A_{\alpha_{j}}) \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha} \quad \because A_{\alpha_{j}} \in SO(X_{\alpha_{j}})$
 $\Rightarrow \quad Cl\{Int(A)\} = Cl(A)$
 $\Rightarrow \quad A \in SO(X)$

Let
$$A \in SO(X)$$

Conversely, Let $A \in SO(X)$ Then, $Int(A) \neq \varphi$ $:: A \neq \varphi$

As
$$Int(A) \subseteq \prod_{j=1}^{n} Int(A_{\alpha_j}) \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$$

So
$$\prod_{j=1}^{n} Int(A_{\alpha_j}) \times \prod_{\alpha \neq \alpha_j} X_{\alpha} \neq \varphi$$

 $A \in SO(X)$ so by a well known theorem, Since,

$$\prod_{j=1}^{n} Cl\left\{Int\left(A_{\alpha_{j}}\right)\right\} \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha} = Cl\{Int(A)\} = Cl(A)$$

$$= \prod_{j=1}^n Cl(A_{\alpha_j}) \times \prod_{\alpha \neq \alpha_j} X_\alpha$$

$$\Rightarrow Cl\left(Int\left(A_{\alpha_{j}}\right)\right) = Cl\left(A_{\alpha_{j}}\right) \qquad \forall j(1 \le j \le n)$$

$$\Rightarrow A_{\alpha_{j}} \in SO(X_{\alpha}) \qquad \forall j(1 \le j \le n)$$

Semi-Continuous Mapping

Theorem 3:-

If $f: X \to Y$ is a semi-continuous mapping and X_\circ is an open set in X, then restriction $f \mid X_\circ: X_\circ \to Y$ is semi-continuous.

Proof:-

Since *f* is a semi-continuous mapping,

⇒ For any open set V in Y, $f^{-1}(V)$ is semi-open in X.

Since X_{\circ} is open. So $f^{-1}(V) \cap X_{\circ}$ is semi open in X.

Therefore, $(f \mid X_{\circ})^{-1}(V) = f^{-1}(V) \cap X_{\circ}$ is semi-open in X_{\circ} .

 $\Rightarrow f | X_{\circ}$ Is semi-continuous.

Remark:-

In above theorem if $X_{\circ} \in SO(X)$ then $f \mid X_{\circ}$ is not always semicontinuous.

www.RanaMaths.com $\sim 38 \sim$

Example:-

Let
$$X = Y = [0, 1]$$
 with usual topology and $X_{\circ} = [\frac{1}{2}, 1]$

Let, $f: X \rightarrow Y$ be mapping as follows,

$$f(x) = \begin{cases} 1 & if \ 0 \le x \le \frac{1}{2} \\ 0 & if \ \frac{1}{2} < x \le 1 \end{cases}$$

Then f is semi-continuous.

However,
$$\left(\frac{1}{2}, 1\right]$$
 is open in Y and $f^{-1}\left(\left(\frac{1}{2}, 1\right]\right) \cap X_{\circ} = \left\{\frac{1}{2}\right\} \notin SO(X_{\circ})$

Therefore, $f \mid X_{\circ}$ is not semi-continuous.

Theorem 4:-

Let $f: X \to Y$ be a mapping and $\{A_{\alpha}: \alpha \epsilon \beta\}$ semi-open cover for X *i.e.* $A_{\alpha} \epsilon SO(X)$ for each $\alpha \epsilon \beta$ and $\bigcup_{\alpha \epsilon \beta} A_{\alpha} = X$. if the restriction $f \mid A_{\alpha}: A_{\alpha} \to Y$ is semi-continuous for each $\alpha \epsilon \beta$, then f is semi-continuous. **Proof:-**

Suppose V is an arbitrary open set in Y, then for each $\alpha \in \beta$ we have

$$(f \mid A_{\alpha})^{-1}(V) = f^{-1}(V) \cap A_{\alpha} \in SO(A_{\alpha})$$

Because $f | A_{\alpha}$ is semi-continuous. Hence by a well known theorem,

$$f^{-1}(V) \cap A_{\alpha} \in SO(X)$$
 for each $\alpha \in \beta$

As union of any number of semi-open sets is semi-open so,

$$\bigcup_{\alpha\in\beta} [f^{-1}(V)\cap A_{\alpha}] = f^{-1}(V) \in SO(X)$$

 \Rightarrow *f* is semi-continuous.

Theorem 5:-

Let $\{X_{\alpha} : \alpha \epsilon \beta\} \& \{Y_{\alpha} : \alpha \epsilon \beta\}$ be any two families of topological spaces with the same index set β . For each $\alpha \epsilon \beta$, Let $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a mapping. Then a mapping $f : \prod X_{\alpha} \to \prod Y_{\alpha}$ defined by,

 $f(x_{\alpha}) = (f_{\alpha}(x_{\alpha}))$ Is semi-continuous if and only if f_{α} is semi-continuous for each $\alpha \epsilon \beta$.

Proof:-

Let f_{α} is semi-continuous for each $\alpha \epsilon \beta$

Suppose V is the basic open set of the topology of $\prod Y_{\alpha}$.

Then there are $\alpha_j \in \beta$ $(1 \le j \le n)$ and open sets V_{α_j} in $Y_{\alpha_j} s. t$.

$$V = \prod_{j=1}^{n} V_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} Y_{\alpha}$$

Since f_{α_j} is semi-continuous. So $f_{\alpha_j}^{-1}(V_{\alpha_j})$ is semi open X_{α_j} for each $j \ (1 \le j \le n)$

If there exit α_j s.t. $f_{\alpha_j}^{-1}(V_{\alpha_j}) = \varphi$

Then,
$$f^{-1}(V) = \prod_{j=1}^{n} f_{\alpha_j}^{-1} \left(V_{\alpha_j} \right) \times \prod_{\alpha \neq \alpha_j} X_{\alpha} = \varphi$$

Hence $f^{-1}(V)$ is semi-open in $\prod X_{\alpha}$.

If
$$f_{\alpha_j}^{-1}(V_{\alpha_j}) \neq \varphi$$
 for each $j(1 \le j \le n)$

Then,
$$f^{-1}(V) = \prod_{j=1}^{n} f_{\alpha_j}^{-1} \left(V_{\alpha_j} \right) \times \prod_{\alpha \neq \alpha_j} X_{\alpha} \neq \varphi$$

Hence by a well known theorem, $f^{-1}(V)$ is semi open in $\prod X_{\alpha}$.

Now, for any open set ω in Y there exit a family $\{Y_{\lambda}: \lambda \in \Delta\}$ of basic open sets such that $\omega = \bigcup_{\lambda \in \Delta} V_{\lambda}$

Hence by a well known theorem,

$$f^{-1}(\omega) = \bigcup_{\lambda \in \Delta} f^{-1}(V_{\lambda})$$
 is semi-open in $\prod X_{\alpha}$.

 \Rightarrow F is semi-continuous.

Conversely,

Let f is semi-continuous.

Let for each fixed $\alpha \epsilon \beta$,

Let $p_{\alpha}: \prod Y_r \longrightarrow Y_{\alpha}$ be the projection.

Suppose V_{α} is the arbitrary open set in Y_{α} ,

Then, $p_{\alpha}^{-1}(V_{\alpha}) = V_{\alpha} \times \prod_{r \neq \alpha} Y_r$ is open in $\prod Y_r$.

Since *f* is semi-continuous then,

$$f^{-1}[p_{\alpha}^{-1}(V_{\alpha})] = f_{\alpha}^{-1}(V_{\alpha}) \times \prod_{r \neq \alpha} X_r$$

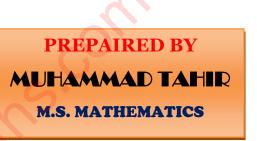
Is semi-continuous in $\prod X_r$

If $f_{\alpha}^{-1}(V_{\alpha}) = \varphi$ then it is obvious that f_{α} is semi-continuous.

If $f_{\alpha}^{-1}(V_{\alpha}) \neq \varphi$

Then, $f_{\alpha}^{-1}(V_{\alpha}) \times \prod_{r \neq \alpha} X_r \neq \varphi$

Hence by a well known theorem,



 $f_{\alpha}^{-1}(V_{\alpha})$ is semi open in X_{α}

 $\Rightarrow f_{\alpha} \text{ is semi-continuous } \forall \alpha \epsilon \beta$

Theorem 6:-

Let $\{X_{\alpha}: \alpha \in \beta\}$ be any family of topological spaces. If $f: X \to \prod X_{\alpha}$ is semi-continuous mapping, then $p_{\alpha \circ}f: X \to X_{\alpha}$ is semi-continuous, where p_{α} is projection of $\prod X_r$ onto X_{α} .

Proof:-

Let for a fixed $\alpha \epsilon \beta$,

Suppose U_{α} is an arbitrary open set in X_{α} then,

 $p_{\alpha}^{-1}(U_{\alpha})$ is open in $\prod X_{\alpha}$.

Since f is semi-continuous, we have

$$f^{-1}[p_{\alpha}^{-1}(U_{\alpha})] = (p_{\alpha} \circ f)^{-1}(U_{\alpha}) \in SO(X)$$

 $\Rightarrow p_{\alpha \circ} f$ is semi-continuous.

Theorem 7:-

If $f: X \to Y$ is an open and semi-continuous mapping, then $f^{-1}(B) \in SO(X)$ for every $B \in SO(Y)$.

Proof:-

For an arbitrary $B \in SO(Y)$,

There exit an open set V in Y such that,

$$V \subseteq B \subseteq Cl(V)$$

www.RanaMaths.com $\sim 42^{\circ}$

Since *f* is open and continuous,

$$\Rightarrow f^{-1}(V) \subseteq f^{-1}(B) \subseteq f^{-1}Cl(V) \subseteq Cl\{f^{-1}(V)\}$$

Since *f* is semi-continuous and V is an open set in Y,

 $\Rightarrow f^{-1}(V) \in SO(X)$

Hence $f^{-1}(B)$ is semi-open in X.

The composition mapping of two semi-continuous mappings is not always semi-continuous.

Corollary:-

Let X, Y and Z are three topological spaces. If $f: X \to Y$ is an open and semi-continuous mapping and $g: Y \to Z$ is semi-continuous mapping, then $g_{\circ}f: X \to Z$ is semi-continuous.

Proof:-

Since $g: Y \rightarrow Z$ is semi-continuous.

Then for any open set V in Z $g^{-1}(V) \in SO(Y)$

And since *f* is open and semi-continuous, then by theorem 7.

 $f^{-1}\{g^{-1}(V)\} \, \epsilon \, SO(X)$

 $\Rightarrow (f^{-1}{}_{o}g^{-1})(V) \in SO(X)$ $\Rightarrow (g_{o}f)^{-1}(V) \in SO(X)$ $\Rightarrow g_{o}f \text{ Is semi-continuous.}$

PREPAIRED BY:-MUHAMMAD TAHIR

M.S Mathematics

COMSATS Institute of Information technology Islamabad.

<mark>0344-8563284</mark>

M.S. MATH From CIIT

Prepared By: - Muhammad Tahir

www.RanaMaths.com $\sim 43 \sim$

Semi-Topological Properties

This course was established in 1973, by "S.Gene Crosseley and S.K Hildebrand" and published by "Texas Journal Math (1973).

Introduction:-

In [1] Norman Levine defined a semi-open set in a topological space as a set A such that there exit an open set 0 so that $0 \subseteq A \subseteq Cl(0)$. He also defined a function to be semi-continuous if and only if the inverse of open sets is semi-open. Also in [1], among others, the following two results were obtained.

Theorem 0.1:-

Let (X, τ) be topological space then,

- 1. $\tau \subseteq SO(X)$, where SO(X) denotes the class of semi-open sets in (X, τ)
- 2. For A \in SO(X, τ) and $A \subseteq B \subseteq \overline{A}$, Then B \in SO(X, τ).

Theorem 0.2:-

Let $f: X \to Y$ be a continuous and open mapping, where X and Y are topological spaces. Let A \in SO(X), Then $f(A) \in SO(Y)$

In [2] the author defined a set to be semi-closed if and only if its compliment is semi-open. Semi-closure and semi-interior were defined in a

manner analogous to closure and interior. Also in [2], among others, the following four results were established.

Theorem 0.3:-

In a topological space all non-void semi-open sets must contain semi-open set.

Proof:-

Let (X, τ) be a topological space and A \in SO(X) be a semi-open set such that A $\neq \phi$.

Then there exit an open set O in X such that,

$$0 \subseteq A \subseteq Cl(0)$$

Then 0 must non empty *i.e.* $0 \neq \varphi$

Because if $0 = \varphi$

 $\Rightarrow Cl(0) = \varphi \qquad \because \overline{\varphi} = \varphi$

And in this case $A \not\subseteq \overline{0}$

 $\Rightarrow 0 \neq \varphi$

Hence $A \neq \varphi$ is semi-open set must contain a non-empty open set.

Semi-Interior of a Set:-

Let (X, τ) be a topological space and $A \neq \varphi$ is a subset of X. Then semi-interior of A is denoted by sInt(A) or A_{\circ} and is the union of all semi-open sets contained in A.

Note:-

- (1) sInt(A) is a semi open set.
- (2) *sInt*(*A*) *is the largest semi*-open set contained in A.

Semi-Interior Point:-

Let (X, τ) be topological space and $A \subseteq X$. A point $x \in A$ is called semi-interior point of A if there exit a semi-open set u in X s.t. $x \in u \subseteq A$.

Note:-

- (1) Collection of all semi-interior points of A is called *sInt*(*A*)
- (2) If $A \in SO(X)$, then every point of A is semi-interior point of A. Because $\forall x \in A$, $x \in A \subseteq A$.

Semi-Closure of a Set:-

Let (X, τ) be a topological space and A is a non-void subset of X. Then semi-closure of A is denoted by sCl(A) OR <u>A</u> and is the intersection of all semi-closed sets containing A.

Note:-

- (1) sCl(A) Is a semi-closed set.
- (2) sCl(A) Is the smallest semi-closed set containing A.
- (3) $Int(A) \subseteq sInt(A) \subseteq A \subseteq sCl(A) \subseteq Cl(A)$

Semi-Limit Point:-

Let (X, τ) be a topological space and A is a subset of X, a point $x \in X$ is called semi-limit point of A if for each semi-open set u containing x, we have $u \cap A \neq \varphi$, $u \cap (A - \{x\}) \neq \varphi$.

Note:-

A is semi-closed if A contains all semi-limit points.

Theorems 0.4:-

- 1. A is semi-open if and only if $A_{\circ} = A$
- 2. A is semi-closed if and only if $\underline{A} = A$

Proof:-

Let A be a semi-open set in X,

Then $A \subseteq A_0$ But $A_0 \subseteq A$ (always)

$$\Rightarrow A = A_{\rm o}$$

Conversely,

Let $A = A_o$ (semi – open)

Since A_os semi-open, therefore A is semi-open.

2 Let A be a semi-closed set in X,

Then $\underline{A} \subseteq A$ But $\underline{A} \subseteq A$ (always)

$$\Rightarrow A = \underline{A}$$

Conversely,

PREPAIRED BY:-

MUHAMMAD TAHIR

M.S Mathematics

COMSATS Institute of Information technology Islamabad.

Let
$$A = \underline{A}$$

Since <u>A</u> is semi-closed, therefore A is semi-closed.

Theorem 0.5:-

If A is open and S is semi-open, then $A \cap S$ is semi-open.

Proof:-

Let S be semi-open in X, Then there exit an open set $O \in X$ such that,

$$0 \subseteq S \subseteq Cl(0)$$

 $\Rightarrow 0 \cap A \subseteq S \cap A \subseteq Cl(0) \cap A \subseteq Cl(0 \cap A)$

Since $O \cap A$ is open in X and $O \cap A \subseteq S \cap A \subseteq Cl(O \cap A)$

 \Rightarrow S \cap A is semi-open in X.

Theorem 0.6:-

Let (X, τ) be a topological space and $A \subseteq X$, then prove that

$$[X - \left(\overline{A} - A\right)] = X$$

Proof:-

L.H.S

 \overline{A} – A Contains no semi-interior points.

$$\Rightarrow sInt(\overline{A} - A) = \varphi$$
$$\Rightarrow X - sInt(\overline{A} - A) = X$$
$$\Rightarrow sCl[X - (\overline{A} - A) = X]$$

PREPAIRED BY MUHAMMAD TAHIR WATTOO M.S. MATHEMATICS CIIT ISLAMABAD 03448563284

Prepared By:- Muhammad Tahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad

$$\Rightarrow [X - (\overline{A} - A]] = X$$

Irresolute Function:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. A function $f: X \to Y$ is called irresolute if $f^{-1}(B)$ is semi-open in X for every semi-open set B in Y.

Theorem 1.1:-

Let $f: (X, \tau_x) \to (Y, \tau_y)$ be continuous and open, then

$$f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$$

Proof:-

 $f: X \rightarrow Y$ is continuous and open.

Let A be any subset of Y.

 $\Rightarrow \overline{A}$ Is a closed set of Y.

 $\Rightarrow f^{-1}(\overline{A})$ Is a closed subset of X.

As $A \subseteq \overline{A}$

As f is open,

 \Rightarrow Image of every open set is open under *f*.

Let (X, τ_x) and (Y, τ_y) be two topological spaces, A function $f: X \to Y$ is continuous iff for every $A \subseteq X \ f(\overline{A}) \subseteq \overline{f(A)}$

Prepared By:- Muhammad 7ahir Wattoo (03 M.S. MATH From CIIT Islamaba $\Rightarrow f^{-1}$ is a continuous function.

Then by a well known theorem for every $A \subseteq Y$,

$$f^{-1}(\overline{A}) \subseteq \overline{f^{-1}(A)}$$
 ----- 2

By relation 1 and 2

$$f^{-1}\left(\overline{A}\right) = \overline{f^{-1}(A)}$$

Theorem 1.2:-

Let
$$f:(X,\tau_x) \to (Y,\tau_y)$$
 be continuous and open then f is

irresolute.

Proof:-

Let $A \in SO(Y)$

Then by definition there exit $O \in \tau_y$ such that,

 $O \subseteq A \subseteq Cl(O)$

 $\Rightarrow f^{-1}(0) \subseteq f^{-1}(A) \subseteq f^{-1}(\overline{A}) = \overline{[f^{-1}(0)]} \quad \because f \text{ is continuous \& open}$

As O is open,

- \Rightarrow $f^{-1}(0)$ is open because f is continuous.
- $\Rightarrow f^{-1}(0) \subseteq f^{-1}(A) \subseteq \overline{(f^{-1}(0))}$
- $\Rightarrow f^{-1}(A) \in SO(X)$
- \Rightarrow *f* is irresolute function.

Example 1.1:-

A continuous irresolute function need not be open.

Proof:-

Let
$$X = \{a, b, c\}$$
,
 $\tau = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\tau^* = \{\varphi, \{a\}, \{a, b\}, X\}$
Let $f: (X, \tau_x) \longrightarrow (Y, \tau_y)$ be defined by $f(x) = x \quad \forall x \in X$

Then this function is continuous and irresolute but not an open function. See,

ins.

$$f^{-1}(\varphi) = \varphi \in \tau \implies f^{-1}(\varphi) \text{ is open}$$

$$f^{-1}(\{a\}) = \{a\} \qquad open \text{ in } (X, \tau)$$

$$f^{-1}(\{a, b\}) = \{a, b\} \qquad open \text{ in } (X, \tau)$$

$$f^{-1}(X) = X \qquad open$$

As inverse image of every open set is open,

 \Rightarrow *f* is continuous.

Now,
$$P(X) = \{\varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{c, b\}, \{a, b, c\}\}$$

Closed sets of (X, τ) are $\{X, \{b, c\}, \{c\}, \{b\}, \varphi\}$

Now,

$$Cl(\varphi) = \varphi, \quad Cl(X) = X, \quad Cl\{a\} = X$$
$$Cl\{a, b\} = X, \quad and \quad Cl\{a, c\} = X$$

 $\Rightarrow SO(X, \tau) = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}$

Now, closed sets of (X, τ^*) are $\{\varphi, X, \{b, c\}, \{c\}\}$

$$\Rightarrow SO(X,\tau_x) = \{\varphi,\{a\},\{a,b\},\{a,c\},X\}$$

And, $f^{-1}(\varphi) = \varphi \in SO(X, \tau)$

$$f^{-1}(\{a\})=\{a\}\,\epsilon\,SO(X,\tau)$$

$$f^{-1}(\{a, b\}) = \{a, b\} \in SO(X, \tau)$$
$$f^{-1}(\{a, c\}) = \{a, c\} \in SO(X, \tau)$$
$$f^{-1}(X) = X \in SO(X)$$

As inverse image of every semi-open set is semi open,

 \Rightarrow *f* is irresolute.

Now as $\{a, c\}$ is open in (X, τ)

- $\Rightarrow f(\{a,c\}) = \{a,c\} \notin SO(X,\tau^*)$
- \Rightarrow Image of every open set is not open.
- \Rightarrow *f* is not open.

Theorem 1.3:-

Let C(X, Y), SC(X, Y) and I(X, Y) denote respectively, the classes of continuous, semi continuous and irresolute functions from X to Y, where X and Y are topological spaces. Then,

 $C(X,Y) \subseteq SC(X,Y)$ and $I(X,Y) \subseteq SC(X,Y)$

Proof:-

1 Let $f \in C(X, Y)$

- \Rightarrow *f* is irresolute function.
- \Rightarrow Inverse image of every open set (say A) of Y is open in X.
- $\Rightarrow f^{-1}(A)$ is open in X.

As every open set is also semi-open,

 \Rightarrow $f^{-1}(A)$ is semi-open in X.

- \Rightarrow Inverse image of every open set of Y is semi-open in X.
- $\Rightarrow f \in SC(X,Y)$

 $\Rightarrow C(X,Y) \subseteq SC(X,Y)$

2 Let $g \in I(X, Y)$

- \Rightarrow *g* is irresolute function.
- ⇒ Inverse image of every semi-open set (say B) of Y is semi-open in X.
- $\Rightarrow f^{-1}(B)$ is semi-open in X.

As all open sets of $Y \subseteq$ semi-open sets of Y

- ⇒ Inverse image of every open set (say B) is semi-open in X.
- \Rightarrow *g* is semi-continuous.
- \Rightarrow $g \in SC(X, Y)$
- $\Rightarrow I(X,Y) \subseteq SC(X,Y)$ (proved)

Theorem 1.4:-

A function $f: (X, \tau_x) \to (Y, \tau_y)$ is irresolute if and only if, for every semi-closed subset H of Y, $f^{-1}(H)$ is semi-closed in X.

Proof:-

Let $f: X \to Y$ be irresolute.

Let $H \in SC(Y)$, then Y - H is semi0open in Y.

Or,
$$f^{-1}(Y - H) = f^{-1}(Y) - f^{-1}(H) = X - f^{-1}(H)$$
 :: $f^{-1}(Y) = X$

 \Rightarrow X - f⁻¹(H) is semi open in X. \therefore f is irresolute.

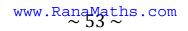
 \Rightarrow $f^{-1}(H)$ is semi closed in X.

Conversely,

Let
$$f^{-1}(H)$$
 is semi-closed in X, for every semi-closed set H in Y.

We have to prove that *f* is irresolute.

As $B \in SO(Y)$



 $\Rightarrow (Y - B) \in SC(Y)$ $\Rightarrow f^{-1}(Y - B) \in S(X) \qquad \because f^{-1}(H) \in SC(X) \forall H \in SC(Y)$ $\Rightarrow f^{-1}(Y) - f^{-1}(B) \in SC(X)$ $\Rightarrow X - f^{-1}(B) \in SC(X)$ $\Rightarrow f^{-1}(B) \in SC(X)$ $\Rightarrow f^{-1}(B) \in SC(X)$ $\Rightarrow f \text{ is irresolute.} (proved).$

Theorem 1.5:-

A function $f: S \to T$, where S and T are topological spaces is irresolute if and only if for every subset A of S, $f(\underline{A}) \subseteq f(A)$

Proof:-

Let $f: S \rightarrow T$ be irresolute function.

Let $A \in S$, Then $\underline{f(A)} \in SC(T)$

 $\Rightarrow f^{-1}[f(A)] \text{ is semi-close in } S. \qquad \because f \text{ is irresolute.}$

Now, $A \subseteq f^{-1}f(A) \subseteq f^{-1}[\underline{f(A)}]$ $: f(A) \subseteq \underline{f(A)}$

$$\Rightarrow \underline{A} \subseteq sClf^{-1}[f(A)] = f^{-1}\underline{f(A)}$$
$$\Rightarrow f(\underline{A}) \subseteq f[f^{-1}\underline{f(A)}] \subseteq \underline{f(A)}$$
$$\Rightarrow f(A) \subseteq f(A)$$

Conversely,

Assume that $f(\underline{A}) \subseteq f(A)$

We have to prove that *f* is irresolute.

Let $H \in SC(T)$

PREPAIRED BY MUHAMMAD TAHIR M.S. MATHEMATICS

 $\therefore f^{-1}f(A)$ is semi closed.

Then
$$f\left[f^{-1}(H)\right] \subseteq ff^{-1}(H) \subseteq H \subseteq H$$
 \because *H* is semi closed
Now, $f^{-1}(H) \subseteq f^{-1}f[f^{-1}(H)] \subseteq f^{-1}(H) = f^{-1}(H)$
 $\Rightarrow f^{-1}(H) \subseteq f^{-1}(H)$ But $f^{-1}(H) \subseteq f^{-1}(H)$ always.
 $\Rightarrow f^{-1}(H) = f^{-1}(H)$
 $\Rightarrow f^{-1}(H) \in SC(S)$
 $\Rightarrow f$ is irresolute.

Theorem 1.6:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. A function $f: X \to Y$ is irresolute if and only if for all $B \subseteq Y$, $f^{-1}(B) \subseteq f^{-1}(\underline{B})$.

Proof:-

Assume that f is irresolute.

Let B be any subset of Y. Then $\underline{B} \in SC(Y)$,

Hence,

$${}^{1}(\underline{B}) \in SC(X)$$

But we know $B \subseteq \underline{B}$

$$\Rightarrow f^{-1}(B) \subseteq f^{-1}(\underline{B})$$

$$\Rightarrow SC(f^{-1}(B)) \subseteq SC(f^{-1}(\underline{B})) = f^{-1}(\underline{B})$$

$$\Rightarrow \underline{f^{-1}(B)} \subseteq f^{-1}(\underline{B})$$

Conversely,

Let,
$$\underline{f^{-1}(B)} \subseteq f^{-1}(\underline{B})$$
 for every subset B of Y.

We will prove that f is irresolute.

For this we will show that the inverse image of semi-closed set is semi-closed.

Let
$$B \in SC(Y)$$
 then, $\underline{B} = B$
By hypothesis, $(f^{-1}(B)) \subseteq f^{-1}(\underline{B}) = f^{-1}(B)$
And $f^{-1}(B) \subseteq (f^{-1}(B)) \subseteq f^{-1}(\underline{B}) \subseteq f^{-1}(B)$
 $\Rightarrow f^{-1}(B) \subseteq (f^{-1}(B)) \subseteq f^{-1}(B)$
 $\Rightarrow f^{-1}(B) = f^{-1}(B)$
 $\Rightarrow f^{-1}(B) \in SC(X)$
 $\Rightarrow f$ is irresolute.

Theorem 1.7:-

Let (X, τ_x) and (Y, τ_y) and (Z, τ_z) be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are both irresolute then $g_\circ f: X \to Z$ is irresolute.

Proof:-

Let $B \in SO(Z)$

 \Rightarrow $g^{-1}(B)$ is semi open in Y \therefore g is irresolute.

Now as $g^{-1}(B) \in SO(Y)$ and f is irresolute from $X \rightarrow Y$

$$\Rightarrow f^{-1}(g^{-1}(B)) \in SO(X)$$

$$\Rightarrow f^{-1}(g^{-1}(B)) = (g_{\circ}f)^{-1}(B) \in SO(X)$$

Now as $B \in SO(Z)$ and $(g_{\circ}f)^{-1}(B) \in SO(X)$

 \Rightarrow $g_{\circ}f$ is irresolute from X \rightarrow Z.

www.RanaMaths.com $\sim 56 \sim$

Pre-Semi-Open Function:-

Let X and Y be topological spaces, a function $f: X \to Y$ is said to be pre-semi-open if and only if, for all $A \in SO(X)$, $f(A) \in SO(Y)$.

Theorem 1.8:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. If $f: X \to Y$ is continuous and open, then f is irresolute and pre semi open.

Proof:-

Let $f: X \rightarrow Y$ be continuous and open mapping.

To prove that f is irresolute.

Consider a semi open set B in Y. Then there exit an open se u in Y such that,

$$u \subseteq B \subseteq Cl(u)$$

 $\Rightarrow f^{-1}(u) \subseteq f^{-1}(B) \subseteq f^{-1}Cl(u) = Cl(f^{-1}(u)) \quad \because f \text{ is cont & open}$

Since *f* is continuous, therefore $f^{-1}(u)$ is open in X and

$$f^{-1}(u) \subseteq f^{-1}(B) \subseteq Cl(f^{-1}(u))$$
$$f^{-1}(B) \in SO(X)$$

⇔

 \Rightarrow *f* is irresolute.

Now we prove that f is pre semi open.

Let $A \in SO(X)$

⇒ There exit an open set 0 in X such that,

$$0 \subseteq A \subseteq Cl(0)$$

www.RanaMaths.com
$$\sim 57$$

 $\Rightarrow f(0) \subseteq f(A) \subseteq f[Cl(0)] \subseteq Cl[f(0)] \qquad \because f \text{ is continuous.}$ $\Rightarrow \qquad f(0) \subseteq f(A) \subseteq Cl[f(0)]$

Since f is open mapping, therefore f(O) is open in Y.

Hence, $f(A) \in SO(Y)$ this implies f is pre-semi open.

Semi-Homeomorphism:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. X and Y are said to be semi-homeomorphism if and only if there exit a function $f: X \to Y$ such that,

(1) f is bijective (2) f is irresolute

(3) f is pre semi open.

Theorem 1.9:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. If $f: X \to Y$ is homeomorphism then f is semi homeomorphism.

Proof:-

Let $f: X \rightarrow Y$ be homeomorphism, then

1. f is bijective 2. f is continuous 3. f is open.

Since *f* is continuous and open bijection,

Therefore it is irresolute and pre semi open bijection.

Hence f is semi-homeomorphism.

Example 1.2:-

A semi-homeomorphism need not be homeomorphism.

Solution:-

(See example 1.1)

Remark 1.1:-

Image of T_o space under semi homeomorphism may not be a T_o space.

Remark 1.2:-

The image of a T_1 space under a semi homeomorphism is not necessarily a T_1 -space.

Example 1.4:-

Let $X = (R \times R)$, where R denote the set of real numbers and let,

 $\tau_1 = \{\varphi, \text{Together with all subsets of X whose compliments are subsets of a finite number of lines parallel to the x-axis}$

Note that, $SO(X, \tau_1) = \tau_1$

And let. $\tau_2 = \{\varphi, \text{Together with all subsets of X whose compliments are a finite number of lines parallel to x-axis}\}$

Note that, $SO(X, \tau_2) = SO(X, \tau_1)$

Furthermore, defining $f: (X, \tau_1) \rightarrow (X, \tau_2)$ by f(p) = p for $p \in X$,

We see that f is a semi-homeomorphism.

Observe that (X, τ_1) is a T_1 space where (X, τ_2) is not.

Theorem 1.10:-

If $f: X \to Y$ is a semi homeomorphism, then $\underline{f^{-1}(B)} = f^{-1}(\underline{B})$ for all B subset of Y.

Proof:-

 $f: X \longrightarrow Y$ is semi homeomorphism.

 \Rightarrow *f is* 1) bidective. 2) irresolute. 3) pre semi open.

Let B be any subset of Y.

Then $\underline{B} \in SC(Y)$,

Hence, $f^{-1}(\underline{B}) \in SC(X)$

As we know that $B \subseteq \underline{B}$

As *f* is semi homeomorphism,

 \Rightarrow *f* is pre semi open and bijective.

- ➡ Image of every semi open set is semi open under f
- $\Rightarrow f^{-1}$ is irresolute.

Then by theorem 1.5 for every $B \in Y$

 $f^{-1}(\underline{B}) \subseteq \underline{f^{-1}(B)}$ -----2

Prepared By:- Muhammad 7ahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad From equation 1 and 2

 $f^{-1}(\underline{B}) = \underline{f^{-1}(B)}$

Corollary 1.1:-

Then by theorem 1.6, for $B \in X$

 $f(B) \subseteq f(\underline{B})$ ------2

From relation 1 and 2

Corollary 1.2:-

If $f: X \to Y$ is semi homeomorphism, then $f(B_0) = (f(B))_0$ for all $B \subseteq X$.

Proof:-

$$B_{o} = \left(X - (X - B)\right)$$
Thus, $f(B_{o}) = f\left[X - (X - B)\right]$

$$= \left[Y - f(X - B)\right]$$

$$= \left[Y - f(X - B)\right]$$

$$= \left[Y - f(X - B)\right]$$

$$\Rightarrow f(B_{o}) = [f(B)]_{o}$$
PREPAIRED BY
MUHAMAAD TAHIR
M.S. MATHEMATICS

Corollary 1.3:-

If $f: X \to Y$ is semi homeomorphism, then $f^{-1}(B_o) = (f^{-1}(B))_o$ for all $B \subseteq Y$.

Proof:-

As $f: X \rightarrow Y$ is semi homeomorphism,

 \Rightarrow $f^{-1}: Y \longrightarrow X$ is irresolute (bijective and pre semi open)

Let
$$B \subseteq Y$$
, $B_o = \left[Y - \left(\underline{Y - B}\right)\right]$
Thus, $f^{-1}(B_o) = f^{-1}\left[Y - \left(\underline{Y - B}\right)\right]$
 $= \left[X - f^{-1}\left(\underline{Y - B}\right)\right]$
 $= \left[X - \left[\frac{f^{-1}(Y - B)}{B}\right]\right]$ $\because f^{-1}$ is irresolute
 $= \left[X - \left[\underline{X - f^{-1}(B)}\right]\right]$
 $\Rightarrow f^{-1}(B_o) = [f^{-1}(B)]_o$ (proved)

Theorem 1.11:-

 $(\underline{A})_{\circ} = \varphi$ if and only if A is nowhere dense set.

Proof:-

Let A is nowhere dense set.

As we know that, $A^{\circ} \subseteq A_{\circ} \subseteq A \subseteq \underline{A} \subseteq \overline{A}$,

As A is nowhere dense set,

 $\Rightarrow (\overline{A})^{\circ} = \varphi.$ This implies, \overline{A} contains no open set. $\Rightarrow \underline{A}$ Contains no open set. $\Rightarrow \underline{A}$ Contains no semi open set. $\Rightarrow (\underline{A})_{\circ} = \varphi.$

Conversely,

Let,
$$(\underline{A})_{o} = \varphi$$

We know by a well known theorem, (theorem 0.7)

www.RanaMaths.com $\sim 63 \sim$

 $(\overline{A})^{\circ} \subseteq (\underline{A})_{\circ}$ Since $(\underline{A})_{\circ} = \varphi$ this implies $(\overline{A})^{\circ} \subseteq \varphi$

 $\Rightarrow (\overline{A})^{\circ} = \varphi$ $\Rightarrow A \text{ is nowhere dense set.}$

Theorem 1.12:-

If $f: X \to Y$ is a semi homeomorphism and $A \subseteq X$ is nowhere dense in X. Then f(A) is nowhere dense in Y.

Proof:-

г

٦

As A is nowhere dense in X. Then by theorem 1.11

$$(\underline{A})_{\mathbf{0}} = \varphi$$

We have to show $(f(A))_{o} = \varphi$

As $f: X \to Y$ is semi homeomorphism,

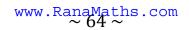
$$\Rightarrow \underline{f(A)} = f(\underline{A})$$

$$\Rightarrow [\underline{f(A)}]_{\circ} = [f(\underline{A})]_{\circ} = f(\underline{A})_{\circ} \qquad \because \text{ corollary 1.2}$$

$$= f(\varphi)$$

$$\Rightarrow \left[\underline{f(A)} \right]_{\circ} = \varphi$$

$$\Rightarrow f(A) \text{ is nowhere dense set}$$



Semi-Topological Properties:-

A property which is preserved under semi homeomorphism is said to be a semi-topological property.

www.RanaMaths.com $\sim 65 \sim$

SEMI WEAKLY CONTINUOUS MAPPINGS

This course was established in 1985 by "T. Noiri and B. Ahmad" and was published by "Kyungpook Math Journal vol.25, No.2 page 123-126.

Weakly Continuous Function:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. A function $f: X \to Y$ is said to be weakly continuous at X if for each $x \in X$ and for each open set V containing f(x), there exit $u \in SO(X, \tau)$ such that $f(u) \subseteq Cl(V)$.

Almost Continuous Function:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. A function $f: X \to Y$ is said to be almost continuous if for each $x \in X$ and for each open set V containing f(x), there exit a semi-open set u in X containing x such that $f(u) \subseteq Int[Cl(V)]$

Note:-

Almost continuous function is also weakly continuous,

 $:: Int[Cl(V)] \subseteq Cl(V)$

But converse is not true in general.

Semi-Weakly continuous Function:-

Let (X, τ_x) and (Y, τ_y) are topological spaces, a function $f: X \to Y$ is said to be semi-weakly continuous function (s.w.c) at X if for each $x \in X$ and for each open set V containing f(x) there exit $u \in SO(X)$ such that, $f(u) \subseteq sCl(V)$

Note:-

- Semi-continuous \rightarrow Semi-weakly continuous \rightarrow Weakly-continuous.
- Almost continuous \rightarrow Weakly-continuous.

Example:-

Let X = Y = R,

Let τ be the usual topology on X and σ be the countable topology on Y. Then the identity mapping $f: X \to Y$ is semi-weakly continuous but not semicontinuous.

Theorem 1:-

Let (X, τ_x) and (Y, τ_y) be topological spaces. A mapping $f: X \to Y$ is semi weakly continuous if and only if for every open set V in Y,

$$f^{-1}(V) \subseteq sInt[f^{-1}(sCl(V))]$$

Proof:-

Let $x \in X$ and V be an open set containing f(x), satisfying the relation,

$$f^{-1}(V) \subseteq sInt[f^{-1}sCl(V)]$$

We will prove that f is semi weakly continuous.

Put $u = sInt[f^{-1}(sCl(v))],$ Then, $x \in u \in SO(X, x)$ $\Rightarrow u = sInt[f^{-1}(sCl(V))] \subseteq f^{-1}(sCl(V))$ $\Rightarrow f(u) \subseteq ff^{-1}[sCl(V)] \subseteq sCl(V)$ $\Rightarrow f(u) \subseteq sCl(V)$ $\Rightarrow f(u) \subseteq sCl(V)$ $\Rightarrow f$ is semi weakly continuous.

Conversely,

Let
$$f: X \to Y$$
 be semi weakly continuous

Let $x \in X$ and V be an open set containing f(x)

 $\Rightarrow \qquad x \in f^{-1}(V)$

By hypothesis (f is semi weakly continuous), there exit a semi open set u in X containing x such that $f(u) \subseteq sCl(V)$

$$\Rightarrow x \in u \subseteq f^{-1}[sCl(V)]$$

$$\Rightarrow u = sInt(u) \qquad \because u \text{ is open}$$

$$\subseteq sInt[f^{-1}(sCl(V))]$$

$$\Rightarrow x \in sInt[f^{-1}(sCl(V))]$$

$$\Rightarrow f^{-1}(V) \subseteq sInt[f^{-1}(sCl(V))]$$

Theorem 2:-

Let (X, τ_x) and (Y, τ_y) are topological spaces. A function $f: X \to Y$ be a function and $g: X \to X \times Y$ be the graph mapping of f given

Prepared By:- Muhammad 7ahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad by, g(x) = (x, f(x)) for every $x \in X$. If g is semi-weakly continuous, then f is semi-weakly continuous.

Proof:-

Let $x \in X$ and V be an open set containing f(x).

 \Rightarrow X×V containing (x, f(x)) = g(x).

Since *g* is semi weakly continuous, therefore there exit $u \in SO(X, x)$ *s*. *t*.

$$g(u) \subseteq sCl(X \times V) = sCl(X) \times sCl(V)$$

= X × sCl(V)
Or $(u, f(u)) \subseteq X \times sCl(V)$ $\because g(x) = (x, f(x)) \text{ so } g(u) = (u, f(u))$
 $\Rightarrow f(u) \subseteq sCl(V)$ $\because g \text{ is graph of } f.$
 $\Rightarrow f \text{ is semi weakly continuous.}$

Theorem 3:-

Let (X, τ_x) and (Y, τ_y) be topological spaces and if $f: (X, \tau_x) \rightarrow (Y, \tau_y)$ is semi-weakly continuous mapping and Y is housdorff space. Theen the graph G(f) is a semi-closed set of X×Y.

Proof:-

Let $(x, y) \notin G(f)$

We will show that (x, y) is not semi limit point of G(f).

Now, since $(x, y) \notin G(f)$ so $y \neq f(x)$

Since Y is a T_2 -space therefore there exit open sets W and V in Y such that,

$$f(x) \in W$$
; $y \in V$ and $W \cap V = \varphi$

Since *f* is semi weakly continuous, therefore there exit a $u \in SO(X, x)$

Such that $f(u) \subseteq sCl(W)$

Since $V \cap W = \varphi$

 $\Rightarrow V \cap sCl(W) = \varphi$ $\Rightarrow V \cap f(u) = \varphi \quad \because f(u) \subseteq sCl(W)$ $\Rightarrow (U \times V) \cap G(f) = \varphi$

Where $U \times V \in SO(X \times Y, (x, y))$

 $\Rightarrow (x, y) \text{ is not semi limit point of } G(f).$ $\Rightarrow G(f) \text{ contains all of its semi limit points.}$ $\Rightarrow G(f) \text{ is semi closed set of } X \times Y.$

PREPAIRED BY MUHAMMAD TAHIR M.S. MATHEMATICS

Semi-Connected Space (s-Connected Space):

A topological space (X, τ_x) is said to be semi connected space if it cannot be expressed as union of two nonempty disjoint semi open sets.

Note:-

- > Every semi connected space is connected.
- A connected space may not be semi connected.

Example:-

$$X = \{a, b, c\}$$

$$\tau = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}$$

It is connected because we cannot write it as union of two non empty disjoint open sets.

Now, $SO(X) = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$

And, $\{a\} \cup \{b, c\} = X$ & $\{a\} \cap \{b, c\} = \varphi$

- \Rightarrow This is semi disconnected.
- \Rightarrow This is not semi connected space.

Theorem 4:-

Let (X, τ_x) is an s-connected space and $f: (X, \tau_x) \to (Y, \tau_y)$ is a semi weakly continuous surjection, then Y is connected.

Proof:-

Suppose that Y is disconnected.

⇒ There exit open sets U and V in Y such that, $U \cup V = Y \& U \cap V = \varphi$ $\Rightarrow f^{-1}(Y) = f^{-1}(U \cup V)$ $\Rightarrow X = f^{-1}(U) \cup f^{-1}(V) - \cdots$ And $U \cap V = \varphi$

$$\Rightarrow f^{-1}(U \cap V) = f^{-1}(\varphi)$$

$$\Rightarrow f^{-1}(U) \cap f^{-1}(V) = \varphi \quad \dots \qquad 2$$

Since *f* is onto and $U \neq \varphi \& V \neq \varphi$

$$\Rightarrow f^{-1}(U) \neq \varphi \quad \& \quad f^{-1}(V) \neq \varphi$$

Now, since *f* is semi weakly continuous and U, V are open in Y, therefore,

$$f^{-1}(U) \subseteq sInt[f^{-1}sCl(u)]$$

г<u>а</u> 1

$$f^{-1}(V) \subseteq sInt[f^{-1}sCl(v)]$$

$$\Rightarrow f^{-1}(U) \subseteq sInt\{f^{-1}(U)\} \quad and \quad f^{-1}(V) \subseteq sInt\{f^{-1}(V)\}$$

$$\Rightarrow f^{-1}(U) = sInt[f^{-1}(U)] \quad and \quad f^{-1}(V) = sInt\{f^{-1}(V)\}$$

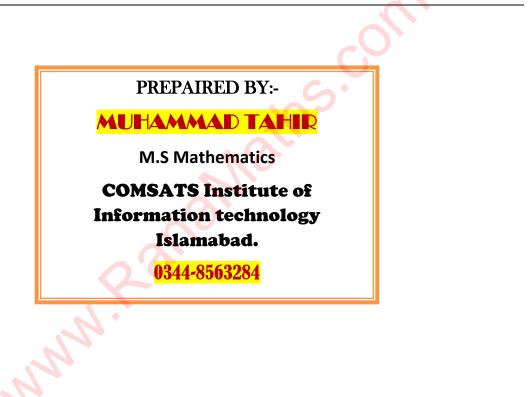
$$\Rightarrow f^{-1}(U) \text{ and } f^{-1}(V) \text{ are semi open sets.}$$

So by relation **1** and **2** we arte get that X is semi disconnected.

1 ---->

A contradiction.

Hence, the proof.



And

www.RanaMaths.com

s-Continuous, s-Open, s-Closed Functions

This course was established in 2001 by "M. Khan (Department of Mathematic, Govt. College Multan-Pakistan) and B. Ahmed (B.Z.U. Multan Pakistan)"

s-Continuous Function:-

A function $f: X \to Y$ is said to be s-continuous function (also called strongly semi-continuous) if the inverse image of every semi open set is open.

Note:-

It is known that that an s-continuous function is irresolute, semi continuous and continuous.

Regular Space(*):-

A topological space (X, τ) is said to be regular if for every $x \in X$ and for any closed subset A of X such that $x \notin A$

There exit two open sets U and V such that, $x \in u$, $A \subseteq V$ and $U \cap V = \varphi$

p-Regular Space:-

A topological space (X, τ) is said to be p-regular space if for each semi closed set F and $x \in X - F$, there exit disjoint open sets U and V such that $x \in U$ and $F \subseteq V$

Semi-Regular Space:-

A space (X, τ) is said to be semi-regular if for each semi closed set F and $x \in X - F$ there exit disjoint semi open sets U and V such that $F \subseteq V$ $x \in U$ and

Clearly p-regular space is semi-regular as well as regular but the converse is not true in general.

Example:-

Let $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is semi regular but not p-regular.

Solution:-

Solution:- $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ Closed sets of X={X, {b, c}, {a, c}, {c}, φ }

$$\overline{\varphi} = \varphi, \quad \overline{X} = X, \quad \overline{\{a\}} = \{a, c\}, \quad \overline{\{b\}} = \{b, c\},$$

 $\overline{\{a, b\}} = X$

 \Rightarrow SO(X) = { φ , {a}, {b}, {a, b}, {a, c}, {b, c}, X} \Rightarrow SC(X) = {X, {b, c}, {a, c}, {c}, {b}, {a}, {\varphi}

Then for each semi closed set (say F) of X and $x \in X - F$, there exit two disjoint semi open sets (say U and V) such that $x \in U$ and $F \subseteq V$

 \Rightarrow (*X*, τ) is semi regular.

Now for $\{b, c\} \in SC(X)$ and $a \in X - \{b, c\}$ we cannot find two open sets U and V in X such that $a \in U$ and $\{b, c\} \subseteq V$

 \Rightarrow (*X*, τ) is not semi regular.

Theorem 1:-

The image of a regular space under a clopen and s-continuous surjection is p-regular space.

Proof:-

Let $F \in SC(Y)$ and $y \in Y - F$,

Let $x \in f^{-1}(y)$

Since *f* is s-continuous therefore by a well known theorem, $f^{-1}(F)$ is closed in X and $x \in X - f^{-1}(F)$.

Since X is regular therefore there exit open sets U and V in X such that.

$$x \in U$$
 and $f^{-1}(f) \subseteq V$ and $U \cap V = \varphi$

Since *f* is closed, therefore by a well known theorem there exit an open set W of Y such that $F \subseteq W$ and $f^{-1}(W) \subseteq V$

Therefore, $U \cap f^{-1}(W) = \varphi$ $\because U \cap V = \varphi \& f^{-1}(W) \subseteq V$

And hence, $f(u) \cap V = \varphi$,

Since f is open, so f(u) is open in Y. And $y \in f(u)$ \therefore $f(x) = y \& f(x) \in f(u)$

i.e. there exit two open sets f(u) and W in Y such that,

$$F \subseteq W \quad \& \quad y \in f(u)$$

 \Rightarrow Y is p-regular.

Theorem 2:-

Let $f: X \to Y$ be s-continuous and semi closed surjection with compact point inverses and X is a regular space, then Y is semi regular.

Proof:-

Let $C \in SC(Y)$ and $y \in Y - C$

Since f is s-continuous therefore by a well known theorem $f^{-1}(C)$ is closed in X.

Moreover, the compact sets $f^{-1}(y)$ and $f^{-1}(C)$ are disjoint in a regular space.

As X is regular space, therefore there exit two disjoint open sets F and G in X such that, $f^{-1}(y) \subseteq F$ and $f^{-1}(C) \subseteq G$

Since, f is semi closed then by a well known theorem there exit two semi open sets V and W containing y and C respectively such that,

$$f^{-1}(V) \subseteq F$$
 and $f^{-1}(W) \subseteq G$

Since $F \cap G = \varphi$,

$$\Rightarrow f^{-1}(V) \cap f^{-1}(W) = \varphi$$
$$\Rightarrow V \cap W = \varphi$$

i.e. for $C \in SC(Y)$ and $y \in Y - C$, there exit two semi open sets V and W in Y such that $y \in V$ and $C \subseteq W$ and $V \cap W = \varphi$

 \Rightarrow Y is a semi regular space.

Corollary:-

Let $f: X \to Y$ be s-continuous and closed surjection with compact point inverses. Then Y is p-regular if x is regular.

Prepared By:- Muhammad Tahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad Proof:-

Let
$$C \in SC(Y)$$
 and $y \in Y - C$

Since f is semi continuous, therefore by a well known theorem $f^{-1}(C)$ is closed in X. Moreover, the compact sets $f^{-1}(y)$ and $f^{-1}(C)$ are disjoint in a regular space.

As X is regular space, therefore there exit two disjoint open sets F and G in X such that, $f^{-1}(y) \subseteq F$ & $f^{-1}(C) \subseteq G$

Since f is closed surjection, therefore by a well known theorem, there exit two open sets V and W in Y containing y and C respectively such that,

 $f^{-1}(V) \subseteq F \quad \& \quad f^{-1}(W) \subseteq G$ Since, $F \cap G = \varphi$ this implies $f^{-1}(V) \cap f^{-1}(W) = \varphi$

And hence, $V \cap W = \varphi$ *i.e.* for $C \in SC(Y) \& y \in Y - C$, there exit two open sets V and W such that $y \in V$ and $C \subseteq W \& V \cap W = \varphi$

 \Rightarrow Y is a p-regular space.

Open Function (*):-

A function f is said to be open function if image of each open set is open.

Semi-Open Function (*):-

A function $f: X \rightarrow Y$ is said to be semi-open function if image of every open set of X is semi-open in Y.

Pre Semi-Open Function (*):-

Let X and Y be topological spaces, a function $f: X \to Y$ is said to be pre-semi-open if and only if for all $A \in SoX$), $f(A) \in SO(Y)$.

s-Open Function:-

A function $f: X \to Y$ is said to be s-open if the image of every semi-open set is open.

It is known that every s-open function is open, semi-open and pre-semiopen.

Theorem 3:-

For a function $f: X \to Y$, the following are equivalent.

1) <i>f</i> is s-open	
$2) f[sInt(A)] \subseteq Intf(A)$	for each $A \subseteq X$
3) $sInt[f^{-1}(B)] \subseteq f^{-1}Int(B)$	for each $B \subseteq Y$
$4) f^{-1}[Cl(B)] \subseteq sClf^{-1}(B)$	for each $B \subseteq Y$
5) $f^{-1}[Bd(B)] \subseteq sBd[f^{-1}(B)]$	for each $B \subseteq Y$

Proof:-

 $(1) \Rightarrow (2) Obviously f[sInt(A)] \subseteq f(A)$

Now sInt(A) is a semi open set in X.

- $\Rightarrow f[sInt(A)] \text{ is open in Y} \qquad \because f \text{ is s-open.}$
- $\Rightarrow f[sInt(A)] \text{ is open subset of } f(A) \text{ in Y, But } Int(A) \text{ is the largest open} \\ \text{set contained in } f(A)$

$$\Rightarrow f[sInt(A)] \subseteq Int f(A)$$
(2) \Rightarrow (3) For any $B \subseteq Y$, put $f^{-1}(B) = A \subseteq X$
Then by (2), $f[sIntf^{-1}(B)] \subseteq Int(B)$
 $\Rightarrow f[sIntf^{-1}(B)] \subseteq Int(B)$
 $\Rightarrow sIntf^{-1}(B) \subseteq f^{-1}[Int(B)]$
(3) \Rightarrow (4) By 3 $sIntf^{-1}(B) \subseteq f^{-1}[Int(B)]$
 $\Rightarrow X - f^{-1}[Int(B)] \subseteq X - sIntf^{-1}(B) = sCl[X - f^{-1}(B)]$
 $\Rightarrow f^{-1}(Y) - f^{-1}[Int(B)] \subseteq sCl[f^{-1}(Y) - f^{-1}(B)]$
 $\Rightarrow f^{-1}(Y) - f^{-1}[Int(B)] \subseteq sClf^{-1}[Y - B]$
 $\Rightarrow f^{-1}Cl(Y - B] \subseteq sClf^{-1}[Y - B]$
 $\Rightarrow f^{-1}Cl(C) \subseteq sClf^{-1}(C)$, where $Y - B = C \in Y$
(4) \Rightarrow (5) For $B \subseteq Y$,
 $Bd(B) = Cl(B) \cap Cl(Y - B)$ is closed set in Y.
Now, $f^{-1}Bd(B) = f^{-1}Cl(B) \cap f^{-1}Cl(Y - B)$
 $\subseteq sClf^{-1}(B) \cap [sClf^{-1}(Y) - sClf^{-1}(B)]$
 $= sClf^{-1}(B) \cap [sCl(X) - sClf^{-1}(B)]$
 $\Rightarrow f^{-1}Bd(B) \subseteq sClf^{-1}(B) \cap sCl[X - f^{-1}(B)] = sBd(B)$
 $\Rightarrow f^{-1}Bd(B) \subseteq sBdf^{-1}(B)$
(5) \Rightarrow (1) Let U be an arbitrary open set in X,

Put Y - f(U) = B

Now we show that B is closed in Y.

By 5, $U \cap f^{-1}Bd(B) \subseteq U \cap sBdf^{-1}(B)$

$$\Rightarrow f[U \cap f^{-1}Bd(B)] \subseteq f[U \cap sBdf^{-1}(B)]$$

Since $f(U) \cap Bd(B) = f[U \cap f^{-1}Bd(B)]$

Therefore we have,

B = Y - f(U) gives, $f^{-1}(B) = f^{-1}[Y - f(U)] = f^{-1}(Y) - f^{-1}f(U)$ $\subseteq X - U \qquad \because U \subseteq f^{-1}f(U) \Longrightarrow (f^{-1}f(U))' \subseteq U'$ $\Rightarrow f^{-1}(B) \subseteq X - U$ \Rightarrow $sClf^{-1}(B) \subseteq sCl(X - U) = X - sInt(U) = X - U$: U is semi open. \Rightarrow sClf⁻¹(B) \subseteq X – U $\Rightarrow sClf^{-1}(B) \cap U = \varphi$ (2) Now, $U \cap sBdf^{-1}(B) = U \cap [sClf^{-1}(B) \cap sCl(X - f^{-1}(B))]$ $= U \cap sClf^{-1}(B) \cap sCl[X - f^{-1}(B)]$ $= \varphi \cap sCl[X - f^{-1}(B)] \qquad by \ 2$ $= \varphi$ Using $U \cap sBdf^{-1}(B) = \varphi$, 1 becomes $f(U) \cap Bd(B) \subseteq \varphi$ PREPAIRED BY $\Rightarrow f(U) \cap Bd(B) = \varphi$ MUHAMMAD TAHIR $\Rightarrow Bd(B) \subseteq Y - f(U) = B$ ⇒ B contains all of its boundary points. **M.S. MATHEMATICS**

This proves that f is s-open function.

 \Rightarrow B is closed.

 \Rightarrow f(U) is open in Y.

Theorem 4:-

For any function $f: X \to Y$ and $g: Y \to Z$, we have,

- (1) $g_{o}f$ is s-open if f is s-open and g is open.
- (2) $g_{o}f$ is s-open if f is pre semi open and g is s-open.
- (3) $g_{o}f$ is open if f is semi open and g is s-open.
- (4) $g_{o}f$ is pre semi open if f is s-open and g is semi open.

Proof:-

Proves of these statements are obvious by definition.

s-Closed Function:-

```
A function f: X \to Y is said to be s-closed if the image o every semi-closed set is closed.
```

Theorem 5:-

A function $f: X \to Y$ is s-closed if and only if $Clf(A) \subseteq f[sCl(A)]$, for each $A \subseteq X$.

Proof:-

Let *f* is s-closed.

Obviously, $f(A) \subseteq f[sCl(A)]$

Now, sCl(A) is semi closed in X.

 $\Rightarrow f[sCl(A)] \text{ is closed in Y.} \qquad \because f \text{ is } s - closed$ $\Rightarrow f[scl(A)] \text{ is closed superset of A.}$

But Clf(A) is the smallest closed set containing f(A)

$$\Rightarrow Clf(A) \subseteq f[sCl(A)]$$

Conversely,

Let $A \in SC(X)$

We show that f(A) is closed in Y.

By hypothesis, $Clf(A) \subseteq f[sCl(A)] = f(A)$ $\therefore A \in SC(X)$

 $\Rightarrow Clf(A) \subseteq f(A) \quad \dots \quad 1$ But, $f(A) \subseteq Clf(A)$ (always) ------

By relation **1** and **2** f(A) = Clf(A)

 \Rightarrow f(A) is closed. \Rightarrow *f* is s-closed. (The proof)

Theorem 6:-

A surjection function $f: X \to Y$ is s-closed if and only if for each subset B in Y and each semi closed set U in X containing $f^{-1}(B)$, there exit an open set V in Y containing B such that, $f^{-1}(V) \subseteq U$.

2

Proof:-

Let U be an arbitrary open set in X containing $f^{-1}(B)$,

Where $B \subseteq Y$.

Clearly, Y - f(X - U) = V(say) is open in Y.

Since $f^{-1}(B) \subseteq U$ and f is onto, then simple calculations gives, $B \subseteq V$.

Moreover, we have

$$f^{-1}(V) \subseteq X - f^{-1}[f(X - U)] \subseteq U$$

Prepared By: - Muhammad 7ahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad

$$\Rightarrow \qquad f^{-1}(V) \subseteq U$$

Conversely,

Let F be an arbitrary semi closed set in X and $y \in Y - f(F)$

Then,
$$f^{-1}(Y) \subseteq f^{-1}[Y - f(F)]$$

 $\Rightarrow f^{-1}(y) \subseteq X - f^{-1}f(F) \subseteq X - F$
 $\Rightarrow f^{-1}(y) \subseteq X - F$

Since X - F is semi open, therefore there exit an open set V_y containing y such that, $f^{-1}(V_y) \subseteq X - F$.

$$\Rightarrow y \in V_y \subseteq Y - f(F)$$

$$\Rightarrow Y - f(F) = \bigcup \{V_y : y \in Y - f(F)\} \text{ is open in } Y.$$

$$\Rightarrow f(F) \text{ is closed in } Y.$$

$$\Rightarrow f \text{ is s-closed.} \quad (\text{This completes the proof}).$$

Remark 1:-

If $f: X \to Y$ is s-continuous and closed (or irresolute and s-closed) surjection, then using theorem 2.2(iii) [2], one can easily see that the class SC(X) and C(X) (closed sets of X) coincide.

Remark 2:-

In general, an s-open function need not be s-closed.

Example:-

Let
$$X = \{a, b, c\}, \quad \tau_x = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$$

And $Y = \{a, b, c, d\}$ and $\tau_y = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, Y\}$

Let $f: X \to Y$ be an identity function. Then f is s-open but not s-closed.

Remark 3:-

However, for bijection, it is easily seen that the notations of s-open and s-closed coincides. Moreover, f is s-open if and only if f^{-1} is scontinuous.

Proof:-

Let $f: X \to Y$ is s-open.

⇒ Image of every semi open set of X is open in Y.

As image of every semi-open set is open under f.

⇒ By a well known theorem f^{-1} is s-continuous. (Since f is s-continuous if inverse image of every semi-open set is open).

Conversely,

Let f^{-1} is s-continuous.

- \Rightarrow Image of every semi-open set of X is open in Y under f.
- \Rightarrow f is s-open.

s-Closed Space:-

A space X is said to be s-closed if for every semi-open cover of X, there exit a finite subfamily such that the union of their semi-closures cover X.

Compact Space (*):-

A topological space (X, τ) is said to be compact if every open cover for X has a finite sub cover.

Semi-Compact Space:-

A topological space (X, τ) is said to be semi-compact, if for every semi open cover of X, there exit a finite sub family such that there union cover X.

Almost Compact Space:-

A topological space (X, τ) is said to be almost compact if for every open cover of X, there exit a finite sub family such that union of their closures cover X.

Note:-

Every compact space is almost compact, as well as semi-compact.

Moreover, every semi-compact space is s-closed.

Theorem 7:-

The inverse image of an almost compact space under s-open bijection is s-closed.

Proof:-

Let $\{V_{\alpha} : \alpha \in I\}$ be semi open cover for X.

 $\Rightarrow \bigcup_{\alpha \in I} V_{\alpha} = X$

As V_{α} are semi-open in X and $f: X \longrightarrow Y$ is s-open.

 $\Rightarrow f(V_{\alpha}): \alpha \in I \text{ are open in Y.}$ $\Rightarrow \bigcup_{\alpha \in I} f(V_{\alpha}) = f(X)$ $\Rightarrow \bigcup_{\alpha \in I} f(V_{\alpha}) = Y$ $\Rightarrow f(V_{\alpha}) \text{ is an open cover for Y.}$

As Y is almost compact, therefore there exit finite sub family of $\bigcup_{\alpha \in I} f(V_{\alpha})$ such that the union of their closures cover Y.

$$\Rightarrow \bigcup_{i=1}^{N} Cl[f(V_{\alpha})] = Y$$

$$\Rightarrow Y = \bigcup_{i=1}^{N} Cl[f(V_{\alpha})]$$

$$\Rightarrow f^{-1}(Y) = f^{-1}[\bigcup_{i=1}^{N} Clf(V_{\alpha})]$$

$$\Rightarrow X = f^{-1}[\bigcup_{i=1}^{N} Clf(V_{\alpha})] \subseteq f^{-1}[\bigcup_{i=1}^{N} f\{sCl(V_{\alpha})\}]$$

$$\Rightarrow X \subseteq f^{-1}f \bigcup_{i=1}^{N} sCl(V_{\alpha}) \subseteq \bigcup_{i=1}^{N} sCl(V_{\alpha})$$

$$\Rightarrow X \subseteq \bigcup_{i=1}^{N} sCl(V_{\alpha})$$

As $\bigcup_{\alpha \in I} (V_{\alpha})$ is semi-open cover for X and we have find a finite sub family such that union of their semi closures cover X.

 \Rightarrow X is s-closed.

s-Regular Space:-

A topological space (X, τ) is said to be s-regular if for each closed set F and $X \in X - F$, there exit semi-open sets U and V in X such that $x \in U$, $F \subseteq V$ and $U \cap V = \varphi$.

- Every regular space is s-regular.
- Every semi-regular space is s-regular.

Almost Regular Space:-

A topological space (X, τ) is said to be almost regular space if for each regular closed set F and $x \in X - F$, there exit open sets U and V such that, $x \in U$, $F \subseteq V$ and $U \cap V = \varphi$.

- F is regular closed in (X, τ) if F = Cl[Int(F)]
- F is regular open in (X, τ) if F = Int[Cl(F)]
- Every regular closed set is closed and semi-open.
- A set which is semi-closed as well as semi open is called semi-regular set.

Semi Compact/s-Compact Space:-

A topological space (X, τ) is called s-compact if for every cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X by sets $U_{\alpha} \in SO(X)$, there exit a finite subset ∇_{\circ} of ∇ such that $X = \bigcup_{\alpha \in \nabla_{\circ}} U_{\alpha}$

Theorem:-

Let (X, τ) be a topological space, prove that an s-compact set A and disjoint regular closed set B in an s-regular space can be separated by semi-open sets.

Proof:-

Let $a \in A$

Since X is s-regular and B is a regular closed set such that $a \in X - B$,

Therefore there exit semi-open sets G_{α} and H_{α} s.t.

$$a \in G_{\alpha}; \quad B \subseteq H_{\alpha} \quad and \quad G_{\alpha} \cap H_{\alpha} = \varphi$$

Clearly, $\{G_{\alpha} : \alpha \in A\}$ is a cover of A by semi-open sets of X.

Since A is s-compact, therefore there exit a finite sub collection (say)

$$G_{\alpha_1}, G_{\alpha_2}, G_{\alpha_3}, \dots, G_{\alpha_n} \qquad s.t.$$
$$A \subseteq \bigcup_{i=1}^n G_{\alpha_i} = G \in SO(X)$$

Now corresponding to these α_i ; i = 1, 2, 3, ..., n we have $H_{\alpha_i} s. t. B \subseteq H_{\alpha_i}$ for each i = 1, 2, 3, ..., n

$$\Rightarrow B \subseteq H_{\alpha_1} \cap H_{\alpha_2} \cap \dots \cap H_{\alpha_n}$$

$$\Rightarrow B = sInt(B) \subseteq sInt[H_{\alpha_1} \cap H_{\alpha_2} \cap \dots \cap H_{\alpha_n}] \qquad \because B \text{ is semi} - open$$

$$= H$$

 $\Rightarrow B \subseteq H \in SO(X); H \text{ is semi open.}$

Consequently, G and H are required disjoint semi-open sets.

Completely Continuous Function:-

A function $f:(X,\tau_x) \to (Y,\tau_y)$ is said to be completely continuous if $f^{-1}(V) \in RO(X)$ for each open set V in Y.

Note:-

 $f: (X, \tau_x) \to (Y, \tau_y)$ is completely continuous if and only if $f^{-1}(V) \in RC(X)$ for each closed set B in Y.

Theorem:-

Let $f: X \to Y$ be a completely continuous and semi closed surjection with s-compact point inverses, if X is s-regular then Y is s-regular.

Proof:-

Let X be s-regular.

Let F be a closed set and $y \in Y - F$, then $f^{-1}(V) \in RC(X) \& f^{-1}(V)$ is s-compact.

Clearly, $f^{-1}(y) \notin f^{-1}(F)$

Since X is s-regular, therefore there exit semi-open sets U_y and U_F in X such that $f^{-1}(y) \in U_y \& f^{-1}(F) \subseteq U_F$ and $U_y \cap U_F = \varphi$

Since *f* is semiclosed preserving, therefore there exit semi open sets V_y and V_F s.t. $y \in V_y$ and $F \subseteq V_F$

And
$$f^{-1}(V_y) \subseteq U_y$$
 and $f^{-1}(V_F) \subseteq U_F$ and $U_y \cap U_F = \varphi$

Gives $V_{y} \cap V_{F} = \varphi$

This proves that Y is s-regular.

Theorem:-

Let (X, τ_x) be a topological space then X is s-regular if and only if for each open set V containing $x \in X$, there exit a semi open set U containing x such that $x \in U \subseteq sCl(U) \subseteq V$.

Proof:-

Let (X, τ_x) be s-regular space and V is an open set containing $x i. e. x \in V$.

 $\Rightarrow x \notin X - V \quad (closed \ set)$

Since space is s-regular, therefore there exit $U, L \in SO(X)$ s.t.

$$x \in U \ , \quad X-V \subseteq L$$

 $\Rightarrow X - L \subseteq V \quad and \quad U \cap L = \varphi$ $\Rightarrow U \subseteq X - L \quad (semi - closed)$ $\Rightarrow sCl(U) \subseteq X - L \quad \because X - L \text{ is semi closed.}$

Thus, $x \in U \subseteq sCl(U) \subseteq X - L \subseteq V$

$$\Rightarrow x \in U \subseteq sCl(U) \subseteq V \qquad (proved)$$

Conversely,

We prove that X is s-regular.

Let F be a closed subset of X and $x \notin F \implies x \in X - F$,

Where X - F is open in X.

By hypothesis, there exit a semi-open set U in X containing x such that,

$$x \in U \subseteq sCl(U) \subseteq X - F$$

 $\Rightarrow x \in U$ and $F \subseteq X - sCl(U)$ (semi - open set)

Let V = X - sCl(U),

Then, $x \in U$, $F \subseteq V$ and $U \cap V = \varphi$

 \Rightarrow X is s-regular.

Theorem:-

Let $f: (X, \tau_x) \to (Y, \tau_y)$ be a continuous and semi closed preserving surjection. If f is s-regular then Y is s-regular.

Proof:-

Let X be s-regular.

Let U be an open set in Y such that $y \in U$

Let $x \in f^{-1}(y)$. Now $f^{-1}(U)$ is open in X and $x \in f^{-1}(U)$

Since X is s-regular, therefore there exit $V \in SO(X, x) s. t$.

$$x \in V \subseteq sCl(V) \subseteq f^{-1}(U)$$

$$\Rightarrow f(x) \in f(V) \subseteq fsCl(V) \subseteq ff^{-1}(U) \subseteq U$$

Where f(V) is semi-open and, $sCl[f(U)] \subseteq f[sCl(V)]$

Thus,
$$y \in f(V) \subseteq sCl[f(V)] \subseteq f[sCl(V)] \subseteq U$$

$$\Rightarrow y \in f(V) \subseteq sCl[f(V)] \subseteq U$$

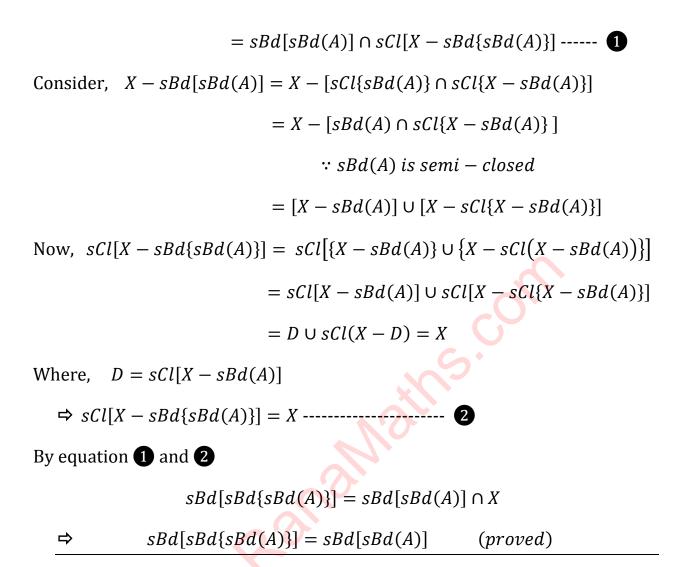
His proves that Y is s-regular.

Prove That:-

$$sBd[sBd\{sBd(A)\}] = sBd[sBd(A)]$$

Proof:-

$$sBd[sBd\{sBd(A)\}] = sCl[sBd\{sBd(A)\}] \cap sCl[X - sBd\{sBd(A)\}]$$



s-Closed Space:-

A topological space (X, τ) is said to be s-closed if for every cover $\{V_{\alpha} : \alpha \in \nabla\}$ of X by sets V_{α} semi open in X for each $\alpha \in \nabla$, there exit a finite subset ∇_{α} of ∇ s.t. $X = \bigcup_{\alpha \in \nabla_{\alpha}} sCl(V_{\alpha})$

S-Closed Space:-

A topological space (X, τ) is said to be S-closed if for each covering $\{V_{\alpha} : \alpha \in \nabla\}$ of X by semi-open sets of X, there exit a finite subset ∇_{α} of $\nabla s. t.$ $X = \bigcup_{\alpha \in \nabla_{\alpha}} Cl(V_{\alpha})$

Note:-

Every S-closed space is s-closed and every s-closed space is s-compact and every s-compact space is compact.

s-Regular Space:-

(Already defined)

Theorem:-

A topological space (X, τ) is s-closed if and only if every proper semi-regular subset of X is s-closed relative to X.

Proof:-

Let (X, τ) be s-closed space. And $G \subseteq F$ be a proper semi-regular subset of X.

We prove that G is s-closed relative to X.

Let $\{V_{\alpha} : \alpha \in \nabla\}$ be a cover for G, where $V_{\alpha} \in SO(X) \forall \alpha \in \nabla$

$$\Rightarrow G \subseteq \bigcup_{\alpha \in \nabla} V_{\alpha}$$

$$\Rightarrow X = \bigcup_{\alpha \in \nabla} V_{\alpha} \cup (X - G), where X - G \in SO(X)$$

Since X is s-closed, therefore there exit a finite sub set ∇_{a} of ∇ s.t.

$$X = \bigcup_{\alpha \in \nabla} sCl(V_{\alpha}) \cup sCl(X - G)$$

 $\Rightarrow G \subseteq \bigcup_{\alpha \in \nabla_{\circ}} sCl(V_{\alpha})$

 \Rightarrow G is s-closed relative to X.

Conversely,

Let every proper semi-regular subset of X be s-closed relative to X.

We prove that X is s-closed.

Let $\{V_{\alpha} : \alpha \in \nabla\}$ be a cover for X by sets semi-open in X.

For some $\beta \in \nabla$, $sCl(V_{\beta}) \in SR(X)$

Let $G = sCl(V_{\beta}) \in SR(X)$

 $\Rightarrow X - G \in sR(X)$

By hypothesis, X - G is s-closed relative to X.

Since, $X - G \subseteq \bigcup \{V_{\alpha} : \alpha \in \nabla\}$

Hypothesis $\implies X - G = \bigcup_{\alpha \in \nabla_{\alpha}} sCl(V_{\alpha})$ for some finite set ∇_{α} of ∇

$$\Rightarrow X = \bigcup_{\alpha \in \nabla_{\alpha}} sCl(V_{\alpha}) \cup sCl(V_{\beta})$$

$$= \bigcup_{\alpha \in \nabla_{\alpha} \cup \{\beta\}} sCl(V_{\alpha})$$

This proves that X is s-closed space.

Exercise:-

Let A and B be subsets of a topological space (X, τ) such that $A \subseteq B \subseteq X$ and $B \in SO(X)$. If A is s-closed relative to X then prove that A is s-closed relative to B.

Proof:-

Let $\{V_{\alpha} : \alpha \in \nabla\}$ be a cover for A, where $V_{\alpha} \in SO(B) \forall \alpha \in \nabla$

 $\Rightarrow A \subseteq \bigcup_{\alpha \in \nabla} V_{\alpha}$

As $B \in SO(X) \implies A \subseteq \bigcup_{\alpha \in \nabla} V_{\alpha}$ s.t. $V_{\alpha} \in SO(X) \forall \alpha \in \nabla$

As A is s-closed relative to X, therefore there exit a finite subset ∇_{\circ} of ∇ such that, $A = \bigcup_{\alpha \in \nabla_{\circ}} sCl(V_{\alpha})$

 $\Rightarrow A \cap B = \bigcup_{\alpha \in \nabla_{\alpha}} sCl(V_{\alpha}) \cap B$ $\Rightarrow A = \bigcup_{\alpha \in \nabla_{\alpha}} sCl_{B}(V_{\alpha}), \quad where \ V_{\alpha} \in SO(B)$ $\Rightarrow A \text{ is s-closed relative to B.}$

Almost Open Mapping:-

A mapping $f:(X,\tau_x) \to (Y,\tau_y)$ is said to be almost open if for every open set U of Y,

$$f^{-1}[Cl(U)] \subseteq Cl[f^{-1}(U)]$$

Note:-

- Every open mapping is almost open mapping. The converse is not true in general.
- Composition of two almost open mappings is not almost open mapping in general.

NStr

Example:-

Let
$$X = Y = Z = \{a, b, c\}$$

 $\tau_x = \{\varphi, \{a\}, \{a, b\}, \{a, c\}, X\}, \quad \tau_y = \{\varphi, \{a\}, \{a, b\}, Y\}$
 $\tau_z = \{\varphi, \{c\}, Z\}$

 $f: X \to Y$ be identity mapping.

 $g: Y \to Z$ be defined by g(a) = b, g(b) = c, g(c) = c

Then f & g are almost open mappings but $g_0 f$ is not almost open.

Almost Closed Mapping:-

A mapping $f:(X, \tau_x) \to (Y, \tau_y)$ is said to be almost closed if for every closed set V of Y,

$$Int[f^{-1}(V)] \subseteq f^{-1}[Int(V)]$$

Prepared By:- Muhammad Tahir Wattoo (03448563284) M.S. MATH From CIIT Islamabad

Theorem:-

Let $f:(X,\tau_x) \to (Y,\tau_y)$ be almost open mappings, prove that $g_0 f$ is almost open if g is continuous.

Proof:-

Let U be an open set of Z.

As $g: Y \longrightarrow Z$ is continuous so $g^{-1}(U)$ is open in Y.

Now as $f: X \to Y$ is almost open mapping and $g^{-1}(U)$ is open in Y.

$$\Rightarrow f^{-1}[Cl\{g^{-1}(U)\}] \subseteq Cl[f^{-1}\{g^{-1}(U)\}] \xrightarrow{}$$

Since $g: Y \rightarrow Z$ is almost open mapping and U is open in Z.

$$\Rightarrow g^{-1}[Cl(U)] \subseteq Cl[g^{-1}(U)]$$
$$\Rightarrow f^{-1}\{g^{-1}Cl(U)\} \subseteq f^{-1}[Cl\{g^{-1}(U)\}]$$

Put in equation (*) implies.

$$f^{-1}{g^{-1}Cl(U)} \subseteq f^{-1}[Clg^{-1}(U)] \subseteq Cl[f^{-1}g^{-1}(U)]$$

$$\Rightarrow f^{-1}[g^{-1}Cl(U)] \subseteq Cl[f^{-1}(g^{-1}(U))]$$

$$\Rightarrow (f^{-1}{}_{\circ}g^{-1})Cl(U) \subseteq Cl(f^{-1}{}_{\circ}g^{-1})(U)$$

$$\Rightarrow (g_{\circ}f)^{-1}Cl(U) \subseteq Cl(g_{\circ}f)^{-1}(U)$$

Now as U is open set in Z and,

$$(g_{\circ}f)^{-1}Cl(U) \subseteq Cl[(g_{\circ}f)^{-1}(U)]$$

 \Rightarrow $g_{\circ}f$ is an almost open mapping.

s-Normal Space:-

A topological space (X, τ) is said to be s-normal if for every pair of disjoint closed sets A and B of X, there exit disjoint semi-open sets U and V such that, $A \subseteq U$, $B \subseteq V$

Note:-

 $A \subseteq X$ is semi closed in X *iff* Int[Cl(A)] = Int(A)

Theorem:-

Let $f: X \to Y$ be a continuous semi-closed function. If X is normal then Y is s-normal.

Proof:-

Let F_1 and F_2 be disjoint closed sets of Y.

Since *f* is continuous therefore $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are disjoint closed sets of X.

As X is normal, therefore there exit disjoint open sets U_1 and U_2 in X such that, $f^{-1}(F_1) \subseteq U_1 \quad \& \quad f^{-1}(F_2) \subseteq U_2 \quad and \quad U_1 \cap U_2 = \varphi$

Since f is semi-closed, therefore there exit two semi open sets V_1 and V_2 in Y containing F_1 and F_2 respectively such that,

 $f^{-1}(V_1) \subseteq U_1$ and $f^{-1}(V_2) \subseteq U_2$

Since, $U_1 \cap U_2 = \varphi$

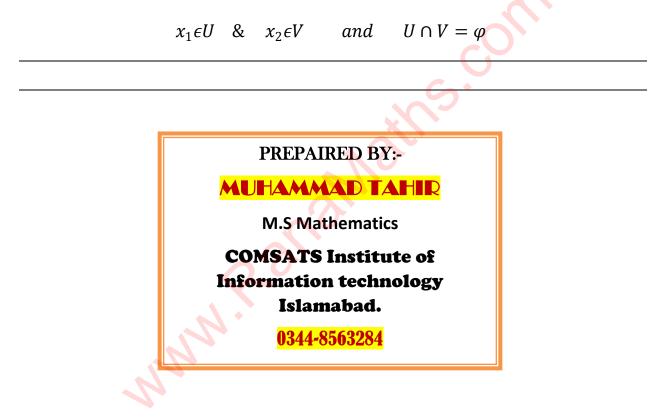
$$\Rightarrow f^{-1}(V_1) \cap f^{-1}(V_2) = \varphi$$
$$\Rightarrow V_1 \cap V_2 = \varphi$$

That is for two disjoint closed sets F_1 and F_2 of Y there exit two semi-open sets V_1 and V_2 in Y such that $F_1 \subseteq V_1$ and $F_2 \subseteq V_2$ and $V_1 \cap V_2 = \varphi$

→ Y is s-normal-

Semi T₂-Space:-

A topological space (X, τ_x) is said to be semi T_2 -space if for $x_1, x_2 \in X$ s. t. $x_1 \neq x_2$, there exit semi open sets U and V of X such that,



www.RanaMaths.com $\sim 99 \sim$

www.Ranallaths.om