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TOPOLOGY:- 

        Let ‘X’ be a non empty set and ′𝜏 ′  be a collection of subsets of 

‘X’. Then ′𝜏′ is called topology if 

(i) 𝜑 and X belongs to 𝜏. 

(ii)  The intersection of any two sets in ′𝜏 ′  belongs to 𝜏. 

(iii) The union of any number of sets in ′𝜏′ belongs to 𝜏. 

                   The members of 𝜏 are then called 𝜏-open sets or simply open sets 

(and compliment of open sets is called a closed set). X together with 𝜏 i.e. (X,𝜏) 

is called a topological space. 

  The set ‘X’ is called its ground set and the element of ‘X’ is called 

its points. 

 

 𝜑 and X are always open as well as closed (clopen). 

 Neighborhood of a point  𝑥 𝜖 𝑋  is a set ‘N’ s.t.  𝑥 𝜖 𝑂 ⊆ 𝑁  where O is an 

open set. 

  An open set is neighborhood of each of its points. 

 Each point of a topological space has at least one neighborhood and that 

is X. 

 A point of a topological space may have more than one neighborhood. 

 

Example:- 

  Let X= {a, b, c, d} 

P(X)= φ, X, *a+, *b+, *c+, *d+, *a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},  

𝜏1 = *φ, X, *a+, *c+, *a, c}, {b, c}, {a, b, c}} 

𝜏2 = *φ, X, *b+, *d+, *b, c}, {b, d} {b, c, d}} 

 𝜏1 𝑎𝑛𝑑 𝜏2  satisfy all the conditions of a topological space. 

 

www.R
an

aM
at

hs
.co

m

www.RanaMaths.com

http://www.ranamath.com


~ 3 ~ 
 

Prepared By:- Muhammad Tahir Wattoo (03448563284) 

M.S. MATH From CIIT Islamabad 

Interior of a Set:- 

    Let (X, τ) be topological space and ‘A’ is a non-empty subset 

of ‘X’. A point   𝑥𝜖𝐴  is an interior point of ‘A’ if there exits an open 

neighborhood O  𝑠. 𝑡.  𝑥𝜖𝑂 ⊆ 𝐴.  

 

Example:-  

 Let X=R 

τ is the collection of all possible open intervals of R and φ. Then τ is a topology 

on R. This topology is called usual topology on R or standard topology on R. 

A= [0, 1]     

X=0∈A. 0                    1 

Here 0ϵA but not interior point of A. 1ϵA but not interior point of A. All other 

points of A are interior points of A. 

B= (0, 1) 

Every point of B is interior point o B. 

 

Note:-   

 Every point of an open set is an interior point of that set. 

 Interior of a set is a collection of all interior points of that set and is 

denoted by 𝐼𝑛𝑡(𝐴). 

 A set ‘A’ is open if and only if 𝐼𝑛𝑡(𝐴) = 𝐴. 

 𝐼𝑛𝑡(𝐴) ⊆ 𝐴.  
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Limit Point of a Set:- 

                                   Let (X, τ) be a topological space and ‘A’ is a subset of ‘X’. A 

point  x ϵ X is called a limit point of A if every open neighborhood of ‘x’ 

contains a point of A other than x. i.e. ∀ uϵ N(x); A∩u - *x+≠φ. 

 

 Limit point of a set may not be member of that set. 

 A set is closed if it contains all of its limit points. 

 Collection of all limits points of ‘A’ is called derived set of A and it is 

usually denoted by 𝐴𝑑  

 

Closure of a Set:- 

                              Let (X, τ) be a topological space and A⊆X then closure of ‘A’ is 

denoted by 𝐶𝑙(𝐴)  and is defined by 𝐶𝑙(𝐴)= A∪𝐴𝑑  

 

 A is closed iff 𝐴 = 𝐶𝑙(𝐴).  

 A ⊆𝐶𝑙(𝐴). 

 

Exterior Point:- 

                           Let (X, τ) be topological space and A⊆X. Then xϵX is said to be an 

exterior point of A if x is an interior point of Á. i.e. x is said to be exterior point 

of A if there exit some open set ‘u’ such that x ϵ u ⊆ Á. 

OR x is exterior point of A if there exit open set u containing x such that 

u∩A=φ. 

Boundary Point:- 

                              Let (X, τ) be a topological space an A subset of X then xϵX is 

said to be boundary point of A if x is neither the interior point of A nor the 
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interior point of Á. In other words x ϵ X is said to be boundary point of A⊆X if 

for every open set u containing x, u∩A ≠ φ and u∩Á ≠ φ. 

 

Dense Set:- 

                     Let (X, τ) be topological space and A⊆X, then A is called dense in X 

if Ā=X. 

 

Example:- 

                  Let X = {1, 2, 3, 4, 5+ and τ= *φ, X, *1+, {2}, {1,2}} . 

Let A= {1, 2} 

Closed sets of X are *X, φ, *2,3,4,5+, *1,3,4,5+, *3,4,5++. 

Closed super set of A is X only. Therefore Ā=X. 

 A is dense in X. 
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SEMI OPEN SETS AND SEMI CONTINUITY IN 

TOPOLOGICAL SPACES 

 

This paper was published by American Mathematical Monthly vol.70 N-I (Jan 1963): 

pages (36-41). 

 

Semi-Open Sets:- 

                                Let (X, τ) be topological space, a subset U of X is said to be 

semi-open in X if there exit an open set O in X such that, 

𝑂 ⊆ 𝑈 ⊆ 𝐶𝑙(𝑂)  

 

Example:- 

                  X = {a, b, c, d+ and τ= *φ, X, *a+, *b+, {a, b}}. 

Let   A={a, c}. 

Here closed sets are *φ, X, *b, c, d}, {a, c, d}}. 

𝐶𝑙(*𝑎+)= {a, c, d}  ,  𝐶𝑙(*𝑏+)= {b, c, d}  and  𝐶𝑙(*𝑎, 𝑏+)= X. 

As ‘A’ is an open set and 

*a+ ⊆ *a, c+ ⊆ *a, c, d} =𝐶𝑙(*𝑎+)    =>    *a+ ⊆ *a, c+ ⊆ 𝐶𝑙(*𝑎+) 

=>   {a, c} is a semi-open set. 

 

 Every open set is also a semi open set. 

 A semi open set may not be an open set. 
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Equivalently:- 

                        A sub set ‘u’ of X is semi open in X if and only if u ⊆ Cl[Int(u)]  

Proof:- 

             Let ‘u’ be a semi open in X. 

Put   Int(u) = O ------------------------- (1) 

And  Int(u) ⊆ u   (obvious)      =>  O ⊆ u ⊆ Cl(O) ------ by definition 

  U ⊆ Cl[Int(u)]     By (1) 

Conversely, 

                   Let  u ⊆ Cl[Int(u)] 

Since Int(u) ⊆ u     =>   Int(u) ⊆ u ⊆ Cl,Int(u)- 

i.e.  v ⊆ u ⊆ Cl(v) ,     where v is open in X. 

 u is semi open in X. 

---------------------------------------------------------------------------------------------------- 

Note:- 

 Collection of all semi open sets in X is denoted by SO(X). 

  The compliment of a semi-open set is called a semi closed set. 

 Collection of all semi closed sets in X is denoted by SC(X). 

 

Example:- 

                  Let X=R with the usual topology on R. 

Let  E=(0,1),  Then Cl(E)=[0,1]. 

If A=[0,1)   ,   B=(0,1]   ,   C=[0,1], Then each A, B, and C are semi-open in X. 
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Note:- 

            C=[0,1] is a closed set which is semi-open as well. This means closed set 

can be semi open as well [but open sets are always semi-open] 

(0,1)⊆C=,0,1-⊆Cl(0,1)=,0,1- That’s why C is semi-open. 

 

Example:- 

                  Let X=R with usual topology and let 

A=(
1

2
, 1)∪(

1

4
,

1

2
)∪(

1

8
,

1

4
)∪…………∪(1/2𝑚 ,1/2𝑚+1)∪…… 

And  B=*0+∪(
1

2
, 1)∪(

1

4
,

1

2
)∪(

1

8
,

1

4
)∪…………∪(1/2𝑚 ,1/2𝑚+1)∪………. 

 A is an open set. Since A is union of open intervals and every open 

interval is a open set and union of any number of open sets is a open 

set. 

Here  A=(0,1)  and  Cl(A)=[0,1]  and  B=[0,1] 

  A ⊆ B ⊆ Cl(A). 

 B is a semi-open set. 

A is open so is semi open. In this case B is neither open nor closed (but is 

semi-open) 

 

Example:- 

                  Let X be the Euclidean Plane 𝑅2 with usual topology. 

Let  E be the set suh that. 

E= (𝑥, 𝑦):
1 < 𝑥 < 2
1 < 𝑦 < 2

  ,        Then,  Cl(E)= (𝑥, 𝑦):
1 ≤ 𝑥 ≤ 2
1 ≤ 𝑦 ≤ 2

   

Then semi open sets are, 
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A= (𝑥, 𝑦):
1 < 𝑥 ≤ 2
1 ≤ 𝑦 ≤ 2

             ,           B= (𝑥, 𝑦):
1 ≤ 𝑥 ≤ 2
1 < 𝑦 ≤ 2

  

C= (𝑥, 𝑦):
1 < 𝑥 ≤ 2
1 < 𝑦 < 2

             ,          D= (𝑥, 𝑦):
1 ≤ 𝑥 < 2
1 ≤ 𝑦 ≤ 2

  

F= (𝑥, 𝑦):
1 ≤ 𝑥 ≤ 2
1 ≤ 𝑦 < 2

             ,          G= (𝑥, 𝑦):
1 < 𝑥 ≤ 2
1 < 𝑦 ≤ 2

  

And so on (so many semi open sets are available). 

 

Theorem 2:- 

                     Let (X, τ) be a topological space and *𝐴𝛼 : 𝛼𝜖∇} be any collection of 

semi-open sets in X. Then 𝑈𝛼𝜖∇ 𝐴𝛼  is semi open in X. (i.e. union of any 

number of semi-open sets is semi-open in X). 

Proof:- 

              Since 𝐴𝛼  is semi open in X   ∀ 𝛼𝜖∇ 

Therefore there exit an open set 𝑂𝛼  in X such that. 

                  𝑂𝛼⊆ 𝐴𝛼  ⊆ 𝐶𝑙(𝑂𝛼) ∀𝛼𝜖∇ 

      𝑈𝛼𝜖∇𝑂𝛼 ⊆ 𝑈𝛼𝜖∇𝐴𝛼 ⊆ 𝑈𝛼𝜖∇𝐶𝑙(𝑂𝛼) = 𝐶𝑙(𝑈𝛼𝜖∇𝑂𝛼) 

     𝑂 ⊆ 𝑈𝛼𝜖∇𝐴𝛼 ⊆ 𝐶𝑙(𝐴)    𝑆𝑖𝑛𝑐𝑒 𝑂𝛼𝜖∇ = 𝑂 𝑎𝑛𝑑 𝑂 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 

 𝑈𝛼𝜖∇𝐴𝛼  Is semi-open set in X. 

---------------------------------------------------------------------------------------------------- 

 

Theorem 3:- 

                     Let (X, τ) be a topological space and A is a semi-open subset of X. 

Suppose A ⊆ B ⊆ Cl(A), then prove that B is also a semi-open in X. 

Proof:- 
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            Since A is semi open in X,  

Therefore there exit an open set O in X s.t. 

                                O ⊆ A ⊆ Cl(O). 

Now,          O ⊆ A ⊆ B -------------- (1) by supposition A ⊆ B ⊆ Cl(A) 

Now,                 A ⊆ Cl(O)      Since O ⊆ A ⊆ Cl(O) 

  𝐶𝑙(𝐴) ⊆ 𝐶𝑙,𝐶𝑙(𝑂)- = 𝐶𝑙(𝑂) 

 𝐶𝑙(𝐴) ⊆ 𝐶𝑙(𝑂)  ---------------------------- (2) 

Again,             𝐵 ⊆ 𝐶𝑙(𝐴)                Since 𝐴 ⊆ 𝐵 ⊆ 𝐶𝑙(𝐴)𝑏𝑦 𝑔𝑖𝑣𝑒𝑛  

                𝐶𝑙(𝐵) ⊆ 𝐶𝑙,𝐶𝑙(𝐴)- 

                𝐶l(B) ⊆ 𝐶𝑙(𝐴) -------------------- (3) 

By relation 1, 2, 3 we get 

𝑂 ⊆ 𝐴 ⊆ 𝐵 ⊆ 𝐶𝑙(𝐵) ⊆ 𝐶𝑙(𝐴) ⊆ 𝐶𝑙(𝑂)              𝑆𝑖𝑛𝑐𝑒 𝐵 ⊆ 𝐶𝑙(𝐵)𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑢𝑒 

                      𝑂 ⊆ 𝐵 ⊆ 𝐶𝑙(𝑂) 

This proves that B is a semi-open set. 

---------------------------------------------------------------------------------------------------- 

 

Theorem 4:- 

                  Let (X, τ) be a topological space then, 

(1)  τ⊆ SO(X)        (just by def.) 

(2)   For AϵSO(X) and A ⊆ B ⊆ Cl(A), then BϵSO(X)    (already proved) 

---------------------------------------------------------------------------------------------------- 
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Theorem 5:- 

                     Let 𝛽 = {𝐵𝛼 : 𝛼𝜖∇} be a collection of sets in X s.t. 

(1) τϵ𝛽             (2)    If B ϵ β and B ⊆ D ⊆ Cl(B) then D ϵ β, Then SO(X) ⊆ β 

Proof:- 

             Let Aϵ SO(X), 

 Then by definition there exit an open set O ϵ τ such that 

Then by condition 1            O ϵ β 

So by condition 2                 A ϵ β 

             SO(X) ⊆ β           (proved) 

Statement Continued:- Furthermore SO(X) is the smallest class of sets in X  

Suppose GO(X) be another class of sets satisfying (1) and (2) such that 

         GO(X) ⊆ SO(X) ------------------------ (3) 

Let 𝐴∗ ϵ SO(X) Then there exit 𝑂∗ϵ  𝜏 such that 

                     𝑂∗ ⊆ 𝐴∗ ⊆ 𝐶𝑙(𝑂∗)-------------------------- (a) 

Then by (2)  𝑂∗ ϵ GO(X) and 𝑂∗ ⊆ 𝐴∗ ⊆ 𝐶𝑙(𝑂∗) 

                          𝐴∗ϵ GO(X) 

                    SO(X) ⊆ GO(X) ------------------------(4) 

So                            GO(X) = SO(X)     by equation (3) and (4) 

Hence SO(X) is the smallest class of sets satisfying conditions 1 and 2. 

Relative Topology (OR) Subspace Topology:- 

                                                                                       Let (X, τ) be topological space and 

Y be a subspace of X. Then the collection 𝜏𝑦 = {𝑈 ∩ 𝑌:𝑈 ∈ 𝜏} is a topology on 

Y. This topology is called relative topology. 
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Note:- 

            If  𝜏𝑦  is a relative topology on Y then (Y, 𝜏𝑦) is subspace of (X, 𝜏𝑥). 

 

Theorem 6:- 

                        Let (X, τ) be topological space and A ⊆ Y ⊆ X, where Y is a 

subspace of X. Let A ϵ SO(X) then prove that A ϵ SO(Y). 

Proof:- 

               Since A ϵ SO(X), Therefore there exit an open set O in X s.t. 

                                                   𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙𝑥(𝑂) 

                      𝑂 ∩ 𝑌 ⊆ 𝐴 ∩ 𝑌 ⊆ Y ∩ 𝐶𝑙𝑥(𝑂) 

              𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙𝑦(𝑂),    where O is open in Y. 

               A is semi-open in Y. 

                            i.e. A ϵ SO(Y) 

 

Lemma 1:- 

                   Let (X, τ) be a topological space and O is open in X. prove that  

Cl(O) – O is nowhere dense in X. 

Proof:- 

               We have to prove  

           𝐼𝑛𝑡,𝐶𝑙*𝐶𝑙(𝑂) − 𝑂+- = 𝜑  

Now, 𝐼𝑛𝑡,𝐶𝑙*𝐶𝑙(𝑂) − 𝑂+- = 𝐼𝑛𝑡[𝐶𝑙{𝐶𝑙(𝑂) ∩ (𝑋 − 𝑂) 

                                                 ⊆ 𝐼𝑛𝑡[𝐶𝑙{𝐶𝑙(𝑂) ∩ 𝐶𝑙(𝑋 − 𝑂)  

𝐸 ⊆ (𝑋, 𝜏) Is nowhere dense in X 

If 𝐼𝑛𝑡,𝐶𝑙(𝐸)- = 𝜑 
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 𝐼𝑛𝑡[𝐶𝑙*𝐶𝑙(𝑂) ∩ (𝑋 − 𝑂)+] ⊆ 𝐼𝑛𝑡,𝐶𝑙(𝑂) ∩ (𝑋 − 𝑂)-   Since X-O is closed. 

                                                                = 𝐼𝑛𝑡[𝐶𝑙(𝑂)] ∩ 𝐼𝑛𝑡(𝑋 − 𝑂) 

                                                               = 𝐼𝑛𝑡,𝐶𝑙(𝑂)- ∩ (𝑋 − 𝐶𝑙(𝑂)) 

                                                               = 𝜑  

  𝐼𝑛𝑡,𝐶𝑙*𝐶𝑙(𝑂) − 𝑂+- = 𝜑 

 𝐶𝑙(𝑂) − 𝑂  is nowhere dense in X.     (proved) 

 

Theorem 7:- 

                        Let (X, τ) be topological space and A ϵ SO(X). Then A = O ∪ B, 

where. 

(1) O ϵ τ 

(2) O ∩ B = φ   and 

(3) B is nowhere dense.   

Proof:- 

             Given A is semi open in X. Then by definition there exit an open set O in 

the X such that.   𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂)  

But 𝐴 = 𝑂 ∪ (𝐴 − 𝑂) 

Let B = A⧵O, Then clearly A = O∪B, where 

(1) O ϵ τ         (2)    O∩B = φ 

The only thing we need to prove is that B is nowhere dense set. 

Now,   𝐵 = 𝐴 ⧵ 𝑂 ⊆ 𝐶𝑙(𝑂) ⧵ 𝑂,      Since 𝐴 ⊆ 𝐶𝑙(𝑂)       

  𝐼𝑛𝑡,𝐶𝑙(𝐵)- ⊆ 𝐼𝑛𝑡,𝐶𝑙*𝐶𝑙(𝑂) − 𝑂+- 

Since O is open, therefore 𝐶𝑙(𝑂) − 𝑂 is nowhere dense and hence, 

             𝐼𝑛𝑡,𝐶𝑙*𝐶𝑙(𝑂) − 𝑂+- = 𝜑  
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 𝐼𝑛𝑡,𝐶𝑙(𝐵)- ⊆ 𝜑 

 𝐼𝑛𝑡[𝐶𝑙(𝐵) = 𝜑 

 B is nowhere dense in X. 

 

Remark:- 

                  The converse of theorem 7 is not true in general, that is, In a 

topological space (X, τ) a set ‘A’ is written as 𝐴 = 𝑂 ∪ 𝐵, where O is open, B is 

nowhere dense and 𝑂 ∩ 𝐵 = 𝜑. Then A may not be semi-open. 

 

Example:- 

                  Let X = R with usual topology. 

Let 𝐴 = *𝑥 ∈ 𝑅: 0 < 𝑥 < 1+ ∪ {2}. Then 

(1) 𝐴 = 𝑂 ∪ 𝐵, where 𝑂 = (0,1)𝜖𝜏 and 

(2) 𝐵 = {2} 

(3) 𝑂 ∩ 𝐵 = 𝜑 

Now we show that B is nowhere dense. 

Consider, 𝐼𝑛𝑡,𝐶𝑙(𝐵)- = 𝐼𝑛𝑡,𝐶𝑙*2+- = 𝐼𝑛𝑡*2+ = 𝜑 

 B is nowhere dense. 

Now if we let 𝑂 = (0,1)  𝑇𝑕𝑒𝑛 𝑂 ⊆ 𝐴  𝐵𝑢𝑡 𝐴 ⊈ 𝐶𝑙(𝑂) 

Hence we cannot find an open set satisfying the relation 𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂) 

  𝐴 ∉ 𝑆𝑂(𝑋) 

 

Remark:- 

                   The converse of theorem 7 is false 

Disconnected Set: - In a 

Topological space (X, τ) a subset a 

of X is disconnected if it can be 

expressed as union of two non-

empty disjoint open sets. 
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even when connectedness is imposed upon ‘A’. 

Example:- 

                    Let 𝑋 = 𝑅2 with usual topology (open discs or open rectangles 

whose sides are parallel to coordinate axis form basis for τ. 

Let 𝐴 = *(𝑥, 𝑦): 0 < 𝑥 < 1, 𝑎𝑛𝑑 0 < 𝑦 < 1+ ∪ {(𝑥, 0): 1 ≤ 𝑥 ≤ 2} 

We note that 𝐴 = 𝑂 ∪ 𝐵,𝑤𝑕𝑒𝑟𝑒 𝑂 = *(𝑥, 𝑦): 0 < 𝑥 < 1, 𝑎𝑛𝑑 0 < 𝑦 < 1+ 𝜖 𝜏 

And 𝐵 = *(𝑥, 0): 1 ≤ 𝑥 ≤ 2+ 𝑎𝑛𝑑 𝑂 ∩ 𝐵 = 𝜑 

And B is nowhere dense because  𝐼𝑛𝑡*𝐶𝑙,1,2-+ = 𝜑 

And A is connected because it is not disconnected. 

Moreover 𝐴 ∉ 𝑆𝑂(𝑋)  𝑆𝑖𝑛𝑐𝑒 𝑂 ⊆ 𝐴 ⊈ 𝐶𝑙(𝑂) 

 

Theorem 8:- 

                        Let (X, τ) be a topological space and A = O∪B, where 

①   O ≠ φ is open           ②   A is connected and        ③   𝐵𝑑 = 𝜑 , where 𝐵𝑑  is 

derived set of B. Then prove that A ϵ SO(X) 

Proof:- 

              𝐴 = 𝑂 ∪ 𝐵  ⟹    𝑂 ⊆ 𝐴 

The only thing we need to prove is that 𝐴 ⊆ 𝐶𝑙(𝑂) 

OR 𝑂 ∪ 𝐵 ⊆ 𝐶𝑙(𝑂)   OR   We need to show 𝐵 ⊆ 𝐶𝑙(𝑂),  Since O ⊆ Cl(O) obvious 

 Assume contrary,  𝐵 ⊈ 𝐶𝑙(𝑂) 

Let 𝐵 = 𝐵1 ∪ 𝐵2, 𝑤𝑕𝑒𝑟𝑒 

𝐵1 ⊆ 𝐶𝑙(𝑂)𝑎𝑛𝑑 𝐵2 ⊆ 𝑋 − 𝐶𝑙(𝑂) ∵ B ≠ φ 

Now,  𝐴 = 𝑂 ∪ 𝐵 = 𝑂 ∪ (𝐵1 ∪ 𝐵2) 
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 𝐴 = (𝑂 ∪ 𝐵1) ∪ 𝐵2 

And 𝑂 ∪ 𝐵1 ≠ 𝜑 ∵ 𝑂 ≠ 𝜑  𝑎𝑛𝑑  𝐵2 ≠ 𝜑 ∵  𝐵2 ⊈ 𝐶𝑙(𝑂) 

And 𝑂 ∪ 𝐵1 ⊆ 𝐶𝑙(𝑂) 𝑎𝑛𝑑 𝐵2 ⊆ 𝐵2, 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 

              𝐵2 ∩ 𝐶𝑙(𝑂) = 𝜑  

 𝑂 ∪ 𝐵1𝑎𝑛𝑑 𝐵2 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐴. 

 𝐴 is disconnected. 

Which is not true, so our supposition is wrong and hence 

𝐵 ⊆ 𝐶𝑙(𝑂) ⟹ 𝑂 ∪ 𝐵 ⊆ 𝐶𝑙(𝑂) ⟹   𝐴 ⊆ 𝐶𝑙(𝑂) 

 𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂) 

 A ϵ SO(X)        ∵ O is open.       (proved) 

 

Remark 4:- 

                    It is not true that the components of a semi-open set are semi open. 

 

Example 4:- 

                        Let X = R and 𝐴 = *0+ ∪ .
1

2
, 1/ ∪ .

1

4
,

1

2
/ ∪ .

1

8
,

1

4
/ ∪ ……∪

.
1

2𝑛+1
,

1

2𝑛
/ ∪ …… 

Then A is semi-open and {0} is a component of A, But {0} is not semi-open in 

X. 

𝐴 − *0+ ⊆ 𝐴 ⊆ 𝐶𝑙,𝐴 − *0+- 

𝐴 − *0+𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡    ∵ 𝐴 − *0+𝑖𝑠 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠. 

 A is semi-open   ∵ open set ⊆ A ⊆Cl(open set) 

{0} is a component of A but {0} is neither open nor semi-open. 
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Remark 5:- 

(1) In general the compliment of a semi-open set may not be 

semi- open. 

(2) Intersection of two semi-open sets may not be semi-open. 

 

Example:- 

 Let X = R with usual topology. 

We consider, A = [0, 1] ϵ SO(X) and B = [1, 2] ϵ SO(X) 

 A∩B = *1+ ∉SO(X) 

 Let X = [0, 1] 

𝐴 =  
1

2
, 1 ∪  

1

4
,
1

2
 ∪  

1

8
,
1

4
 ∪ ……∪  

1

2𝑛+1
,

1

2𝑛
 ∪ …… 

 A ϵ SO(X) and Á = {1, 
1

2
,

1

4
,

1

8
,

1

16
, ……+ ∉ SO(X) 

 

Theorem 9:- 

                        Let (X,𝜏𝑥) and (Y,𝜏𝑦) be topological spaces. Let f: X⟶Y be 

continuous and open mapping. Let A ϵ SO(X), prove that f(A) ϵ SO(Y). 

Proof:- 

             Since A ϵ SO(X), Therefore there exit an open set O and nowhere dense 

set B such that 𝐴 = 𝑂 ∪ 𝐵:𝑂 ∩ 𝐵 = 𝜑 𝑎𝑛𝑑 𝐵 ⊆ 𝐶𝑙(𝑂) − 𝑂 

Now, 𝑂 ⊆ 𝐴 = 𝑂 ∪ 𝐵 

 𝑓(𝑂) ⊆ 𝑓(𝐴) = 𝑓(𝑂 ∪ 𝐵) 

                           = 𝑓(𝑂) ∪ 𝑓(𝐵) 

                           ⊆ 𝑓(𝑂) ∪ 𝑓𝐶𝑙(𝑂)        ∵ 𝐵 ⊆ 𝐶𝑙(𝑂) 

𝐶𝑙(𝑂) − 𝑂 ⊆ 𝐶𝑙(𝑂) 
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                           = 𝐶𝑙,𝑓(𝑂)- 

 𝑓(𝑂) ⊆ 𝑓(𝐴) ⊆ 𝐶𝑙,𝑓(𝑂)- 

Since f is open, therefore f(O) is open in Y and hence 𝑓(𝐴)𝜖𝑆𝑂(𝑌) 

 

Remark 6:- 

                      𝒇 Must be open in theorem 9, otherwise for 𝐴 ∈ 𝑆𝑂(𝑋); 𝑓(𝐴) may 

not be semi-open in Y. 

 

Example 5:- 

                     Let X = Y = R with usual topology. Let 𝑓: 𝑋 ⟶ 𝑌 be defined by    

f(x) = 1∀ x ϵ X. Then X is semi-open in X but f(X) is not semi open in Y. 

Solution:- 

                    1:- Since f(x) = 1 ∀ x ϵ X. 

Therefore f is a constant function and every constant function is continuous. 

Therefore f is a continuous function. 

2:-Let ‘u’ be any open set in X, Then f (u) = *1+ ∉ 𝜏𝑦 . 

This gives that f is not an open function. 

Now X is open and hence semi-open. But f(X) = {1}.  

Since {1} contains no open set therefore {1} cannot be semi-open in Y. 

 

Lemma 2:- 

                      Let τ be the collection of open sets in the topological space X. Then 

prove that 𝜏 = 𝐼𝑛𝑡𝑆𝑂(𝑋).  

Proof:- 

∵ 𝑓,𝐶𝑙(𝑂)- = 𝐶𝑙,𝑓(𝑂)- 

& 𝑓(𝑂) ⊆ 𝐶𝑙,𝑓(𝑂)- 

 𝑓(𝑂) ∪ 𝑓,𝐶𝑙(𝑂)- = 𝐶𝑙[𝑓(𝑂)] 
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             Let O ϵ τ. 

Therefore O is an open set. 

 𝑂𝜖𝑆𝑂(𝑋)        ∵ 𝑂 𝑖𝑠 𝑜𝑝𝑒𝑛 

And since 𝑂 = 𝐼𝑛𝑡(𝑂)       ∵ 𝑂 𝑖𝑠 𝑜𝑝𝑒𝑛 

 𝑂𝜖𝐼𝑛𝑡 𝑆𝑂(𝑋) 

 𝜏 ⊆ 𝐼𝑛𝑡 𝑆𝑂(𝑋) ---------------------------  ❶ 

Conversely, 

                       Let 𝑂𝜖𝐼𝑛𝑡 𝑆𝑂(𝑋) 

Then 𝑂 = 𝐼𝑛𝑡(𝐴)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐴𝜖𝑆𝑂(𝑋) 

And thus,     O ϵ τ               ∵ 𝐼𝑛𝑡 of any set is open. 

 𝐼𝑛𝑡 𝑆𝑂(𝑋) ⊆ 𝜏  --------------------------  ❷ 

From ❶ and ❷ 

                            𝜏 = 𝐼𝑛𝑡 𝑆𝑂(𝑋). 

 

Theorem 10:- 

                          Let 𝜏 𝑎𝑛𝑑 𝜏∗ be two topologies for X. Suppose 𝑆𝑂(𝑋, 𝜏) ⊆

𝑆𝑂(𝑋, 𝜏∗).  𝑇𝑕𝑒𝑛 𝜏 ⊆ 𝜏∗. 

Proof:- 

              𝑆𝑂(𝑋, 𝜏) ⊆ 𝑆𝑂(𝑋, 𝜏∗) 

 𝐼𝑛𝑡,𝑆𝑂(𝑋, 𝜏)- ⊆ 𝐼𝑛𝑡,𝑆𝑂(𝑋, 𝜏∗)- 

 𝜏 ⊆ 𝜏∗                                                

 

 

∵ 𝐼𝑛𝑡[𝑆𝑂(𝑋, 𝜏)]𝑎𝑟𝑒 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠 𝑖𝑛 𝜏 

   𝐼𝑛𝑡,𝑆𝑂(𝑋, 𝜏∗)-𝑎𝑟𝑒 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠 𝑖𝑛 𝜏∗ 
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Corollary 1:- 

                         Let τ and 𝜏∗ be two topologies for X. Suppose 𝑆𝑂(𝑋, 𝜏) =

𝑆𝑂(𝑋, 𝜏∗) 𝑡𝑕𝑒𝑛 𝜏 = 𝜏∗ 

 

Remark 7:- 

                        It is interesting to note that converse of theorem 10 is false in 

general. 

 

Example 6:- 

                        Let X = R 

               𝜏 = *(𝑥, 𝑦): 𝑥 < 𝑦+  

          & 𝜏∗ = *,𝑥, 𝑦): 𝑥 < 𝑦+ 

Then τ ⊆ 𝜏∗ But 𝑆𝑂(𝑋, 𝜏) ⊈ 𝑆𝑂(𝑋, 𝜏∗) 

∵(𝑥, 𝑦-𝜖𝑆𝑂(𝑋, 𝜏)𝑏𝑢𝑡 (𝑥, 𝑦] ∉ 𝑆𝑂(𝑋, 𝜏∗)  

 

Basis:- 

 

 

 

 

  

 Let β and γ are two basis such that β is basis for (𝑋, 𝜏𝑥) and γ is a basis 

for  𝑌, 𝜏𝑦  then 𝛽 ⤬ 𝛾 = *𝐵 ⤬ 𝐶:𝐵𝜖𝛽, 𝐶𝜖𝛾+ 

(𝑥, 𝑦), ,𝑥, 𝑦), (𝑥, 𝑦-, ,𝑥, 𝑦-𝜖𝜏 

& ,𝑥, 𝑦), [𝑥, 𝑦]𝜖𝜏∗ 

∀ 𝑥𝜖𝑋 ∃ 𝐵 ∈  𝛽 

Such that 𝑥 ∈ 𝐵 

𝐵1 𝑎𝑛𝑑 𝐵2𝜖𝛽, 𝑥𝜖𝐵1 ∩ 𝐵2 

𝑥𝜖𝐵3 ⊆ 𝐵1 ∩ 𝐵2 

Then there exit 𝐵3 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 ∪ 𝐵𝑖 = 𝑋 www.R
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 There can be construct more than one basis corresponds to each 

topology but there is only one topology corresponds to each basis. 

 

Theorem 11:- 

                            Let  (𝑋, 𝜏1)𝑎𝑛𝑑 (𝑋, 𝜏2) be topological spaces and 𝑋 = 𝑋1 ⤬ 𝑋2 be 

topological product. Let 𝐴1𝜖𝑆𝑂(𝑋1)𝑎𝑛𝑑 𝐴2𝜖𝑆𝑂(𝑋2). Then prove that 

𝐴1 ⤬ 𝐴2𝜖𝑆𝑂(𝑋1 ⤬ 𝑋2) 

Proof:- 

              We have 𝐴𝑖 = 𝑂𝑖 ⤬ 𝐵𝑖  ;     𝑖 = 1,2 

Where 𝑂𝑖  is open in 𝑋𝑖  ;     𝑖 = 1,2  

And 𝐵𝑖  is nowhere dense in 𝑋𝑖  ;     𝑖 = 1,2 

And 𝑂𝑖 ∩ 𝐵𝑖 = 𝜑 ∀𝑖 = 1,2 

Further, 

                  𝐵𝑖 ⊆ 𝐶𝑙(𝑂𝑖) − 𝑂𝑖  ;     𝑖 = 1,2 

Now,            𝐴1 ⤬ 𝐴2 = (𝑂1 ∪ 𝐵1) ⤬ (𝑂2 ∪ 𝐵2) 

                           = (𝑂1 ⤬ 𝑂2) ∪ (𝑂1 ⤬ 𝐵2) ∪ (𝐵1 ⤬ 𝑂2) ∪ (𝐵1 ⤬ 𝐵2) --- * 

                           ⊆ (𝑂1 ⤬ 𝑂2) ∪ ,𝐶𝑙(𝑂1) ⤬ 𝐶𝑙(𝑂2)- ∪ ,𝐶𝑙(𝑂1) ⤬ 𝑂2- ∪

                               ,𝐶𝑙(𝑂1) ⤬ 𝐶𝑙(𝑂2)-            ∵  𝐵1 ⊆ 𝐶𝑙(𝑂1), 𝐵2 ⊆ 𝐶𝑙(𝑂2) 

                            = 𝐶𝑙(𝑂1) ⤬ 𝐶𝑙(𝑂2) 

 𝑂1 ⤬ 𝑂2 ⊆ 𝐴1 ⤬ 𝐴2 ⊆ 𝐶𝑙(𝑂1) ⤬ 𝐶𝑙(𝑂2) = 𝐶𝑙(𝑂1 ⤬ 𝑂2)   𝑓𝑟𝑜𝑚 ∗ 

Since 𝑂1 ⤬ 𝑂2 is open in the product space, 

Therefore 𝐴1 ⤬ 𝐴2𝜖𝑆𝑂(𝑋1 ⤬ 𝑋2) 

Remark 8:- 

                        If 𝐴𝜖𝑆𝑂(𝑋1 ⤬ 𝑋2) then in general we cannot write 𝐴 = 𝐴1 ⤬ 𝐴2, 

where 𝐴1𝜖𝑆𝑂(𝑋1)𝑎𝑛𝑑 𝐴2𝜖𝑆𝑂(𝑋2). 
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Example 7:- 

                       Let 𝑋 = 𝑅2 with usual topology. 

Let 𝐴 = *(𝑥, 𝑦): 0 < 𝑥 < 1, 0 < 𝑦 < 1+ ∪ (1,1) 

Then A is semi-open in R⤬R. But we cannot find two sets 𝐴1𝑎𝑛𝑑 𝐴2 𝑠. 𝑡.  

𝐴 = 𝐴1 ⤬ 𝐴2 and 𝐴1𝜖𝑆𝑂(𝑅)𝑎𝑛𝑑 𝐴2𝜖𝑆𝑂(𝑅) 

 

Semi-Continuous Function:- 

                                                       Let (𝑋, 𝜏𝑥)𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be topological spaces and 

𝑓: 𝑋 ⟶ 𝑌 be a single valued function then ′𝑓′ is said to be semi-continuous if 

and only if, for each open set V in Y, 𝑓−1(𝑉) is semi-open in X. 

 

Remark 9:- 

                    Every continuous function is semi-continuous as well but a semi-

continuous function may not be continuous. 

 

Example 8:- 

                       Let 𝑋 = 𝑌 = [0,1] with usual topology and 𝑓: 𝑋 ⟶ 𝑌 defined by, 

𝑓(𝑥) =  
1     𝑖𝑓 0 ≤ 𝑥 ≤

1

2

0     𝑖𝑓
1

2
≤ 𝑥 ≤ 1

   

This is a semi-continuous function but not a continuous function. 

Let V be an open set in Y, 
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𝑉 =

 
  
 

  
 1𝜖𝑉, 0 ∉ 𝑉  ⟹  𝑓−1(𝑉) =  0,

1

2
 𝜖𝑆𝑂(𝑋)

0𝜖𝑉, 1 ∉ 𝑉  ⟹  𝑓−1(𝑉) =  
1

2
, 1 𝜖𝑆𝑂(𝑋)

0 ∉ 𝑉, 1 ∉ 𝑉         ⟹         𝑓−1(𝑉) = 𝜑𝜖𝜏𝑥
0𝜖𝑉, 1𝜖𝑉          ⟹       𝑓−1(𝑉) = [0,1]𝜖𝜏𝑥

  

Theorem 12:- 

                          𝐿𝑒𝑡 (𝑋, 𝜏𝑥)𝑎𝑛𝑑 (𝑌, 𝜏𝑦) Be topological spaces and 𝑓: 𝑋 ⟶ 𝑌 be a 

single valued function, then ′𝑓′ is semi-continuous if and only if for 𝑓(𝑝)𝜖𝑉, 

there exit an 𝐴𝜖𝑆𝑂(𝑋)𝑠. 𝑡. 𝑝𝜖𝐴 𝑎𝑛𝑑 𝑓(𝐴) ⊆ 𝑉. 

Proof:- 

             Let 𝑓(𝑝)𝜖𝑉𝜖𝜏𝑦  

 There exit an 𝐴𝑝𝜖𝑆𝑂(𝑋)𝑠. 𝑡.  𝑝𝜖𝐴𝑝𝑎𝑛𝑑 𝑓(𝐴𝑝) ⊆ 𝑉 

We have to prove that 𝑓 is semi-continuous. 

For this we show that 𝑓−1(𝑉)𝜖𝑆𝑂(𝑋) 

Now,             𝑓(𝑝)𝜖𝑉    ⟹      𝑝𝜖𝑓−1(𝑉) 

By hypothesis there exit an 𝐴𝑝𝜖𝑆𝑂(𝑋)𝑠. 𝑡.  𝑝𝜖𝐴𝑝  𝑎𝑛𝑑 𝑓 𝐴𝑝 ⊆ 𝑉 

 𝑝𝜖𝐴𝑝 ⊆ 𝑓−1𝑓 𝐴𝑝 ⊆ 𝑓−1(𝑉)             ∵ 𝐴 ⊆ 𝑓−1𝑓(𝐴)& 𝑓𝑓−1(𝐴) ⊆ 𝐴 

 𝑝𝜖𝐴𝑝 ⊆ 𝑓−1(𝑉) 

Thus 𝑓−1(𝑉) =∪𝑝𝜖𝑓−1(𝑉) 𝐴𝑝  

Since arbitrary union of semi-open sets is semi-open, therefore 

𝑓−1(𝑉) =∪𝑝𝜖𝑓−1(𝑉) 𝐴𝑝  𝑖𝑠 𝑠𝑒𝑚𝑖 − 𝑜𝑝𝑒𝑛 

 𝑓 is semi-continuous 

Conversely, 

                       Let 𝑓: 𝑋 ⟶ 𝑌 be semi-continuous 
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Let 𝑓(𝑝)𝜖𝑉𝜖𝜏𝑦  

 𝑝𝜖𝑓−1(𝑉)𝜖𝑆𝑂(𝑋)       ∵ 𝑓 𝑖𝑠 𝑠𝑒𝑚𝑖 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 & 𝑉𝜖𝜏𝑦 ; 𝑓−1𝜖𝑆𝑂(𝑋) 

Let 𝑓−1(𝑉) = 𝐴 

 𝑖. 𝑒.   𝑝𝜖𝐴   𝑎𝑛𝑑   𝑓(𝐴) = 𝑓𝑓−1(𝑉) ⊆ 𝑉 

 𝑝𝜖𝐴    𝑎𝑛𝑑   𝑓(𝐴) ⊆ 𝑉    (𝑇𝑕𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑠 𝑡𝑕𝑒 𝑝𝑟𝑜𝑜𝑓) 

 

Theorem 13:- 

                         Let (𝑋, 𝜏𝑥)𝑎𝑛𝑑  𝑌, 𝜏𝑦  be topological spaces. Let 𝑓: 𝑋 ⟶ 𝑌 be a 

semi-continuous function and Y be 2nd axioms space. Let P be the set of 

discontinuities of ′𝑓′ then prove that P is op 1st category. 

Proof:- 

              Given,    ❶ 𝒇 is semi-continuous. 

❷  𝑌, 𝜏𝑦  is 2nd axioms space. 

❸ 𝑃 ⊆ 𝑋: 𝑃 is set of discontinuities of 𝑓. 

We have to prove that P is of 1st category. 

 𝑃 =∪𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 𝐺𝛼   𝑎𝑛𝑡 𝐼𝑛𝑡[𝐶𝑙(𝐺𝛼) = 𝜑 

Let p ϵ P,   Let  𝑓(𝑝)𝜖𝑂𝑖𝑝 ⊆ (𝑌, 𝜏𝑦),   where 𝑂𝑖𝑝   the countable union of basic 

open sets because (𝑌, 𝜏𝑦) is a 2nd axioms space. 

Now if O is open in X such that  𝑝𝜖𝑂, 

Then 𝑓(𝑂) ⊈ 𝑂𝑖𝑝  because ′𝑓′ is discontinuous at 𝑝𝜖𝑃. 

Now, since   𝑓  is semi-continuous, therefore there exit 

  𝐴𝒊𝒑𝜖𝑆𝑂(𝑋, 𝑝) 𝑠. 𝑡.  𝑝𝜖𝐴𝑖𝑝   𝑎𝑛𝑑  𝑓(𝐴𝑖𝑝) ⊆ 𝑂𝑖𝑝  

As   𝐴𝑖𝑝   is semi-open in X, therefore, there exit   𝑈𝑖𝑝   𝑎𝑛𝑑  𝐵𝑖𝑝   𝑠. 𝑡. 

2nd Axioms Space: - A topological 

space (𝑋, 𝜏𝑥) is said to be 2nd 

axioms space if it has countable 

basis. 

First Category: - A set is of 1st 

category if it is countable 

union of nowhere dense sets. 
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𝐴𝒊𝒑 = 𝐵𝒊𝒑 ∪ 𝑈𝑖𝑝 ,    𝑤𝑕𝑒𝑟𝑒 𝑈𝑖𝑝  is open in X and 𝐵𝑖𝑝  is nowhere dense in X. 

Moreover,    𝐵𝑖𝑝 ⊆ 𝐶𝑙 𝑈𝑖𝑝 − 𝑈𝑖𝑝   

Thus,     𝑝𝜖𝐵𝑖𝑝   a nowhere dense set.          ∵𝑝 ∉ 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖. 𝑒. 𝑈𝑖𝑝  

 𝑃 ⊆∪𝑝𝜖𝑃 𝐵𝑖𝑝  

 P is of 1st category. 

 

Remark 10:- 

                         The converse of theorem 13 is false in general. 

 

Example 9:- 

                       Let  𝑋 = (0,1- 𝑎𝑛𝑑 𝑋∗ = [0,1] 

Let 𝑓: 𝑋 ⟶ 𝑋∗ =  
0,          𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑛
1

𝑞
,      𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 𝑄

  

Where 𝑄 = 2
𝑝

𝑞
; 𝑝, 𝑞𝜖𝑍, 𝑞 ≠ 0, (𝑝, 𝑞) = 13 

Then,    𝑓  is continuous at irrationals and discontinuous at rational. 

Hence the set of discontinuities is of 1st category [∵ the set of rational is 

countable set.] 

Consider   𝑢 = .
1

2
, 11 𝜖𝑋∗ is open as 0 ∉ 𝑢 

 𝑓−1(𝑢) = 𝑓−1 .
1

2
, 11 = sub set of rational b/w (0, 1] 

And we cannot find an open set O in X such that 

          O ⊆ sub set of rational between (0, 1- ⊆ 𝐶𝑙(O) 

        𝑓 is not semi-continuous. 
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Theorem 14:- 

                          Let 𝑓𝑖 : 𝑋𝑖 ⟶ 𝑋𝑖
∗ be semi-continuous. Let 𝑓: 𝑋1 ⤬ 𝑋2 ⟶ 𝑋1

∗ ⤬ 𝑋2
∗ 

be defined as 𝑓:  (𝑥1, 𝑥2) =  𝑓1(𝑥1), 𝑓2(𝑥2) . Then prove that 

𝑓: 𝑋1 ⤬ 𝑋2 ⟶ 𝑋1
∗ ⤬ 𝑋2

∗ is semi-continuous. 

Proof:- 

              Given   𝑓1: 𝑋1 ⟶ 𝑋1
∗ 𝑎𝑛𝑑 𝑓2: 𝑋2 ⟶ 𝑋2

∗ are semi-continuous functions. 

Let  𝑢 𝑎𝑛𝑑 𝑣 are open sets such that 𝑢 ⊆ 𝑋1
∗ 𝑎𝑛𝑑 𝑣 ⊆ 𝑋2

∗ 

As 𝑓1 𝑎𝑛𝑑 𝑓2 are semi-continuous, 

Therefore,    𝑓1
−1(𝑢)𝜖𝑆𝑂(𝑋1) 𝑎𝑛𝑑 𝑓2

−1(𝑣)𝜖𝑆𝑂(𝑋2) 

𝑖. 𝑒.  Inverse images of open sets are semi-open. 

Now let,  𝑢 ⤬ 𝑣 ⊆ 𝑋1
∗ ⤬ 𝑋2

∗ 

We have to prove   𝑓−1(𝑢 ⤬ 𝑣)𝜖𝑆𝑂(𝑋1 ⤬ 𝑋2) 

Now,    𝑓−1(𝑢 ⤬ 𝑣) =  𝑓1
−1(𝑢) ⤬ 𝑓2

−1(𝑣) 

                                      𝜖 𝑆𝑂(𝑋1) ⤬ 𝑆𝑂(𝑋2) 

                                      𝜖 𝑆𝑂(𝑋1 ⤬ 𝑋2) 

 𝑓−1(𝑢 ⤬ 𝑣) 𝜖 𝑆𝑂(𝑋1 ⤬ 𝑋2) 

 𝑓: 𝑋1 ⤬ 𝑋2 ⟶ 𝑋1
∗ ⤬ 𝑋2

∗  is semi continuous. 

 

Theorem 15:- 

                         Let  𝑕: 𝑋 ⟶ 𝑋1 ⤬ 𝑋2  be semi continuous, where X, 𝑋1 𝑎𝑛𝑑 𝑋2 are 

topological spaces. Let   𝑓𝑖 : 𝑋 ⟶ 𝑋1  be defined as follows. For 𝑥𝜖𝑋;    𝑕(𝑥) =

(𝑥1, 𝑥2).  Let 𝑓𝑖(𝑥) = 𝑥𝑖   then 𝑓𝑖 : 𝑋 ⟶ 𝑋𝑖  is semi-continuous for 𝑖 = 1,2. 

Proof:- 

              𝑕: 𝑋 ⟶ 𝑋𝑖  is semi-continuous. 
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Let 𝑂1 𝑏𝑒 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋1. Then 𝑂1 ⤬ 𝑋2 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋1 ⤬ 𝑋2 

And hence,  𝑕−1(𝑂1 ⤬ 𝑋2) is semi-open in X. 

But    𝑓1
−1(𝑂1) = 𝑕−1(𝑂1 ⤬ 𝑋2) 𝜖 𝑆𝑂(𝑋) 

   𝑓1 is semi-continuous. 

Similarly for 𝑓2. 

 

Remark 11:- 

                        The converse of theorem 15 is generally false. 

 

Example 10:- 

                          Let   𝑋 = 𝑋1 = 𝑋2 = [0,1] 

                    𝑓1: 𝑋 ⟶ 𝑋1 =  
1      𝑖𝑓 0 ≤ 𝑥 ≤

1

2

0      𝑖𝑓
1

2
< 𝑥 ≤ 1

   

                   𝑓2: 𝑋 ⟶ 𝑋2 =  
1      𝑖𝑓 0 ≤ 𝑥 <

1

2

0      𝑖𝑓
1

2
≤ 𝑥 < 1

    

Then, 

    𝑓𝑖 : 𝑋 ⟶ 𝑋𝑖  is semi-continuous but 𝑕(𝑥) = ,𝑓1(𝑥), 𝑓2(𝑥)-: 𝑋 ⟶ 𝑋1 ⤬ 𝑋2 is not 

semi-continuous. 

Remark 12:- 

                      Composition of two semi- 

continuous functions is not a semi- 

continuous function.  

𝑓 is said to be continuous at 

𝑥 = 𝑥° if ∀ ε > 0 ∃ a δ > 0 𝑠. 𝑡. 

∣ 𝑓(𝑥) − 𝑓(𝑥°) ∣< 𝜀 whenever 

∣ 𝑥 − 𝑥°) < 𝛿 
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Example 11:- 

                        𝐿𝑒𝑡 𝑋 = 𝑋1 = 𝑋2 = [0,1] 

𝑓1: 𝑋 ⟶ 𝑋1 =  
𝑥      𝑖𝑓  0 ≤ 𝑥 ≤

1

2

0      𝑖𝑓 
1

2
< 𝑥 ≤ 1

  

𝑓2: 𝑋1 ⟶ 𝑋2 =  
0      𝑖𝑓  0 ≤ 𝑥 <

1

2

1     𝑖𝑓 
1

2
≤ 𝑥 ≤ 1

  

𝑁𝑜𝑤,          (𝑓2 ∘ 𝑓1)−1(𝑥) = (𝑓1
−1 ∘ 𝑓2

−1)(𝑥) 

Let     𝑢𝜖𝑋2;       0𝜖𝑢 𝑎𝑛𝑑 1 ∉ 𝑢  ⟹  𝑓2
−1(𝑢) = 00,

1

2
1 

  (𝑓1
−1 ∘ 𝑓2

−1)(𝑢) = 𝑓1
−1*𝑓2

−1(𝑢)- = 𝑓1
−1 .00,

1

2
1/ = 𝑋    𝑜𝑝𝑒𝑛 

Now    0 ∉ 𝑢 𝑎𝑛𝑑 1 ∈ 𝑢   ⟹   𝑓2
−1(𝑢) = 0

1

2
, 11 

  (𝑓1
−1 ∘ 𝑓2

−1)(𝑢) = 𝑓1
−1*𝑓2

−1(𝑢)+ = 𝑓1
−1 0

1

2
, 11 = 2

1

2
, 03 ∉ 𝑆𝑂(𝑋) 

 Composition of two semi-continuous functions is not a semi-

continuous. 

 

Remark 13:- 

                        The algebraic sum and product of semi-continuous functions are 

not in general semi-continuous. 
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Theorem 16:- 

                          Let 𝑓𝑛 : 𝑀 ⟶ 𝑀∗, 𝑤𝑕𝑒𝑟𝑒 𝑀 𝑎𝑛𝑑 𝑀∗ are metric spaces with 

metrics  𝑑 𝑎𝑛𝑑 𝑑∗, be semi-continuous for 𝑛 = 1,2,3,4,……, and let 

𝑓∘:𝑀 ⟶ 𝑀∗ be the uniform limit of *𝑓𝑛+ 𝑡𝑕𝑒𝑛 𝑓∘:𝑀 ⟶ 𝑀∗ is semi-continuous. 

Proof:- 

              Let  𝑂∗ 𝑏𝑒 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑀∗ 𝑎𝑛𝑑 𝑓∘(𝑥)𝜖𝑂∗. 

As (𝑀∗, 𝑑∗) be metric spaces then there exit  𝜂 > 0 𝑠. 𝑡. 

𝑓∘(𝑥) 𝜖 𝑆𝜂
∗(𝑓∘(𝑥) ⊆  𝑂∗ 

As 𝑓∘:𝑀 ⟶ 𝑀∗is uniform limit of  {𝑓𝑛}, then for 𝜀 = 𝜂/2 there exit 𝑛∗ 𝑠. 𝑡. 

𝑑∗(𝑓𝑛
∗(𝑥), 𝑓∘(𝑥) <

𝜂

2
    ∀ 𝑥 ∈ 𝑀 

 𝑓𝑛
∗(𝑥) ∈ 𝑆𝜂

2

∗(𝑓∘(𝑥)) ⊆ 𝑂∗ 

As  𝑓𝑛
∗ is semi-continuous, then by a well known theorem there exit 𝐴 𝜖 𝑆𝑂(𝑋) 

such that  𝑥 𝜖 𝐴 𝑎𝑛𝑑 𝑓𝑛
∗(𝐴) ⊆ 𝑆𝜂

2

∗{𝑓∘(𝑥)} 

Theorem will be prove if we show 𝑓∘(𝐴) ⊆ 𝑂∗ 

Let  𝑦 𝜖 𝐴, then  

𝑑∗,𝑓∘(𝑦), 𝑓∘(𝑥)- ≤ 𝑑∗,𝑓∘(𝑦), 𝑓𝑛
∗(𝑦)- = 𝑑[𝑓𝑛

∗(𝑦), 𝑓∘(𝑥) <
𝜂

2
+
𝜂

2
= 𝜂 

                                  𝑓∘(𝐴) ⊆ 𝑆𝜂
∗{𝑓∘(𝑥)} ⊆ 𝑂∗ 

   𝑓∘ is semi-continuous        (proved) 
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SEMI-CONTINUOUS MAPPINGS 

 

This course was established in 1973 by “Nota di Takashi Noire” and published by 

“Academia Nazionale Dei Lincei” 

 

Introduction:- 

                           In 1963 N-Levine defined a subset A of a topological space ‘X’ to 

be semi-open if there exit an open set 𝑢 in X such that 𝑢 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂), where 

𝐶𝑙(𝑢) denotes the closure of 𝑢. He also defined a mapping 𝑓 of a topological 

space X into a topological space Y to be semi-continuous if for every open set V 

in Y, 𝑓−1(𝑉) is a semi-open set in X. The purpose of present note is to give a 

generalization of the following two theorems and to investigate some 

properties of semi-open sets and semi-continuous mappings. 

 

 Theorem A:- 

                                   Let 𝑋1 𝑎𝑛𝑑 𝑋2 be topological spaces. If 𝐴𝑖  is a semi-open set 

in 𝑋𝑖  for  𝑖 = 1,2 ; then 𝐴1 ⤬ 𝐴2 is a semi-open set in the product space 

𝑋1 ⤬ 𝑋2. 

 Theorem B:- 

                                  Let 𝑋𝑖  𝑎𝑛𝑑 𝑌𝑖  be topological spaces and 𝑓𝑖 : 𝑋𝑖 ⟶ 𝑌𝑖  be semi-

continuous mapping for  𝑖 = 1,2. Then a mapping 𝑓: 𝑋1 ⤬ 𝑋2 ⟶ 𝑌1 ⤬ 𝑌2 

defined by putting 𝑓(𝑥1, 𝑥2) = (𝑓1(𝑥1), 𝑓2(𝑥2)) is semi-continuous. 
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Semi-Open Sets 

Lemma 1:-  

                   If U is open and A is a semi-open set, then U∩A is semi-open. 

Proof:- 

             As A ϵ SO(X),   Then there exit an open set O in X such that, 

𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂) 

 𝑈 ∩ 𝑂 ⊆ 𝑈 ∩ 𝐴 ⊆ 𝑈 ∩ 𝐶𝑙(𝑂) ⊆ 𝐶𝑙(𝑈 ∩ 𝑂) 

Since U∩A is open in X and 𝑈 ∩ 𝑂 ⊆ 𝑈 ∩ 𝐴 ⊆ (𝑈 ∩ 𝑂) 

 𝑈 ∩ 𝐴 𝜖 𝑆𝑂(𝑋)            (𝑝𝑟𝑜𝑣𝑒𝑑) 

 

Theorem 1:- 

                       Let A and 𝑋∘ be subsets of X such that 𝐴 ⊆ 𝑋∘ and 𝑋∘ 𝜖 𝑆𝑂(𝑋), then 

A ϵ SO(X) if and only if 𝐴 𝜖 𝑆𝑂(𝑋∘) 

Proof:- 

             As 𝐴 ⊆ 𝑋∘ 𝑎𝑛𝑑 𝑋∘𝜖 𝑆𝑂(𝑋). 

So 𝑋∘ is a subspace of X by a well known theorem. 

Hence,                   𝐴 𝜖 𝑆𝑂(𝑋∘) 

So we need only to prove that 𝐴 𝜖 𝑆𝑂(𝑋) 

Let 𝐴 𝜖 𝑆𝑂(𝑋∘), 

Then by definition there exit an open set 𝑈∘ 𝑖𝑛 𝑋∘ 𝑠. 𝑡. 
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𝑈∘ ⊆ 𝐴 ⊆ 𝐶𝑙(𝑈∘) 

Since 𝑈∘ 𝑖𝑛 𝑋∘, then there exit an open set U in X such that 𝑈∘ = 𝑈 ∩ 𝑋∘ 

 𝑈 ∩ 𝑋∘ ⊆ 𝐴 ⊆ 𝐶𝑙(𝑈 ∩ 𝑋∘) 

Since U is open and 𝑋∘is semi-open so 𝑈 ∩ 𝑋∘is semi-open in X 

 𝐴 𝜖 𝑆𝑂(𝑋)                             (𝑝𝑟𝑜𝑣𝑒𝑑) 

 

Lemma 2:- 

                    A is semi-open if and only if 𝐶𝑙(𝐴) = 𝐶𝑙{𝐼𝑛𝑡(𝐴)} 

Proof:- 

              Suppose A is semi-open then by a well known theorem 

𝐴 ⊆ 𝐶𝑙*𝐼𝑛𝑡(𝐴)+ 

                               𝐶𝑙(𝐴) ⊆ 𝐶𝑙*𝐶𝑙(𝐼𝑛𝑡𝐴)+ = 𝐶𝑙{𝐼𝑛𝑡(𝐴)} 

                         𝐶𝑙(𝐴) ⊆ 𝐶𝑙*𝐼𝑛𝑡(𝐴)+ -----------------------  ① 

𝐴𝑠    𝐼𝑛𝑡(𝐴) ⊆ 𝐴 

                        𝐶𝑙{𝐼𝑛𝑡(𝐴)} ⊆ 𝐶𝑙(𝐴) ------------------------- ② 

By relation ① and ② we get 

𝐶𝑙(𝐴) = 𝐶𝑙{𝐼𝑛𝑡(𝐴)} 

Conversely, 

                       Let,   𝐶𝑙(𝐴) = 𝐶𝑙{𝐼𝑛𝑡(𝐴)} 

To prove A is semi-open. 

As               𝐼𝑛𝑡(𝐴) ⊆ 𝐴 ⊆ 𝐶𝑙(𝐴) 
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    𝐼𝑛𝑡(𝐴) ⊆ 𝐴 ⊆ 𝐶𝑙*𝐼𝑛𝑡(𝐴)+           ∵ 𝐶𝑙(𝐴) = 𝐶𝑙{𝐼𝑛𝑡(𝐴)} 

As 𝐼𝑛𝑡(𝐴) is open set and 𝐼𝑛𝑡(𝐴) ⊆ 𝐴 ⊆ 𝐶𝑙*𝐼𝑛𝑡(𝐴)+ 

 A is semi-open                  (𝑝𝑟𝑜𝑣𝑒𝑑) 

 

Lemma 3:- 

                    Let {𝑋𝛼 : 𝛼𝜖𝛽} be any family of topological spaces and ∏𝑋𝛼  denotes 

the product space, then 

❶ 𝐼𝑛𝑡 ∏𝐴𝛼 = ∏𝐼𝑛𝑡𝐴𝛼   𝑖𝑓 𝐴𝛼 = 𝑋𝛼  Except for finite 𝛼𝜖𝛽 𝑎𝑛𝑑 ∏𝐼𝑛𝑡𝐴𝛼 ≠ 𝜑. 

❷ 𝐶𝑙 ∏𝐴𝛼 = ∏𝐶𝑙𝐴𝛼  

Proof:- 

             ❶ 𝐴𝑠 𝐴𝛼 = 𝑋𝛼   Except for a finite α ϵ β.  

So the result is obvious for all 𝐴𝛼 = 𝑋𝛼  

So we prove this lemma just for finite case, 

As 𝐼𝑛𝑡(𝐴𝛼) is open in 𝑋𝛼  ∀ 𝛼 = 1,2,3… , 𝑛 

𝑆𝑜       𝐼𝑛𝑡(𝐴𝛼) 

𝑛

𝛼=1

 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛  𝑋𝛼

𝑛

𝛼=1

 

𝐴𝑙𝑠𝑜               𝐼𝑛𝑡(𝐴𝛼) ⊆

𝑛

𝛼=1

 𝐴𝛼

𝑛

𝛼=1

             

  ∏ 𝐼𝑛𝑡(𝐴𝛼)𝑛
𝛼=1  ⊆ 𝐼𝑛𝑡 ∏ 𝐴𝛼

𝑛
𝛼=1  ------------------------ ① 

Now, Let (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 𝜖 𝐼𝑛𝑡∏ 𝐴𝛼
𝑛
𝛼=1  

As                  𝐼𝑛𝑡 ∏ 𝐴𝛼
𝑛
𝛼=1 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 ∏ 𝑋𝛼

𝑛
𝛼=1  
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 There exit open set 𝑈𝛼  𝑖𝑛 𝑋𝛼  ∀ 𝛼 = 1,2,3,… , 𝑛  𝑠. 𝑡. 

(𝑥1, 𝑥2, … , 𝑥𝑛)𝜖  𝑈𝛼

𝑛

𝛼=1

⊆ 𝐼𝑛𝑡 𝐴𝛼

𝑛

𝛼=1

⊆  𝑋𝛼

𝑛

𝛼=1

 

Since 𝑈𝛼  𝜖 𝐴𝛼  ∀ 𝛼 = 1,2,3, … , 𝑛;  It follows that 𝑥𝛼  𝜖 𝐼𝑛𝑡(𝐴𝛼) ∀ 𝛼 = 1,2,3,… , 𝑛 

 (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 𝜖 ∏ 𝐼𝑛𝑡𝐴𝛼
𝑛
𝛼=1  

 𝐼𝑛𝑡∏ 𝐴𝛼
𝑛
𝛼=1 ⊆ ∏ 𝐼𝑛𝑡(𝐴𝛼)𝑛

𝛼=1  ------------------------ ② 

From equation ① and ②   𝐼𝑛𝑡∏ 𝐴𝛼
𝑛
𝛼=1 = ∏ 𝐼𝑛𝑡(𝐴𝛼)𝑛

𝛼=1  

 

❷As 𝐴𝛼 = 𝑋𝛼  except for finite α ϵ β and 𝑋𝛼  are topological spaces, 

So result obviously for all  𝐴𝛼 = 𝑋𝛼 . 

So we prove this lemma just for finite case, 

As 𝐴𝛼 ⊆ 𝐶𝑙(𝐴𝛼) ∀ 𝛼 = 1,2,3,… , 𝑛 

 ∏ 𝐴𝛼
𝑛
𝛼=1 ⊆ ∏ 𝐶𝑙(𝐴𝛼)

𝑛
𝛼=1  

Also, (∏ 𝑋𝛼)𝑛
𝛼=1   ⃥ ∏ 𝐶𝑙(𝐴𝛼)

𝑛
𝛼=1 =   (𝑋𝛼 ⤬

𝑛
𝛼=1 (𝑋𝜔   ⃥𝐴𝜔) )  

                                                                              𝛼 ≠ 𝜔, 1 ≤ 𝛼, 𝜔 ≤ 𝑛 

Which is open in ∏ 𝑋𝛼
𝑛
𝛼=1  

 ∏ 𝐶𝑙𝐴𝛼
𝑛
𝛼=1   is closed and so 𝐶𝑙 ∏ 𝐴𝛼

𝑛
𝛼=1 ⊆ ∏ 𝐶𝑙(𝐴𝛼)𝑛

𝛼=1  -------- ③ 

Now let, (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)𝜖 ∏ 𝐶𝑙(𝐴𝛼)𝑛
𝛼=1  

Let, 𝜔 𝑏𝑒 𝑎 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑕𝑜𝑜𝑑 𝑜𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛)𝑖𝑛 ∏ 𝑋𝛼
𝑛
𝛼=1  

Then there exit open set 𝑈𝛼  in 𝑋𝛼  ∀ 𝛼 = 1,2,3, … , 𝑛  𝑠. 𝑡. 
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(𝑥1, 𝑥2 , … 𝑥𝑛)𝜖  𝑈𝛼

𝑛

𝛼=1

⊆ 𝜔 

Then, 𝑥𝛼  𝜖 𝑈𝛼  ∀ 𝛼 = 1,2,3, … , 𝑛 

But 𝑋𝛼  𝜖 𝐴𝛼          ∀ 𝛼 = 1,2,3, … , 𝑛 

And 𝑈𝛼 ∩ 𝐴𝛼 ≠  𝜑     ∀ 𝛼 = 1,2,3,… , 𝑛 

Since ∏ 𝑈𝛼
𝑛
𝛼=1 ⊆  𝜔   and we know that 𝜔 ∩ ∏ 𝐴𝛼

𝑛
𝛼=1 ≠  𝜑 

 (𝑥1, 𝑥2, … , 𝑥𝑛)𝜖 𝐶𝑙 ∏ 𝐴𝛼
𝑛
𝛼=1   -----------------  ④ 

From equation ③ and ④ we have  

 𝐶𝑙(𝐴𝛼)

𝑛

𝛼=1

= 𝐶𝑙 𝐴𝛼

𝑛

𝛼=1

 

 

Lemma 4:- 

                    If A is a non-empty semi-open set, then 𝐼𝑛𝑡(𝐴) ≠  𝜑 

Proof:- 

             Since A is semi-open, 

Then, 𝐶𝑙(𝐴) =  𝐶𝑙{𝐼𝑛𝑡(𝐴)} 

Suppose,               𝐼𝑛𝑡(𝐴) =  𝜑 

Then,                        𝐶𝑙(𝐴) =  𝜑 

                            𝐴 =  𝜑 

Which is a contradiction, and hence     𝐼𝑛𝑡(𝐴) ≠  𝜑 

 

𝐶𝑙(𝐴) =  𝐶𝑙(𝜑)    ∵ 𝐼𝑛𝑡𝐴 = 𝜑 

 𝐶𝑙(𝐴) = 𝜑     ∵   𝜑 = 𝜑 

 𝐴 = 𝜑     ∵ 𝐶𝑙(𝜑) = 𝜑 
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Theorem 2:- 

                        Let {𝑋𝛼 : 𝛼 𝜖 𝛽} be any family of topological space, 𝑋 = ∏𝑋𝛼  the 

product space and 𝐴 = ∏ 𝐴𝛼𝑗
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗 , a non-empty subset of X, where 

n is a positive integer. Then 𝐴𝛼𝑗  𝜖 𝑆𝑂 .𝑋𝛼𝑗/ for each 𝑗(1 ≤ 𝑗 ≤ 𝑛) if and only if 

𝐴 𝜖 𝑆𝑂(𝑋) 

Proof:- 

              Suppose 𝐴𝛼𝑗  𝜖 𝑆𝑂 .𝑋𝛼𝑗 /     ∀ 𝑗(1 ≤ 𝑗 ≤ 𝑛) 

Since 𝐴 ≠  𝜑  𝑡𝑕𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐴𝛼𝑗  ≠  𝜑    ∀ 𝑗(1 ≤ 𝑗 ≤ 𝑛) 

As            𝐴𝛼𝑗  𝜖 𝑆𝑂 .𝑋𝛼𝑗 /      𝑆𝑜   𝐼𝑛𝑡 .𝐴𝛼𝑗/ ≠  𝜑        (∵  𝐴𝛼𝑗 ≠ 𝜑) 

Thus     ∏ 𝐼𝑛𝑡(𝐴𝛼𝑗 )
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗  ≠  𝜑 

Now,           𝐶𝑙*𝐼𝑛𝑡(𝐴)+ =  ∏ 𝐶𝑙 2𝐼𝑛𝑡 .𝐴𝛼𝑗/3
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗  

                              = ∏ 𝐶𝑙(𝐴𝛼𝑗 )
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗               ∵𝐴𝛼𝑗 𝜖𝑆𝑂(𝑋𝛼𝑗 ) 

         𝐶𝑙*𝐼𝑛𝑡(𝐴)+ = 𝐶𝑙(𝐴) 

                  𝐴 𝜖 𝑆𝑂(𝑋) 

Conversely, 

                      Let           𝐴 𝜖 𝑆𝑂(𝑋) 

Then,           𝐼𝑛𝑡(𝐴) ≠  𝜑                     ∵ 𝐴 ≠ 𝜑 

As    𝐼𝑛𝑡(𝐴) ⊆  ∏ 𝐼𝑛𝑡(𝐴𝛼𝑗 )
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗  

So         ∏ 𝐼𝑛𝑡(𝐴𝛼𝑗 )
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗  ≠  𝜑 

Since,             𝐴 𝜖 𝑆𝑂(𝑋)   so by a well known theorem, 

∏ 𝐶𝑙 2𝐼𝑛𝑡 .𝐴𝛼𝑗/3 ⤬
𝑛
𝑗=1 ∏ 𝑋𝛼𝛼≠𝛼𝑗 = 𝐶𝑙*𝐼𝑛𝑡(𝐴)+ = 𝐶𝑙(𝐴)  
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                                                                                       = ∏ 𝐶𝑙(𝐴𝛼𝑗 )
𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗  

 𝐶𝑙  𝐼𝑛𝑡 .𝐴𝛼𝑗 / = 𝐶𝑙 .𝐴𝛼𝑗 /           ∀ 𝑗(1 ≤ 𝑗 ≤ 𝑛) 

 𝐴𝛼𝑗  𝜖 𝑆𝑂(𝑋𝛼)                ∀ 𝑗(1 ≤ 𝑗 ≤ 𝑛) 

 

Semi-Continuous Mapping 

 

Theorem 3:- 

                          If 𝑓: 𝑋 ⟶ 𝑌 is a semi-continuous mapping and 𝑋∘ is an open set 

in X, then restriction 𝑓│ 𝑋∘: 𝑋∘ ⟶ 𝑌 is semi-continuous.   

Proof:- 

              Since 𝑓 is a semi-continuous mapping, 

 For any open set V in Y,  𝑓−1(𝑉) is semi-open in X. 

Since 𝑋∘is open. So   𝑓−1(𝑉) ∩ 𝑋∘      is semi open in X. 

Therefore,    (𝑓│𝑋∘)
−1(𝑉) = 𝑓−1(𝑉) ∩ 𝑋∘       is semi-open in   𝑋∘. 

 𝑓│𝑋∘   Is semi-continuous.  

 

Remark:- 

                  In above theorem if   𝑋∘ 𝜖 𝑆𝑂(𝑋)   then   𝑓│𝑋∘  is not always semi-

continuous. 
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Example:- 

                    Let   𝑋 = 𝑌 = [0, 1]   with usual topology and   𝑋∘ = [
1

2
, 1] 

Let,      𝑓: 𝑋 ⟶ 𝑌   be mapping as follows, 

𝑓(𝑥) =  
1      𝑖𝑓 0 ≤ 𝑥 ≤

1

2

0      𝑖𝑓
1

2
< 𝑥 ≤ 1

  

Then f is semi-continuous.  

However, .
1

2
, 11 is open in Y and   𝑓−1  .

1

2
, 11 ∩ 𝑋∘ = 2

1

2
3 ∉ 𝑆𝑂(𝑋∘) 

Therefore,    𝑓│𝑋∘    is not semi-continuous. 

 

Theorem 4:- 

                        Let   𝑓: 𝑋 ⟶ 𝑌  be a mapping and   *𝐴𝛼 : 𝛼𝜖𝛽+  semi-open cover for 

X    𝑖. 𝑒. 𝐴𝛼  𝜖 𝑆𝑂(𝑋)   for each 𝛼 𝜖 𝛽   and     𝐴𝛼𝛼𝜖𝛽 = 𝑋.  if the restriction 

𝑓│𝐴𝛼 : 𝐴𝛼 ⟶ 𝑌   is semi-continuous for each   𝛼𝜖𝛽,   then f is semi-continuous. 

Proof:- 

             Suppose V is an arbitrary open set in Y, then for each α ϵ β we have 

(𝑓│𝐴𝛼)−1(𝑉) =  𝑓−1(𝑉) ∩ 𝐴𝛼  𝜖 𝑆𝑂(𝐴𝛼)       

Because    𝑓│𝐴𝛼    is semi-continuous. Hence by a well known theorem, 

𝑓−1(𝑉) ∩ 𝐴𝛼  𝜖 𝑆𝑂(𝑋)  𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝛼𝜖𝛽 

As union of any number of semi-open sets is semi-open so, 
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 ,𝑓−1(𝑉) ∩ 𝐴𝛼 -

𝛼𝜖𝛽

=  𝑓−1(𝑉) 𝜖 𝑆𝑂(𝑋) 

 𝑓  is semi-continuous. 

Theorem 5:- 

                        Let   *𝑋𝛼 : 𝛼𝜖𝛽+ & *𝑌𝛼 : 𝛼𝜖𝛽+   be any two families of topological 

spaces with the same index set β. For each   𝛼𝜖𝛽, 𝐿𝑒𝑡  𝑓𝛼 : 𝑋𝛼 ⟶ 𝑌𝛼   be a 

mapping. Then a mapping   𝑓:∏𝑋𝛼 ⟶∏𝑌𝛼   defined by, 

𝑓(𝑥𝛼) = (𝑓𝛼(𝑥𝛼)   Is semi-continuous if and only if   𝑓𝛼   is semi-continuous for 

each 𝛼𝜖𝛽. 

Proof:- 

              Let   𝑓𝛼   is semi-continuous for each   𝛼𝜖𝛽   

Suppose V is the basic open set of the topology of   ∏𝑌𝛼 . 

Then there are   𝛼𝑗 𝜖𝛽 (1 ≤ 𝑗 ≤ 𝑛)  and open sets   𝑉𝛼𝑗  in   𝑌𝛼𝑗  𝑠. 𝑡.  

𝑉 =  𝑉𝛼𝑗

𝑛

𝑗=1

⤬  𝑌𝛼
𝛼≠𝛼𝑗

 

Since   𝑓𝛼𝑗   is semi-continuous. So   𝑓𝛼𝑗
−1 .𝑉𝛼𝑗/  is semi open   𝑋𝛼𝑗   for each 

𝑗 (1 ≤ 𝑗 ≤ 𝑛) 

If there exit   𝛼𝑗   𝑠. 𝑡.  𝑓𝛼𝑗
−1 .𝑉𝛼𝑗/ = 𝜑 

Then,     𝑓−1(𝑉) = ∏ 𝑓𝛼𝑗
−1 .𝑉𝛼𝑗/

𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗 = 𝜑 

Hence   𝑓−1(𝑉)  is semi-open in   ∏𝑋𝛼 . 

If      𝑓𝛼𝑗
−1 .𝑉𝛼𝑗/  ≠  𝜑  for each 𝑗(1 ≤ 𝑗 ≤ 𝑛) 
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Then,      𝑓−1(𝑉) = ∏ 𝑓𝛼𝑗
−1 .𝑉𝛼𝑗/

𝑛
𝑗=1 ⤬ ∏ 𝑋𝛼𝛼≠𝛼𝑗 ≠  𝜑 

Hence by a well known theorem,   𝑓−1(𝑉) is semi open in ∏𝑋𝛼 . 

Now, for any open set ω in Y there exit a family   *𝑌𝜆 : 𝜆𝜖∆+ of basic open sets 

such that    𝜔 =  𝑉𝜆𝜆𝜖∆  

Hence by a well known theorem, 

𝑓−1(𝜔) =  𝑓−1(𝑉𝜆)𝜆𝜖∆   is semi-open in   ∏𝑋𝛼 . 

 F is semi-continuous. 

Conversely, 

                       Let 𝑓 is semi-continuous. 

Let for each fixed 𝛼𝜖𝛽,  

Let   𝑝𝛼 : ∏𝑌𝑟 ⟶ 𝑌𝛼   be the projection.  

Suppose 𝑉𝛼  is the arbitrary open set in   𝑌𝛼 ,   

Then,        𝑝𝛼
−1(𝑉𝛼) =  𝑉𝛼 ⤬ ∏ 𝑌𝑟𝑟≠𝛼    is open in    ∏𝑌𝑟 . 

Since 𝑓 is semi-continuous then, 

𝑓−1,𝑝𝛼
−1(𝑉𝛼)- =  𝑓𝛼

−1(𝑉𝛼) ⤬ 𝑋𝑟
𝑟≠𝛼

 

Is semi-continuous in     ∏𝑋𝑟  

If               𝑓𝛼
−1(𝑉𝛼) = 𝜑     then it is obvious that  𝑓𝛼   is semi-continuous. 

If               𝑓𝛼
−1(𝑉𝛼) ≠ 𝜑       

Then,           𝑓𝛼
−1(𝑉𝛼) ⤬ ∏ 𝑋𝑟𝑟≠𝛼 ≠ 𝜑 

Hence by a well known theorem, 
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𝑓𝛼
−1(𝑉𝛼)  is semi open in    𝑋𝛼  

 𝑓𝛼   is semi-continuous   ∀ 𝛼𝜖𝛽 

 

Theorem 6:- 

                       Let   *𝑋𝛼 : 𝛼𝜖𝛽+ be any family of topological spaces. If 𝑓: 𝑋 ⟶ ∏𝑋𝛼  

is semi-continuous mapping, then   𝑝𝛼ₒ𝑓: 𝑋 ⟶ 𝑋𝛼   is semi-continuous, where  

𝑝𝛼  is projection of     ∏𝑋𝑟   onto    𝑋𝛼 . 

Proof:- 

             Let for a fixed 𝛼𝜖𝛽, 

Suppose   𝑈𝛼   is an arbitrary open set in   𝑋𝛼   then,  

𝑝𝛼
−1(𝑈𝛼) is open in    ∏𝑋𝛼 . 

Since 𝑓 is semi-continuous, we have 

𝑓−1,𝑝𝛼
−1(𝑈𝛼)- = (𝑝𝛼ₒ𝑓)−1(𝑈𝛼) 𝜖 𝑆𝑂(𝑋) 

 𝑝𝛼ₒ𝑓     is semi-continuous.  

 

Theorem 7:- 

                        If   𝑓: 𝑋 ⟶ 𝑌  is an open and semi-continuous mapping, then 

𝑓−1(𝐵) ∈ 𝑆𝑂(𝑋)  for every   𝐵𝜖𝑆𝑂(𝑌). 

Proof:- 

              For an arbitrary   𝐵𝜖𝑆𝑂(𝑌), 

There exit an open set V in Y such that, 

𝑉 ⊆ 𝐵 ⊆ 𝐶𝑙(𝑉) 
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Since 𝑓 is open and continuous, 

 𝑓−1(𝑉) ⊆ 𝑓−1(𝐵) ⊆ 𝑓−1𝐶𝑙(𝑉) ⊆ 𝐶𝑙{𝑓−1(𝑉)} 

Since 𝑓 is semi-continuous and V is an open set in Y, 

 𝑓−1(𝑉) 𝜖 𝑆𝑂(𝑋) 

Hence    𝑓−1(𝐵)  is semi-open in X. 

 

 The composition mapping of two semi-continuous mappings is not 

always semi-continuous. 

 

Corollary:- 

                     Let X, Y and Z are three topological spaces. If   𝑓: 𝑋 ⟶ 𝑌  is an open 

and semi-continuous mapping and 𝑔: 𝑌 ⟶ 𝑍 is semi-continuous mapping, 

then   𝑔ₒ𝑓: 𝑋 ⟶ 𝑍  is semi-continuous. 

Proof:- 

               Since   𝑔: 𝑌 ⟶ 𝑍  is semi-continuous. 

Then for any open set V in Z    𝑔−1(𝑉) 𝜖 𝑆𝑂(𝑌) 

And since 𝑓 is open and semi-continuous, then by theorem 7. 

𝑓−1*𝑔−1(𝑉)+ 𝜖 𝑆𝑂(𝑋) 

 (𝑓−1ₒ𝑔−1)(𝑉) 𝜖 𝑆𝑂(𝑋) 

 (𝑔ₒ𝑓)−1(𝑉) 𝜖 𝑆𝑂(𝑋) 

 𝑔ₒ𝑓  Is semi-continuous. 
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Semi-Topological Properties 

 

This course was established in 1973, by “S.Gene Crosseley and S.K Hildebrand” and 

published by “Texas Journal Math (1973). 

 

Introduction:- 

                           In [1] Norman Levine defined a semi-open set in a topological 

space as a set A such that there exit an open set O so that 𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂). He 

also defined a function to be semi-continuous if and only if the inverse of open 

sets is semi-open. Also in [1], among others, the following two results were 

obtained. 

 

Theorem 0.1:- 

                           Let (X, τ) be topological space then, 

1. 𝜏 ⊆ 𝑆𝑂(𝑋), where SO(X) denotes the class of semi-open sets in (X, τ) 

2. For A ϵ SO(X, τ) and  𝐴 ⊆ 𝐵 ⊆ 𝐴, Then B ϵ SO(X, τ). 

 

Theorem 0.2:- 

                          Let 𝑓: 𝑋 ⟶ 𝑌 be a continuous and open mapping, where X and Y 

are topological spaces. Let A ϵ SO(X), Then  𝑓(𝐴) 𝜖 𝑆𝑂(𝑌) 

 

        In [2] the author defined a set to be semi-closed if and only if its 

compliment is semi-open. Semi-closure and semi-interior were defined in a 
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manner analogous to closure and interior. Also in [2], among others, the 

following four results were established. 

Theorem 0.3:- 

                          In a topological space all non-void semi-open sets must contain 

semi-open set. 

Proof:- 

             Let (X, τ) be a topological space and A ϵ SO(X) be a semi-open set such 

that A ≠ φ. 

Then there exit an open set O in X such that, 

𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂) 

Then O must non empty  𝑖. 𝑒. 𝑂 ≠ 𝜑 

Because if   𝑂 = 𝜑 

 𝐶𝑙(𝑂) = 𝜑                        ∵  𝜑 = 𝜑 

And in this case 𝐴 ⊈ 𝑂               ∵ 𝐴 ≠ 𝜑 

 𝑂 ≠  𝜑 

Hence          𝐴 ≠ 𝜑  is semi-open set must contain a non-empty open set. 

 

 Semi-Interior of a Set:- 

                                             Let (X, τ) be a topological space and   𝐴 ≠ 𝜑  is a subset 

of X. Then semi-interior of A is denoted by 𝑠𝐼𝑛𝑡(𝐴) or 𝐴ₒ and is the union of all 

semi-open sets contained in A. 
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Note:- 

(1) 𝑠𝐼𝑛𝑡(𝐴)𝑖𝑠 𝑎 𝑠𝑒𝑚𝑖 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡. 

(2) 𝑠𝐼𝑛𝑡(𝐴) 𝑖𝑠 𝑡𝑕𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑒𝑚𝑖−open set contained in A. 

 

Semi-Interior Point:- 

                                         Let (X, τ) be topological space and 𝐴 ⊆ 𝑋. A point   𝑥𝜖𝐴 is 

called semi-interior point of A if there exit a semi-open set  𝑢 in X   𝑠. 𝑡.  

𝑥 𝜖 𝑢 ⊆ 𝐴. 

 

Note:- 

(1) Collection of all semi-interior points of A is called   𝑠𝐼𝑛𝑡(𝐴) 

(2) If   𝐴 𝜖 𝑆𝑂(𝑋), then every point of A is semi-interior point of A. 

Because  ∀𝑥𝜖𝐴,      𝑥 𝜖 𝐴 ⊆ 𝐴. 

 

Semi-Closure of a Set:- 

                                            Let (X, τ) be a topological space and A is a non-void 

subset of X. Then semi-closure of A is denoted by   𝑠𝐶𝑙(𝐴)   𝑂𝑅  𝐴  and is the 

intersection of all semi-closed sets containing A. 

 

Note:- 

(1) 𝑠𝐶𝑙(𝐴) Is a semi-closed set. 

(2) 𝑠𝐶𝑙(𝐴) Is the smallest semi-closed set containing A. 

(3) 𝐼𝑛𝑡(𝐴) ⊆ 𝑠𝐼𝑛𝑡(𝐴) ⊆ 𝐴 ⊆ 𝑠𝐶𝑙(𝐴) ⊆ 𝐶𝑙(𝐴) 
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Semi-Limit Point:- 

                                   Let (X, τ) be a topological space and A is a subset of X, a 

point  𝑥𝜖𝑋 is called semi-limit point of A if for each semi-open set  𝑢 containing 

 𝑥, we have  𝑢 ∩ 𝐴 ≠ 𝜑,    𝑢 ∩ (𝐴 − *𝑥+) ≠ 𝜑. 

 

Note:- 

            A is semi-closed if A contains all semi-limit points. 

 

Theorems 0.4:- 

1. A is semi-open if and only if 𝐴ₒ = 𝐴 

2. A is semi-closed if and only if 𝐴 = 𝐴 

Proof:- 

            ❶Let A be a semi-open set in X, 

Then   𝐴 ⊆ 𝐴ₒ     𝐵𝑢𝑡    𝐴ₒ ⊆ 𝐴     (𝑎𝑙𝑤𝑎𝑦𝑠) 

 𝐴 = 𝐴ₒ 

Conversely, 

                       Let  𝐴 = 𝐴ₒ    (𝑠𝑒𝑚𝑖 − 𝑜𝑝𝑒𝑛) 

Since Aₒs semi-open, therefore A is semi-open. 

❷Let A be a semi-closed set in X, 

Then   𝐴 ⊆ 𝐴        𝐵𝑢𝑡 𝐴 ⊆ 𝐴     (𝑎𝑙𝑤𝑎𝑦𝑠) 

 𝐴 = 𝐴 

Conversely, 
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                      Let  𝐴 = 𝐴 

Since 𝐴 is semi-closed, therefore A is semi-closed. 

 

Theorem 0.5:- 

                           If A is open and S is semi-open, then  𝐴 ∩ 𝑆 is semi-open. 

Proof:- 

             Let S be semi-open in X, Then there exit an open set  𝑂𝜖𝑋 such that, 

𝑂 ⊆ 𝑆 ⊆ 𝐶𝑙(𝑂) 

 𝑂 ∩ 𝐴 ⊆ 𝑆 ∩ 𝐴 ⊆ 𝐶𝑙(𝑂) ∩ 𝐴 ⊆ 𝐶𝑙(𝑂 ∩ 𝐴) 

Since 𝑂 ∩ 𝐴 is open in X and  𝑂 ∩ 𝐴 ⊆ 𝑆 ∩ 𝐴 ⊆ 𝐶𝑙(𝑂 ∩ 𝐴) 

 S∩A is semi-open in X. 

 

Theorem 0.6:- 

                            Let (X, τ) be a topological space and 𝐴 ⊆ 𝑋, then prove that 

[𝑋 −  𝐴 − 𝐴 ] = 𝑋 

Proof:- 

              L.H.S 

𝐴 − 𝐴 Contains no semi-interior points. 

 𝑠𝐼𝑛𝑡 𝐴 − 𝐴 = 𝜑 

 𝑋 − 𝑠𝐼𝑛𝑡 𝐴 − 𝐴 = 𝑋 

 𝑠𝐶𝑙[𝑋 −  𝐴 − 𝐴 = 𝑋 
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 [𝑋 − (𝐴 − 𝐴] = 𝑋 

 

 

Irresolute Function:- 

                                       Let (𝑋, 𝜏𝑥) and  (𝑌, 𝜏𝑦) be topological spaces. A function 

𝑓: 𝑋 ⟶ 𝑌 is called irresolute if 𝑓−1(𝐵)  is semi-open in X for every semi-open 

set B in Y. 

 

Theorem 1.1:- 

                           Let  𝑓: (𝑋, 𝜏𝑥) ⟶  𝑌, 𝜏𝑦  be continuous and open, then 

𝑓−1 𝐴 = 𝑓−1(𝐴) 

Proof:- 

               𝑓: 𝑋 ⟶ 𝑌 is continuous and open. 

Let A be any subset of Y. 

 𝐴 Is a closed set of Y. 

 𝑓−1 𝐴  Is a closed subset of X. 

As     𝐴 ⊆ 𝐴 

 𝑓−1(𝐴) ⊆ 𝑓−1 𝐴                       ∵ 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 

 ,𝑓−1(𝐴)- ⊆  𝑓−1 𝐴  = 𝑓−1 𝐴               ∵  𝑓−1 𝐴  𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 

 [𝑓−1(𝐴) ⊆ 𝑓−1(𝐴)  --------------------------  ❶ 

As  𝑓 is open, 

 Image of every open set is open under 𝑓. 

Let (𝑋, 𝜏𝑥)𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be 

two topological spaces, A 

function 𝑓: 𝑋 ⟶ 𝑌 is 

continuous iff for every 

A⊆X  𝑓(𝐴) ⊆ 𝑓(𝐴) 
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 𝑓−1 is a continuous function. 

Then by a well known theorem for every A⊆Y, 

𝑓−1 𝐴 ⊆ 𝑓−1(𝐴) ------------------------ ❷ 

By relation ❶ and ❷ 

𝑓−1 𝐴 = 𝑓−1(𝐴) 

 

Theorem 1.2:- 

                             Let  𝑓: (𝑋, 𝜏𝑥) ⟶  𝑌, 𝜏𝑦  be continuous and open then  𝑓 is 

irresolute. 

Proof:- 

               Let  𝐴 𝜖 𝑆𝑂(𝑌) 

Then by definition there exit  𝑂 𝜖 𝜏𝑦  such that, 

    𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂) 

 𝑓−1(𝑂)  ⊆ 𝑓−1(𝐴) ⊆ 𝑓−1 𝐴 =  ,𝑓−1(𝑂)-      ∵ 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 & 𝑜𝑝𝑒𝑛 

As O is open, 

 𝑓−1(𝑂) is open because  𝑓 is continuous. 

 𝑓−1(𝑂)  ⊆ 𝑓−1(𝐴) ⊆ (𝑓−1(𝑂) 

 𝑓−1(𝐴) 𝜖 𝑆𝑂(𝑋) 

 𝑓 is irresolute function. 

 

Example 1.1:- 

                           A continuous irresolute function need not be open. 
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Proof:- 

             Let   𝑋 = {𝑎, 𝑏, 𝑐}, 

𝜏 = {𝜑, *𝑎+, *𝑎, 𝑏+, *𝑎, 𝑐+, 𝑋}  and 𝜏∗ = {𝜑, *𝑎+, *𝑎, 𝑏+, 𝑋} 

Let  𝑓: (𝑋, 𝜏𝑥)  ⟶  𝑌, 𝜏𝑦  be defined by  𝑓(𝑥) = 𝑥    ∀ 𝑥𝜖𝑋 

Then this function is continuous and irresolute but not an open function. 

See, 

       𝑓−1(𝜑) = 𝜑 𝜖 𝜏       ⟹ 𝑓−1(𝜑) 𝑖𝑠 𝑜𝑝𝑒𝑛 

       𝑓−1(*𝑎+) = *𝑎+               𝑜𝑝𝑒𝑛 𝑖𝑛 (𝑋, 𝜏) 

       𝑓−1(*𝑎, 𝑏+) = *𝑎, 𝑏+       𝑜𝑝𝑒𝑛 𝑖𝑛 (𝑋, 𝜏) 

       𝑓−1(𝑋) = 𝑋             𝑜𝑝𝑒𝑛 

As inverse image of every open set is open, 

 𝑓 is continuous. 

Now,        𝑃(𝑋) =  𝜑, *𝑎+, *𝑏+, *𝑐+, *𝑎, 𝑏+, *𝑎, 𝑐+, *𝑐, 𝑏+, *𝑎, 𝑏, 𝑐+  

Closed sets of (X, τ) are     *𝑋, *𝑏, 𝑐+, *𝑐+, *𝑏+, 𝜑+  

Now,                           𝐶𝑙(𝜑) = 𝜑,       𝐶𝑙(𝑋) = 𝑋,       𝐶𝑙*𝑎+ = 𝑋 

𝐶𝑙*𝑎, 𝑏+ = 𝑋,       𝑎𝑛𝑑      𝐶𝑙*𝑎, 𝑐+ = 𝑋 

 SO(X, τ)= *𝜑, *𝑎+, *𝑎, 𝑏+, *𝑎, 𝑐+, 𝑋+ 

Now, closed sets of (𝑋, 𝜏∗) are *𝜑, 𝑋, *𝑏, 𝑐+, *𝑐+-  

 𝑆𝑂(𝑋, 𝜏𝑥) = *𝜑, *𝑎+, *𝑎, 𝑏+, *𝑎, 𝑐+, 𝑋+ 

And,   𝑓−1(𝜑) = 𝜑 𝜖 𝑆𝑂(𝑋, 𝜏) 

            𝑓−1(*𝑎+) = *𝑎+ 𝜖 𝑆𝑂(𝑋, 𝜏) 
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            𝑓−1(*𝑎, 𝑏+) = *𝑎, 𝑏+ 𝜖 𝑆𝑂(𝑋, 𝜏) 

            𝑓−1(*𝑎, 𝑐+) = *𝑎, 𝑐+ 𝜖 𝑆𝑂(𝑋, 𝜏) 

            𝑓−1(𝑋) = 𝑋 𝜖 𝑆𝑂(𝑋) 

As inverse image of every semi-open set is semi open, 

 𝑓 is irresolute. 

Now as   {𝑎, 𝑐} is open in (X, τ) 

 𝑓(*𝑎, 𝑐+) = *𝑎, 𝑐+ ∉ 𝑆𝑂(𝑋, 𝜏∗) 

 Image of every open set is not open. 

 𝑓 is not open. 

 

Theorem 1.3:- 

                          Let C(X, Y), SC(X, Y) and I(X, Y) denote respectively, the classes 

of continuous, semi continuous and irresolute functions from X to Y, where X 

and Y are topological spaces. Then, 

𝐶(𝑋, 𝑌) ⊆ 𝑆𝐶(𝑋, 𝑌)        𝑎𝑛𝑑         𝐼(𝑋, 𝑌) ⊆ 𝑆𝐶(𝑋, 𝑌) 

Proof:- 

             ❶ Let  𝑓 𝜖 𝐶(𝑋, 𝑌) 

 𝑓 is irresolute function. 

 Inverse image of every open set (say A) of Y is open in X. 

 𝑓−1(𝐴) is open in X. 

As every open set is also semi-open, 

 𝑓−1(𝐴) is semi-open in X. 

 Inverse image of every open set of Y is semi-open in X. 

 𝑓 𝜖 𝑆𝐶(𝑋, 𝑌) 
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 𝐶(𝑋, 𝑌) ⊆ 𝑆𝐶(𝑋, 𝑌) 

            ❷ Let  𝑔 𝜖 𝐼(𝑋, 𝑌) 

 𝑔 is irresolute function. 

 Inverse image of every semi-open set (say B) of Y is semi-open in X. 

 𝑓−1(𝐵) is semi-open in X. 

As all open sets of Y ⊆ semi-open sets of Y 

 Inverse image of every open set (say B) is semi-open in X. 

 𝑔 is semi-continuous. 

 𝑔 𝜖 𝑆𝐶(𝑋, 𝑌) 

 𝐼(𝑋, 𝑌)  ⊆ 𝑆𝐶(𝑋, 𝑌)                 (proved) 

 

Theorem 1.4:- 

                           A function  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦) is irresolute if and only if, for 

every semi-closed subset H of Y,  𝑓−1(𝐻) is semi-closed in X. 

Proof:- 

              Let  𝑓: 𝑋 ⟶ 𝑌 be irresolute. 

Let H ϵ SC(Y), then 𝑌 − 𝐻 is semi0open in Y. 

Or, 𝑓−1(𝑌 − 𝐻) = 𝑓−1(𝑌) − 𝑓−1(𝐻) = 𝑋 − 𝑓−1(𝐻)         ∵  𝑓−1(𝑌) = 𝑋 

 𝑋 − 𝑓−1(𝐻) is semi open in X.       ∵ 𝑓 is irresolute. 

 𝑓−1(𝐻) is semi closed in X. 

Conversely, 

                       Let  𝑓−1(𝐻) is semi-closed in X, for every semi-closed set H in Y. 

We have to prove that  𝑓 is irresolute. 

As      𝐵 𝜖 𝑆𝑂(𝑌) 
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 (𝑌 − 𝐵) 𝜖 𝑆𝐶(𝑌) 

 𝑓−1(𝑌 − 𝐵) 𝜖 𝑆(𝑋)              ∵  𝑓−1(𝐻)𝜖𝑆𝐶(𝑋) ∀ 𝐻𝜖𝑆𝐶(𝑌) 

 𝑓−1(𝑌) − 𝑓−1(𝐵) 𝜖 𝑆𝐶(𝑋) 

 𝑋−𝑓−1(𝐵) 𝜖 𝑆𝐶(𝑋) 

 𝑓−1(𝐵) 𝜖 𝑆𝐶(𝑋) 

 𝑓 is irresolute.                                (proved). 

 

Theorem 1.5:- 

                            A function  𝑓: 𝑆 ⟶ 𝑇, where S and T are topological spaces is 

irresolute if and only if for every subset A of S,   𝑓 𝐴 ⊆  𝑓(𝐴)  

Proof:- 

             Let  𝑓: 𝑆 ⟶ 𝑇 be irresolute function. 

Let  𝐴 𝜖 𝑆 , Then       𝑓(𝐴) 𝜖 𝑆𝐶(𝑇) 

 𝑓−1 0𝑓(𝐴)1 is semi-close in S.              ∵ 𝑓 is irresolute. 

Now,       𝐴 ⊆ 𝑓−1𝑓(𝐴) ⊆ 𝑓−1 0𝑓(𝐴)1             ∵ 𝑓(𝐴) ⊆ 𝑓(𝐴)  

     𝐴 ⊆ 𝑠𝐶𝑙𝑓−1[𝑓(𝐴)] = 𝑓−1𝑓(𝐴)       ∵  𝑓−1𝑓(𝐴) is semi closed. 

     𝑓 𝐴 ⊆ 𝑓 0𝑓−1𝑓(𝐴)1 ⊆ 𝑓(𝐴)  

      𝑓 𝐴 ⊆ 𝑓(𝐴) 

Conversely, 

                       Assume that   𝑓 𝐴 ⊆ 𝑓(𝐴) 

We have to prove that  𝑓 is irresolute. 

Let  𝐻 𝜖 𝑆𝐶(𝑇) 
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Then  𝑓 0𝑓−1(𝐻)1 ⊆ 𝑓𝑓−1(𝐻) ⊆ 𝐻 ⊆ 𝐻                 ∵ 𝐻 𝑖𝑠 𝑠𝑒𝑚𝑖 𝑐𝑙𝑜𝑠𝑒𝑑 

Now,    𝑓−1(𝐻) ⊆ 𝑓−1𝑓[𝑓−1(𝐻)] ⊆ 𝑓−1 𝐻 = 𝑓−1(𝐻) 

 𝑓−1(𝐻) ⊆ 𝑓−1(𝐻)              𝐵𝑢𝑡    𝑓−1(𝐻) ⊆ 𝑓−1(𝐻)        𝑎𝑙𝑤𝑎𝑦𝑠. 

 𝑓−1(𝐻) = 𝑓−1(𝐻) 

 𝑓−1(𝐻) 𝜖 𝑆𝐶(𝑆) 

 𝑓 is irresolute. 

 

Theorem 1.6:- 

                           Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦)  be topological spaces. A function 

 𝑓: 𝑋 ⟶ 𝑌 is irresolute if and only if for all B⊆Y,  𝑓−1(𝐵) ⊆ 𝑓−1 𝐵 . 

Proof:- 

             Assume that  𝑓 is irresolute. 

Let B be any subset of Y. Then  𝐵 𝜖 𝑆𝐶(𝑌),   

Hence,              𝑓−1 𝐵  𝜖 𝑆𝐶(𝑋) 

But we know          𝐵 ⊆  𝐵  

 𝑓−1(𝐵)  ⊆  𝑓−1 𝐵  

 𝑆𝐶 𝑓−1(𝐵)  ⊆ 𝑆𝐶 .𝑓−1 𝐵 / =  𝑓−1 𝐵  

 𝑓−1(𝐵)  ⊆  𝑓−1 𝐵  

Conversely, 

                       Let,      𝑓−1(𝐵)  ⊆  𝑓−1 𝐵  for every subset B of Y. 

We will prove that  𝑓  is irresolute. 
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For this we will show that the inverse image of semi-closed set is semi-closed. 

Let   𝐵 𝜖 𝑆𝐶(𝑌)     𝑡𝑕𝑒𝑛,      𝐵 = 𝐵 

By hypothesis,          𝑓−1(𝐵)  ⊆  𝑓−1 𝐵 =  𝑓−1(𝐵) 

And     𝑓−1(𝐵)  ⊆   𝑓−1(𝐵)  ⊆  𝑓−1 𝐵  ⊆  𝑓−1(𝐵) 

 𝑓−1(𝐵)  ⊆   𝑓−1(𝐵)  ⊆  𝑓−1(𝐵) 

 𝑓−1(𝐵) =  𝑓−1(𝐵) 

 𝑓−1(𝐵) 𝜖 𝑆𝐶(𝑋) 

 𝑓 is irresolute. 

 

Theorem 1.7:-  

                           Let   (𝑋, 𝜏𝑥) 𝑎𝑛𝑑  𝑌, 𝜏𝑦 𝑎𝑛𝑑  (𝑍, 𝜏𝑧) be topological spaces. If 

 𝑓: 𝑋 ⟶ 𝑌 𝑎𝑛𝑑 𝑔: 𝑌 ⟶ 𝑍 are both irresolute then  𝑔ₒ𝑓: 𝑋 ⟶ 𝑍 is irresolute. 

Proof:- 

            Let    𝐵 𝜖 𝑆𝑂(𝑍) 

 𝑔−1(𝐵) is semi open in Y      ∵ 𝑔 is irresolute. 

Now as   𝑔−1(𝐵) 𝜖 𝑆𝑂(𝑌) 𝑎𝑛𝑑 𝑓  is irresolute from X⟶Y 

 𝑓−1 𝑔−1(𝐵)  𝜖 𝑆𝑂(𝑋) 

 𝑓−1 𝑔−1(𝐵) = (𝑔ₒ𝑓)−1(𝐵) 𝜖 𝑆𝑂(𝑋) 

Now as    𝐵 𝜖 𝑆𝑂(𝑍)   𝑎𝑛𝑑    (𝑔ₒ𝑓)−1(𝐵) 𝜖 𝑆𝑂(𝑋) 

 𝑔ₒ𝑓  is irresolute from X⟶Z. 
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Pre-Semi-Open Function:- 

                                                  Let X and Y be topological spaces, a function 

 𝑓: 𝑋 ⟶ 𝑌 is said to be pre-semi-open if and only if, for all  𝐴 𝜖 𝑆𝑂(𝑋),  

𝑓(𝐴) 𝜖 𝑆𝑂(𝑌).  

 

Theorem 1.8:- 

                           Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be topological spaces. If  𝑓: 𝑋 ⟶ 𝑌 is 

continuous and open, then  𝑓 is irresolute and pre semi open. 

Proof:- 

              Let  𝑓: 𝑋 ⟶ 𝑌 be continuous and open mapping. 

To prove that  𝑓  is irresolute. 

Consider a semi open set B in Y. Then there exit an open se  𝑢  in Y such that, 

𝑢 ⊆ 𝐵 ⊆ 𝐶𝑙(𝑢) 

 𝑓−1(𝑢)  ⊆  𝑓−1(𝐵)  ⊆  𝑓−1𝐶𝑙(𝑢) = 𝐶𝑙 𝑓−1(𝑢)        ∵ 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡 & 𝑜𝑝𝑒𝑛 

Since  𝑓  is continuous, therefore  𝑓−1(𝑢)  is open in X and 

𝑓−1(𝑢)  ⊆  𝑓−1(𝐵)  ⊆ 𝐶𝑙 𝑓−1(𝑢)  

                                              𝑓−1(𝐵) 𝜖 𝑆𝑂(𝑋) 

 𝑓  is irresolute. 

Now we prove that  𝑓  is pre semi open. 

Let  𝐴 𝜖 𝑆𝑂(𝑋) 

 There exit an open set O in X such that, 

𝑂 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑂) 
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 𝑓(𝑂)  ⊆ 𝑓(𝐴)  ⊆ 𝑓,𝐶𝑙(𝑂)-  ⊆ 𝐶𝑙,𝑓(𝑂)-                 ∵ 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

                           𝑓(𝑂)  ⊆ 𝑓(𝐴)  ⊆ 𝐶𝑙,𝑓(𝑂)- 

Since  𝑓  is open mapping, therefore  𝑓(𝑂) is open in Y. 

Hence, 𝑓(𝐴) 𝜖 𝑆𝑂(𝑌)   this implies   𝑓  is pre semi open. 

 

Semi-Homeomorphism:- 

                                                Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be topological spaces. X and Y 

are said to be semi-homeomorphism if and only if there exit a function 

 𝑓: 𝑋 ⟶ 𝑌 such that, 

(1) 𝑓  is bijective                  (2)      𝑓  is irresolute 

      (3)      𝑓  is pre semi open. 

 

Theorem 1.9:- 

                          Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be topological spaces. If  𝑓: 𝑋 ⟶ 𝑌 is 

homeomorphism then  𝑓 is semi homeomorphism. 

Proof:- 

              Let  𝑓: 𝑋 ⟶ 𝑌 be homeomorphism, then 

1.  𝑓  is bijective    2.    𝑓  is continuous     3.    𝑓  is open. 

Since  𝑓  is continuous and open bijection, 

Therefore it is irresolute and pre semi open bijection. 

Hence  𝑓  is semi-homeomorphism. 
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Example 1.2:- 

                         A semi-homeomorphism need not be homeomorphism. 

Solution:- 

                   (See example 1.1) 

 

Remark 1.1:- 

                          Image of Tₒ space under semi homeomorphism may not be a Tₒ 

space. 

 

Remark 1.2:- 

                         The image of a 𝑇1 space under a semi homeomorphism is not 

necessarily a 𝑇1-space. 

 

Example 1.4:- 

                           Let X=(R⤬R), where R denote the set of real numbers and let, 

𝜏1 = {𝜑, Together with all subsets of X whose compliments are subsets of a 

finite number of lines parallel to the x-axis} 

Note that,       𝑆𝑂(𝑋, 𝜏1) =  𝜏1 

And let.  𝜏2 = {𝜑, Together with all subsets of X whose compliments are a 

finite number of lines parallel to x-axis} 

Note that,       𝑆𝑂(𝑋, 𝜏2) = 𝑆𝑂(𝑋, 𝜏1) 

Furthermore, defining   𝑓: (𝑋, 𝜏1)  ⟶ (𝑋, 𝜏2) 𝑏𝑦 𝑓(𝑝) = 𝑝 𝑓𝑜𝑟 𝑝𝜖𝑋, 
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We see that  𝑓  is a semi-homeomorphism. 

Observe that (𝑋, 𝜏1) is a 𝑇1 space where  (𝑋, 𝜏2)  is not. 

 

Theorem 1.10:- 

                              If   𝑓: 𝑋 ⟶ 𝑌  is a semi homeomorphism, then  𝑓−1(𝐵) =

 𝑓−1 𝐵   for all B subset of Y. 

Proof:- 

              𝑓: 𝑋 ⟶ 𝑌  is semi homeomorphism. 

 𝑓 𝑖𝑠   1)   bidective.   2)   irresolute.   3)   pre semi open. 

Let B be any subset of Y. 

Then  𝐵 𝜖 𝑆𝐶(𝑌), 

Hence,    𝑓−1 𝐵  ∈ 𝑆𝐶(𝑋) 

As we know that    𝐵 ⊆  𝐵 

 𝑓−1(𝐵)  ⊆  𝑓−1 𝐵  

 𝑠𝐶𝑙 𝑓−1(𝐵)  ⊆ 𝑠𝐶𝑙 .𝑓−1 𝐵 / =  𝑓−1 𝐵              ∵  𝑓−1 𝐵  ∈ 𝑆𝐶(𝑋) 

 𝑓−1(𝐵)  ⊆ 𝑓−1 𝐵  ------------------------ ❶ 

As  𝑓 is semi homeomorphism, 

 𝑓 is pre semi open and bijective. 

 Image of every semi open set is semi open under f  

 𝑓−1 is irresolute. 

Then by theorem 1.5 for every 𝐵 𝜖 𝑌 

𝑓−1 𝐵  ⊆  𝑓−1(𝐵)  ------------------------------ ❷ 
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From equation ❶ and ❷ 

𝑓−1 𝐵 =  𝑓−1(𝐵) 

 

Corollary 1.1:- 

                          If 𝑓: 𝑋 ⟶ 𝑌 is semi homeomorphism, then  𝑓(𝐵) = 𝑓 𝐵  for all 

𝐵 ⊆ 𝑋. 

Proof:- 

            𝑓: 𝑋 ⟶ 𝑌 is semi homeomorphism. 

 𝑓 is   1)   bijective.    2)   irresolute.     3   )pre semi open 

Let  𝐵 ⊆ 𝑋 then    𝑓(𝐵) 𝜖 𝑆𝐶(𝑌) 

 𝑓−1[𝑓(𝐵)] is semi closed in X.               ∵ 𝑓 is irresolute. 

Now,   𝐵 ⊆  𝑓−1 𝑓(𝐵)  ⊆  𝑓−1(𝑓(𝐵)            ∵ 𝑓(𝐵) ⊆ 𝑓(𝐵) 

 𝐵  ⊆ 𝑠𝐶𝑙 .𝑓−1 𝑓(𝐵) / =  𝑓−1𝑓(𝐵)       ∵  𝑓−1𝑓(𝐵) 𝑖𝑠 𝑠𝑒𝑚𝑖 𝑐𝑙𝑜𝑠𝑒𝑑. 

 𝑓 𝐵  ⊆ 𝑓 0𝑓−1 𝑓(𝐵) 1  ⊆  𝑓(𝐵) 

 𝑓 𝐵  ⊆  𝑓(𝐵)     ----------------------------------  ❶ 

Since  𝑓 is bijective and irresolute, 

 𝑓−1 is exit and also irresolute. 

Then by theorem 1.6, for  𝐵𝜖𝑋  

𝑓(𝐵)  ⊆ 𝑓 𝐵   ------------------------------------------ -- ❷ 

From relation ❶ and ❷ 
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𝑓(𝐵) = 𝑓(𝐵) 

 

Corollary 1.2:- 

                           If  𝑓: 𝑋 ⟶ 𝑌  is semi homeomorphism, then 𝑓(𝐵ₒ) =  𝑓(𝐵) ₒ  for 

all 𝐵 ⊆ 𝑋.  

 

Proof:- 

             𝐵ₒ = .𝑋 − (𝑋 − 𝐵)/ 

Thus, 𝑓(𝐵ₒ) = 𝑓 0𝑋 − (𝑋 − 𝐵)1 

                        = 0𝑌 − 𝑓(𝑋 − 𝐵)1 

                        = 0𝑌 − 𝑓(𝑋 − 𝐵)1          ∵ 𝑓 𝑖𝑠 𝑖𝑟𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑒 

                        = 0𝑌 − [𝑌 − 𝑓(𝐵)1 

 𝑓(𝐵ₒ) = ,𝑓(𝐵)-ₒ 

 

Corollary 1.3:-  

                       If  𝑓: 𝑋 ⟶ 𝑌 is semi homeomorphism, then 𝑓−1(𝐵ₒ) =  𝑓−1(𝐵) ₒ  

for all B ⊆ Y. 

Proof:- 

             As  𝑓: 𝑋 ⟶ 𝑌 is semi homeomorphism, 

 𝑓−1: 𝑌 ⟶ 𝑋 is irresolute     (bijective and pre semi open) 
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Let B ⊆ Y,         𝐵ₒ =  𝑌 −  𝑌 − 𝐵   

Thus,   𝑓−1(𝐵ₒ) =  𝑓−1 𝑌 −  𝑌 − 𝐵   

                               =  𝑋 − 𝑓−1 𝑌 − 𝐵   

                               =  𝑋 − 0𝑓−1(𝑌 − 𝐵)1          ∵  𝑓−1 𝑖𝑠 𝑖𝑟𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑒 

                               =  𝑋 − 0𝑋 − 𝑓−1(𝐵)1  

 𝑓−1(𝐵ₒ) = ,𝑓−1(𝐵)-ₒ           (proved) 

 

Theorem 1.11:- 

                             𝐴 ₒ = 𝜑   if and only if A is nowhere dense set. 

Proof:- 

              Let A is nowhere dense set. 

As we know that,        𝐴° ⊆ 𝐴ₒ ⊆ 𝐴 ⊆  𝐴  ⊆  𝐴, 

As A is nowhere dense set, 

  𝐴 ° =  𝜑.          This implies,    𝐴 contains no open set. 

 𝐴  Contains no open set.             ∵ 𝐴  ⊆  𝐴 

 𝐴 Contains no semi open set. 

  𝐴 ₒ =  𝜑. 

Conversely, 

                      Let,        𝐴 ₒ = 𝜑 

We know by a well known theorem,   (theorem 0.7) 
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 𝐴 ° ⊆  𝐴 ₒ 

Since    𝐴 ₒ =  𝜑      𝑡𝑕𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠        𝐴 ° ⊆  𝜑 

  𝐴 ° =  𝜑 

 A is nowhere dense set. 

 

Theorem 1.12:- 

                            If  𝑓: 𝑋 ⟶ 𝑌 is a semi homeomorphism and A ⊆ X is nowhere 

dense in X. Then  𝑓(𝐴) is nowhere dense in Y. 

Proof:- 

              As A is nowhere dense in X. Then by theorem 1.11 

 𝐴 ₒ =  𝜑 

We have to show    .𝑓(𝐴)/ ₒ =  𝜑 

As   𝑓: 𝑋 ⟶ 𝑌  is semi homeomorphism, 

 𝑓(𝐴) = 𝑓 𝐴  

 0𝑓(𝐴)1 ₒ =  𝑓 𝐴  ₒ = 𝑓 𝐴 ₒ              ∵ 𝑐𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 1.2 

                                                 = 𝑓(𝜑) 

 0𝑓(𝐴)1 ₒ =  𝜑 

 𝑓(𝐴) is nowhere dense set. 
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Semi-Topological Properties:- 

                                                        A property which is preserved under semi 

homeomorphism is said to be a semi-topological property. 
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SEMI WEAKLY CONTINUOUS MAPPINGS 

 

This course was established in 1985 by “T. Noiri and B. Ahmad” and was published by 

“Kyungpook Math Journal vol.25, No.2 page 123-126. 

 

 

Weakly Continuous Function:- 

                                                          Let (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be topological spaces. A 

function  𝑓: 𝑋 ⟶ 𝑌 is said to be weakly continuous at X if for each 𝑥 𝜖 𝑋 and 

for each open set V containing  𝑓(𝑥),  there exit 𝑢 𝜖 𝑆𝑂(𝑋, 𝜏) such that 

𝑓(𝑢)  ⊆ 𝐶𝑙(𝑉). 

 

Almost Continuous Function:- 

                                                         Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦)  be topological spaces. A 

function 𝑓: 𝑋 ⟶ 𝑌  is said to be almost continuous if for each 𝑥𝜖𝑋 and for each 

open set V containing  𝑓(𝑥), there exit a semi-open set  𝑢  in X containing 

 𝑥 such that  𝑓(𝑢)  ⊆ 𝐼𝑛𝑡,𝐶𝑙(𝑉)- 

 

Note:- 

            Almost continuous function is also weakly continuous, 

∵ 𝐼𝑛𝑡,𝐶𝑙(𝑉)-  ⊆ 𝐶𝑙(𝑉) 

But converse is not true in general. 
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Semi-Weakly continuous Function:- 

                                                                   Let  (𝑋, 𝜏𝑥)𝑎𝑛𝑑 (𝑌, 𝜏𝑦)  are topological 

spaces , a function 𝑓: 𝑋 ⟶ 𝑌  is said to be semi-weakly continuous function 

(s.w.c) at X if for each  𝑥𝜖𝑋 and for each open set V containing  𝑓(𝑥) there exit 

 𝑢 𝜖 𝑆𝑂(𝑋) such that,  𝑓(𝑢) ⊆ 𝑠𝐶𝑙(𝑉) 

 

Note:- 

 Semi-continuous ⟶ Semi-weakly continuous ⟶ Weakly-continuous. 

 Almost continuous ⟶ Weakly-continuous. 

 

Example:- 

                   Let X = Y = R,  

Let 𝜏 be the usual topology on X and 𝜎 be the countable topology on Y. Then 

the identity mapping  𝑓: 𝑋 ⟶ 𝑌  is semi-weakly continuous but not semi-

continuous. 

 

Theorem 1:- 

                       Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦)  be topological spaces. A mapping 

 𝑓: 𝑋 ⟶ 𝑌  is semi weakly continuous if and only if for every open set V in Y, 

𝑓−1(𝑉)  ⊆ 𝑠𝐼𝑛𝑡 𝑓−1 𝑠𝐶𝑙(𝑉)   

Proof:- 

              Let  𝑥𝜖𝑋  and V be an open set containing  𝑓(𝑥), satisfying the relation, 
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𝑓−1(𝑉)  ⊆ 𝑠𝐼𝑛𝑡,𝑓−1𝑠𝐶𝑙(𝑉)-  

We will prove that  𝑓  is semi weakly continuous. 

Put        𝑢 = 𝑠𝐼𝑛𝑡 𝑓−1 𝑠𝐶𝑙(𝑣)  ,  

Then,        𝑥 𝜖 𝑢 𝜖 𝑆𝑂(𝑋, 𝑥) 

      𝑢 = 𝑠𝐼𝑛𝑡 𝑓−1 𝑠𝐶𝑙(𝑉)   ⊆  𝑓−1 𝑠𝐶𝑙(𝑉)  

     𝑓(𝑢) ⊆ 𝑓𝑓−1,𝑠𝐶𝑙(𝑉)-  ⊆ 𝑠𝐶𝑙(𝑉) 

               𝑓(𝑢)  ⊆ 𝑠𝐶𝑙(𝑉)  

     𝑓  is semi weakly continuous. 

Conversely, 

                        Let  𝑓: 𝑋 ⟶ 𝑌  be semi weakly continuous. 

Let   𝑥𝜖𝑋   and V be an open set containing   𝑓(𝑥). 

                𝑥 𝜖 𝑓−1(𝑉)  

By hypothesis (𝑓 is semi weakly continuous), there exit a semi open set  𝑢  in 

X containing  𝑥  such that         𝑓(𝑢)  ⊆ 𝑠𝐶𝑙(𝑉) 

 𝑥 𝜖 𝑢 ⊆  𝑓−1,𝑠𝐶𝑙(𝑉)- 

 𝑢 = 𝑠𝐼𝑛𝑡(𝑢)               ∵ 𝑢 is open 

               ⊆ 𝑠𝐼𝑛𝑡 𝑓−1 𝑠𝐶𝑙(𝑉)   

 𝑥 𝜖 𝑠𝐼𝑛𝑡 𝑓−1 𝑠𝐶𝑙(𝑉)   

 𝑓−1(𝑉)  ⊆ 𝑠𝐼𝑛𝑡 𝑓−1 𝑠𝐶𝑙(𝑉)   

 

Theorem 2:- 

                      Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦)  are topological spaces. A function 

 𝑓: 𝑋 ⟶ 𝑌 be a function and  𝑔: 𝑋 ⟶ 𝑋 ⤬ 𝑌 be the graph mapping of  𝑓 given 
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by, 𝑔(𝑥) =  𝑥, 𝑓(𝑥)  for every  𝑥𝜖𝑋 . If  𝑔  is semi weakly continuous, then  𝑓 is 

semi weakly continuous. 

Proof:- 

             Let  𝑥𝜖𝑋  and V be an open set containing  𝑓(𝑥). 

 X⤬V containing   𝑥, 𝑓(𝑥) = 𝑔(𝑥). 

Since  𝑔  is semi weakly continuous, therefore there exit  𝑢𝜖𝑆𝑂(𝑋, 𝑥) 𝑠. 𝑡. 

𝑔(𝑢)  ⊆ 𝑠𝐶𝑙(𝑋 ⤬ 𝑉) = 𝑠𝐶𝑙(𝑋) ⤬ 𝑠𝐶𝑙(𝑉)                   

                                                                    = 𝑋 ⤬ 𝑠𝐶𝑙(𝑉) 

Or   𝑢, 𝑓(𝑢)  ⊆ 𝑋 ⤬ 𝑠𝐶𝑙(𝑉)                ∵ 𝑔(𝑥) =  𝑥, 𝑓(𝑥)  𝑠𝑜 𝑔(𝑢) =  𝑢, 𝑓(𝑢)   

 𝑓(𝑢)  ⊆ 𝑠𝐶𝑙(𝑉)             ∵ 𝑔 𝑖𝑠 𝑔𝑟𝑎𝑝𝑕 𝑜𝑓 𝑓. 

 𝑓  is semi weakly continuous. 

 

Theorem 3:- 

                        Let  (𝑋, 𝜏𝑥) 𝑎𝑛𝑑 (𝑌, 𝜏𝑦) be topological spaces and if  𝑓: (𝑋, 𝜏𝑥) ⟶

(𝑌, 𝜏𝑦)  is semi weakly continuous mapping and Y is housdorff space. Theen 

the graph G(f) is a semi closed set of X⤬Y. 

Proof:- 

             Let  (𝑥, 𝑦)  ∉ 𝐺(𝑓)  

We will show that (x, y) is not semi limit point of  𝐺(𝑓). 

Now, since  (𝑥, 𝑦)  ∉ 𝐺(𝑓)        𝑠𝑜   𝑦 ≠ 𝑓(𝑥) 

Since Y is a  𝑇2-space therefore there exit open sets W and V in Y such that, 

𝑓(𝑥) 𝜖 𝑊;      𝑦 𝜖 𝑉    𝑎𝑛𝑑    𝑊 ∩ 𝑉 = 𝜑  
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Since  𝑓  is semi weakly continuous, therefore there exit a  𝑢 𝜖 𝑆𝑂(𝑋, 𝑥)  

Such that            𝑓(𝑢)  ⊆ 𝑠𝐶𝑙(𝑊) 

Since        𝑉 ∩𝑊 = 𝜑  

 𝑉 ∩ 𝑠𝐶𝑙(𝑊) = 𝜑  

 𝑉 ∩ 𝑓(𝑢) = 𝜑      ∵ 𝑓(𝑢) ⊆ 𝑠𝐶𝑙(𝑊) 

 (𝑈 ⤬ 𝑉) ∩ 𝐺(𝑓) =  𝜑  

Where  𝑈 ⤬ 𝑉 𝜖 𝑆𝑂 𝑋 ⤬ 𝑌, (𝑥, 𝑦)   

 (x, y) is not semi limit point of  𝐺(𝑓).  

 𝐺(𝑓) contains all of its semi limit points. 

 𝐺(𝑓) is semi closed set of X⤬Y. 

 

Semi-Connected Space (s-Connected Space):- 

                                                                                       A topological space (𝑋, 𝜏𝑥) is said 

to be semi connected space if it cannot be expressed as union of two non-

empty disjoint semi open sets. 

 

Note:- 

 Every semi connected space is connected. 

 A connected space may not be semi connected. 

 

Example:- 

                                                            𝑋 = *𝑎, 𝑏, 𝑐+ 

𝜏 =  𝜑, 𝑋, *𝑎+, *𝑏+, *𝑎, 𝑏+   
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It is connected because we cannot write it as union of two non empty disjoint 

open sets. 

Now,     𝑆𝑂(𝑋) =  𝜑, 𝑋, *𝑎+, *𝑏+, *𝑎, 𝑏+, *𝑎, 𝑐+, *𝑏, 𝑐+  

And,    *𝑎+ ∪ *𝑏, 𝑐+ = 𝑋      &      *𝑎+ ∩ *𝑏, 𝑐+ =  𝜑  

 This is semi disconnected. 

 This is not semi connected space. 

 

Theorem 4:- 

                       Let  (𝑋, 𝜏𝑥) is an s-connected space and  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦) is a 

semi weakly continuous surjection, then Y is connected. 

Proof:- 

            Suppose that Y is disconnected. 

 There exit open sets U and V in Y such that, 

𝑈 ∪ 𝑉 = 𝑌      &      𝑈 ∩ 𝑉 =  𝜑  

 𝑓−1(𝑌) = 𝑓−1(𝑈 ∪ 𝑉)  

 𝑋 = 𝑓−1(𝑈) ∪ 𝑓−1(𝑉)  --------------------------     ❶ 

And   𝑈 ∩ 𝑉 = 𝜑  

 𝑓−1(𝑈 ∩ 𝑉) = 𝑓−1(𝜑)  

 𝑓−1(𝑈) ∩ 𝑓−1(𝑉) =  𝜑  --------------------------     ❷ 

Since  𝑓  is onto and      𝑈 ≠ 𝜑  &  𝑉 ≠ 𝜑 

 𝑓−1(𝑈) ≠ 𝜑      &      𝑓−1(𝑉) ≠ 𝜑  

Now, since  𝑓 is semi weakly continuous and U, V are open in Y, therefore, 

𝑓−1(𝑈) ⊆ 𝑠𝐼𝑛𝑡,𝑓−1𝑠𝐶𝑙(𝑢)- 
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And                                         𝑓−1(𝑉) ⊆ 𝑠𝐼𝑛𝑡,𝑓−1𝑠𝐶𝑙(𝑣)- 

 𝑓−1(𝑈) ⊆ 𝑠𝐼𝑛𝑡*𝑓−1(𝑈)+     𝑎𝑛𝑑    𝑓−1(𝑉) ⊆ 𝑠𝐼𝑛𝑡*𝑓−1(𝑉)+ 

 𝑓−1(𝑈) = 𝑠𝐼𝑛𝑡,𝑓−1(𝑈)-     𝑎𝑛𝑑    𝑓−1(𝑉) = 𝑠𝐼𝑛𝑡*𝑓−1(𝑉)+ 

 𝑓−1(𝑈) 𝑎𝑛𝑑 𝑓−1(𝑉) are semi open sets. 

So by relation ❶ and ❷ we arte get that X is semi disconnected. 

A contradiction. 

Hence, the proof. 
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s-Continuous, s-Open, s-Closed Functions 

 

This course was established in 2001 by “M. Khan (Department of Mathematic, Govt. 

College Multan-Pakistan) and B. Ahmed (B.Z.U. Multan Pakistan)” 

 

 

s-Continuous Function:- 

                                               A function  𝑓: 𝑋 ⟶ 𝑌  is said to be s-continuous 

function (also called strongly semi-continuous) if the inverse image of every 

semi open set is open. 

 

Note:- 

            It is known that that an s-continuous function is irresolute, semi 

continuous and continuous. 

Regular Space(*):- 

                                   A topological space  (𝑋, 𝜏)  is said to be regular if for every 

 𝑥𝜖𝑋  and for any closed subset A of X such that  𝑥 ∉ 𝐴  

There exit two open sets U and V such that,  𝑥𝜖𝑢,     𝐴 ⊆ 𝑉    𝑎𝑛𝑑 𝑈 ∩ 𝑉 = 𝜑 

 

p-Regular Space:- 

                                  A topological space  (𝑋, 𝜏)  is said to be p-regular space if for 

each semi closed set F and  𝑥𝜖𝑋 − 𝐹,  there exit disjoint open sets U and V such 

that  𝑥𝜖𝑈      𝑎𝑛𝑑      𝐹 ⊆ 𝑉  
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Semi-Regular Space:- 

                                        A space  (𝑋, 𝜏)  is said to be semi-regular if for each semi 

closed set F and  𝑥 𝜖 𝑋 − 𝐹  there exit disjoint semi open sets U and V such that 

 𝑥 𝜖 𝑈        𝑎𝑛𝑑        𝐹 ⊆ 𝑉  

 

 Clearly p-regular space is semi-regular as well as regular but the 

converse is not true in general. 

 

Example:- 

                  Let  𝑋 = *𝑎, 𝑏, 𝑐+ 𝑎𝑛𝑑  𝜏 = *𝜑, *𝑎+, *𝑏+, *𝑎, 𝑏+, 𝑋+.  Then X is semi 

regular but not p-regular. 

Solution:-   

                  𝜏 = *𝜑, *𝑎+, *𝑏+, *𝑎, 𝑏+, 𝑋+  

Closed sets of X=*𝑋, *𝑏, 𝑐+, *𝑎, 𝑐+, *𝑐+, 𝜑+ 

𝜑 = 𝜑,     𝑋 = 𝑋,     {𝑎} = *𝑎, 𝑐+,     *𝑏+ = *𝑏, 𝑐+,  

*𝑎, 𝑏+ = 𝑋  

 𝑆𝑂(𝑋) = *𝜑, *𝑎+, *𝑏+, *𝑎, 𝑏+, *𝑎, 𝑐+, *𝑏, 𝑐+, 𝑋+  

 𝑆𝐶(𝑋) = *𝑋, *𝑏, 𝑐+, *𝑎, 𝑐+, *𝑐+, *𝑏+, *𝑎+, 𝜑+  

Then for each semi closed set (say F) of X and  𝑥𝜖𝑋 − 𝐹, there exit two disjoint 

semi open sets (say U and V) such that  𝑥𝜖𝑈   𝑎𝑛𝑑   𝐹 ⊆ 𝑉  

 (𝑋, 𝜏) is semi regular. 

Now for  *𝑏, 𝑐+ 𝜖 𝑆𝐶(𝑋)  and  𝑎 𝜖 𝑋 − *𝑏, 𝑐+  we cannot find two open sets U and 

V in X such that   𝑎𝜖𝑈    𝑎𝑛𝑑 *𝑏, 𝑐+ ⊆ 𝑉 
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  (𝑋, 𝜏)  is not semi regular. 

 

Theorem 1:- 

                     The image of a regular space under a clopen and s-continuous 

surjection is p-regular space. 

Proof:- 

             Let  𝐹 𝜖 𝑆𝐶(𝑌) 𝑎𝑛𝑑  𝑦𝜖 𝑌 − 𝐹,  

Let  𝑥 𝜖 𝑓−1(𝑦)  

Since  𝑓  is s-continuous therefore by a well known theorem,  𝑓−1(𝐹)  is closed 

in X and   𝑥 𝜖 𝑋 − 𝑓−1(𝐹).  

Since X is regular therefore there exit open sets U and V in X such that. 

𝑥 𝜖 𝑈     𝑎𝑛𝑑     𝑓−1(𝑓) ⊆ 𝑉     𝑎𝑛𝑑 𝑈 ∩ 𝑉 = 𝜑  

Since  𝑓  is closed, therefore by a well known theorem there exit an open set W 

of  Y such that   𝐹 ⊆ 𝑊     𝑎𝑛𝑑      𝑓−1(𝑊) ⊆ 𝑉  

Therefore,   𝑈 ∩ 𝑓−1(𝑊) = 𝜑              ∵ 𝑈 ∩ 𝑉 = 𝜑  &  𝑓−1(𝑊) ⊆ 𝑉 

And hence,   𝑓(𝑢) ∩ 𝑉 = 𝜑 , 

Since  𝑓  is open, so f(u) is open in Y.  And  𝑦𝜖𝑓(𝑢)    ∵ 𝑓(𝑥) = 𝑦  & 𝑓(𝑥)𝜖𝑓(𝑢) 

𝑖. 𝑒.  there exit two open sets  𝑓(𝑢) and W in Y such that, 

𝐹 ⊆ 𝑊    &   𝑦 𝜖 𝑓(𝑢)  

 Y is p-regular. 
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Theorem 2:- 

                       Let  𝑓: 𝑋 ⟶ 𝑌  be s-continuous and semi closed surjection with 

compact point inverses and X is a regular space, then Y is semi regular. 

Proof:- 

            Let  𝐶 𝜖 𝑆𝐶(𝑌)  𝑎𝑛𝑑    𝑦 𝜖 𝑌 − 𝐶  

Since  𝑓  is s-continuous therefore by a well known theorem  𝑓−1(𝐶)  is closed 

in X.  

Moreover, the compact sets  𝑓−1(𝑦) 𝑎𝑛𝑑  𝑓−1(𝐶)  are disjoint in a regular 

space. 

As X is regular space, therefore there exit two disjoint open sets F and G in X 

such that,     𝑓−1(𝑦) ⊆ 𝐹      𝑎𝑛𝑑     𝑓−1(𝐶) ⊆ 𝐺  

Since,  𝑓  is semi closed then by a well known theorem there exit two semi 

open sets V and W containing y and C respectively such that, 

𝑓−1(𝑉) ⊆ 𝐹    𝑎𝑛𝑑    𝑓−1(𝑊) ⊆ 𝐺 

Since   𝐹 ∩ 𝐺 = 𝜑,  

 𝑓−1(𝑉) ∩ 𝑓−1(𝑊) =  𝜑  

 𝑉 ∩𝑊 =  𝜑 

𝑖. 𝑒.  for  𝐶 𝜖 𝑆𝐶(𝑌)   𝑎𝑛𝑑  𝑦 𝜖 𝑌 − 𝐶,  there exit two semi open sets V and W in Y 

such that   𝑦 𝜖 𝑉   𝑎𝑛𝑑    𝐶 ⊆ 𝑊          𝑎𝑛𝑑 𝑉 ∩  𝑊 =  𝜑  

 Y is a semi regular space. 

 

Corollary:- 

                    Let  𝑓: 𝑋 ⟶ 𝑌  be s-continuous and closed surjection with compact 

point inverses. Then Y is p-regular if x is regular. 
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Proof:- 

              Let  𝐶 𝜖 𝑆𝐶(𝑌)        𝑎𝑛𝑑       𝑦 𝜖 𝑌 − 𝐶 

Since  𝑓  is semi continuous, therefore by a well known theorem  𝑓−1(𝐶)  is 

closed in X. Moreover, the compact sets  𝑓−1(𝑦) 𝑎𝑛𝑑  𝑓−1(𝐶)  are disjoint in a 

regular space. 

As X is regular space, therefore there exit two disjoint open sets F and G in X 

such that,     𝑓−1(𝑦) ⊆ 𝐹    &    𝑓−1(𝐶) ⊆ 𝐺  

Since  𝑓  is closed surjection, therefore by a well known theorem, there exit 

two open sets V and W in Y containing y and C respectively such that, 

𝑓−1(𝑉) ⊆ 𝐹    &      𝑓−1(𝑊) ⊆ 𝐺  

Since,   𝐹 ∩ 𝐺 = 𝜑       𝑡𝑕𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠       𝑓−1(𝑉) ∩ 𝑓−1(𝑊) = 𝜑  

And hence,   𝑉 ∩𝑊 = 𝜑    𝑖. 𝑒.  for  𝐶 𝜖 𝑆𝐶(𝑌) & 𝑦 𝜖 𝑌 − 𝐶,  there exit two open 

sets V and W such that   𝑦 𝜖 𝑉     𝑎𝑛𝑑    𝐶 ⊆ 𝑊      &     𝑉 ∩𝑊 = 𝜑  

 Y is a p-regular space. 

 

Open Function (*):- 

                                     A function  𝑓  is said to be open function if image of each 

open set is open. 

 

Semi-Open Function (*):- 

                                                A function  𝑓: 𝑋 ⟶ 𝑌  is said to be semi-open function 

if image of every open set of X is semi-open in Y. 
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Pre Semi-Open Function (*):- 

                                                       Let X and Y be topological spaces, a function 

 𝑓: 𝑋 ⟶ 𝑌  is said to be pre-semi-open if and only if for all  𝐴𝜖𝑆𝑜𝑋),  

𝑓(𝐴)𝜖𝑆𝑂(𝑌). 

 

s-Open Function:- 

                                  A function  𝑓: 𝑋 ⟶ 𝑌  is said to be s-open if the image of 

every semi-open set is open. 

 

 It is known that every s-open function is open, semi-open and pre-semi-

open. 

 

Theorem 3:- 

                      For a function  𝑓: 𝑋 ⟶ 𝑌,  the following are equivalent. 

1) 𝑓  is s-open 

2) 𝑓,𝑠𝐼𝑛𝑡(𝐴)- ⊆ 𝐼𝑛𝑡𝑓(𝐴)                 𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝐴 ⊆ 𝑋  

3) 𝑠𝐼𝑛𝑡,𝑓−1(𝐵)- ⊆ 𝑓−1𝐼𝑛𝑡(𝐵)       𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝐵 ⊆ 𝑌  

4) 𝑓−1,𝐶𝑙(𝐵)- ⊆ 𝑠𝐶𝑙𝑓−1(𝐵)           𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝐵 ⊆ 𝑌  

5) 𝑓−1,𝐵𝑑(𝐵)- ⊆ 𝑠𝐵𝑑,𝑓−1(𝐵)-     𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝐵 ⊆ 𝑌  

Proof:- 

           ①⟹② Obviously   𝑓,𝑠𝐼𝑛𝑡(𝐴)- ⊆ 𝑓(𝐴) 

Now  𝑠𝐼𝑛𝑡(𝐴)  is a semi open set in X. 

 𝑓,𝑠𝐼𝑛𝑡(𝐴)-  is open in Y             ∵ 𝑓  is s-open. 

 𝑓,𝑠𝐼𝑛𝑡(𝐴)-  is open subset of  𝑓(𝐴) in Y, But  𝐼𝑛𝑡(𝐴)  is the largest open 

set contained in  𝑓(𝐴)  
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 𝑓,𝑠𝐼𝑛𝑡(𝐴)- ⊆ 𝐼𝑛𝑡 𝑓(𝐴)  

②⟹③ For any B ⊆ Y, put  𝑓−1(𝐵) = 𝐴 ⊆ 𝑋  

Then by ②,    𝑓,𝑠𝐼𝑛𝑡𝑓−1(𝐵)- ⊆ 𝐼𝑛𝑡𝑓𝑓−1(𝐵) ⊆ 𝐼𝑛𝑡(𝐵) 

 𝑓,𝑠𝐼𝑛𝑡𝑓−1(𝐵)- ⊆ 𝐼𝑛𝑡(𝐵) 

 𝑠𝐼𝑛𝑡𝑓−1(𝐵) ⊆ 𝑓−1,𝐼𝑛𝑡(𝐵)-  

③⟹④ By 3  𝑠𝐼𝑛𝑡𝑓−1(𝐵) ⊆ 𝑓−1,𝐼𝑛𝑡(𝐵)-  

  𝑋 − 𝑓−1,𝐼𝑛𝑡(𝐵)- ⊆ 𝑋 − 𝑠𝐼𝑛𝑡𝑓−1(𝐵) = 𝑠𝐶𝑙[𝑋 − 𝑓−1(𝐵)  

 𝑓−1(𝑌) − 𝑓−1,𝐼𝑛𝑡(𝐵)- ⊆ 𝑠𝐶𝑙,𝑓−1(𝑌) − 𝑓−1(𝐵)-              ∵ 𝑋 = 𝑓−1(𝑌)  

 𝑓−1,𝑌 − 𝐼𝑛𝑡(𝐵)- ⊆ 𝑠𝐶𝑙𝑓−1,𝑌 − 𝐵-  

 𝑓−1𝐶𝑙,𝑌 − 𝐵- ⊆ 𝑠𝐶𝑙𝑓−1,𝑌 − 𝐵-  

 𝑓−1𝐶𝑙(𝐶) ⊆ 𝑠𝐶𝑙𝑓−1(𝐶),                   𝑤𝑕𝑒𝑟𝑒 𝑌 − 𝐵 = 𝐶 𝜖 𝑌  

④⟹⑤ For B ⊆ Y, 

𝐵𝑑(𝐵) = 𝐶𝑙(𝐵) ∩ 𝐶𝑙(𝑌 − 𝐵)  is closed set in Y. 

Now,   𝑓−1𝐵𝑑(𝐵) =  𝑓−1𝐶𝑙(𝐵) ∩ 𝑓−1𝐶𝑙(𝑌 − 𝐵)  

                                  ⊆ 𝑠𝐶𝑙𝑓−1(𝐵) ∩ 𝑠𝐶𝑙𝑓−1(𝑌 − 𝐵)        𝑏𝑦 ②  

                                  = 𝑠𝐶𝑙𝑓−1(𝐵) ∩ ,𝑠𝐶𝑙𝑓−1(𝑌) − 𝑠𝐶𝑙𝑓−1(𝐵)-  

                                  = 𝑠𝐶𝑙𝑓−1(𝐵) ∩ ,𝑠𝐶𝑙(𝑋) − 𝑠𝐶𝑙𝑓−1(𝐵)-  

 𝑓−1𝐵𝑑(𝐵) ⊆ 𝑠𝐶𝑙𝑓−1(𝐵) ∩ 𝑠𝐶𝑙,𝑋 − 𝑓−1(𝐵)- = 𝑠𝐵𝑑(𝐵)  

 𝑓−1𝐵𝑑(𝐵) ⊆ 𝑠𝐵𝑑𝑓−1(𝐵)  

⑤⟹① Let U be an arbitrary open set in X, 

Put  𝑌 − 𝑓(𝑈) = 𝐵  

Now we show that B is closed in Y. 

By 5,  𝑈 ∩ 𝑓−1𝐵𝑑(𝐵) ⊆ 𝑈 ∩ 𝑠𝐵𝑑𝑓−1(𝐵)  
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 𝑓,𝑈 ∩ 𝑓−1𝐵𝑑(𝐵)- ⊆ 𝑓,𝑈 ∩ 𝑠𝐵𝑑𝑓−1(𝐵)-  

Since  𝑓(𝑈) ∩ 𝐵𝑑(𝐵) = 𝑓,𝑈 ∩ 𝑓−1𝐵𝑑(𝐵)-  

Therefore we have,  

𝑓(𝑈) ∩ 𝐵𝑑(𝐵) ⊆ 𝑓,𝑈 ∩ 𝑠𝐵𝑑𝑓−1(𝐵)-   ----------------------  ❶ 

𝐵 = 𝑌 − 𝑓(𝑈)  gives, 

𝑓−1(𝐵) = 𝑓−1,𝑌 − 𝑓(𝑈)- = 𝑓−1(𝑌) − 𝑓−1𝑓(𝑈)   

                                                 ⊆ 𝑋 − 𝑈        ∵ 𝑈 ⊆ 𝑓−1𝑓(𝑈) ⟹ (𝑓−1𝑓(𝑈))′ ⊆ 𝑈′   

 𝑓−1(𝐵) ⊆ 𝑋 − 𝑈  

 𝑠𝐶𝑙𝑓−1(𝐵) ⊆ 𝑠𝐶𝑙(𝑋 − 𝑈) = 𝑋 − 𝑠𝐼𝑛𝑡(𝑈) = 𝑋 − 𝑈    ∵ 𝑈 𝑖𝑠 𝑠𝑒𝑚𝑖 𝑜𝑝𝑒𝑛.  

 𝑠𝐶𝑙𝑓−1(𝐵) ⊆ 𝑋 − 𝑈  

 𝑠𝐶𝑙𝑓−1(𝐵) ∩ 𝑈 = 𝜑  -----------------------------------   ❷ 

Now,  𝑈 ∩ 𝑠𝐵𝑑𝑓−1(𝐵) = 𝑈 ∩  𝑠𝐶𝑙𝑓−1(𝐵) ∩ 𝑠𝐶𝑙 𝑋 − 𝑓−1(𝐵)    

                                           = 𝑈 ∩ 𝑠𝐶𝑙𝑓−1(𝐵) ∩ 𝑠𝐶𝑙,𝑋 − 𝑓−1(𝐵)-   

                                           =  𝜑 ∩ 𝑠𝐶𝑙,𝑋 − 𝑓−1(𝐵)-            𝑏𝑦 ❷  

                                           =  𝜑  

Using  𝑈 ∩ 𝑠𝐵𝑑𝑓−1(𝐵) = 𝜑,   ❶ 𝑏𝑒𝑐𝑜𝑚𝑒𝑠  

                   𝑓(𝑈) ∩ 𝐵𝑑(𝐵) ⊆ 𝜑   

 𝑓(𝑈) ∩ 𝐵𝑑(𝐵) = 𝜑  

 𝐵𝑑(𝐵) ⊆ 𝑌 − 𝑓(𝑈) = 𝐵  

 B contains all of its boundary points. 

 B is closed. 

 𝑓(𝑈) is open in Y. 

This proves that  𝑓  is s-open function. 
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Theorem 4:- 

                       For any function  𝑓: 𝑋 ⟶ 𝑌  and  𝑔: 𝑌 ⟶ 𝑍, we have, 

(1) 𝑔ₒ𝑓  is s-open if  𝑓  is s-open and  𝑔  is open. 

(2) 𝑔ₒ𝑓  is s-open if  𝑓  is pre semi open and  𝑔  is s-open. 

(3) 𝑔ₒ𝑓  is open if  𝑓  is semi open and  𝑔  is s-open. 

(4) 𝑔ₒ𝑓 is pre semi open if  𝑓  is s-open and  𝑔  is semi open. 

Proof:- 

             Proves of these statements are obvious by definition. 

 

s-Closed Function:- 

                                     A function  𝑓: 𝑋 ⟶ 𝑌  is said to be s-closed if the image o 

every semi-closed set is closed. 

 

Theorem 5:- 

                      A function  𝑓: 𝑋 ⟶ 𝑌 is s-closed if and only if 𝐶𝑙𝑓(𝐴) ⊆ 𝑓,𝑠𝐶𝑙(𝐴)-,  

for each  𝐴 ⊆ 𝑋.  

Proof:- 

             Let  𝑓  is s-closed. 

Obviously,  𝑓(𝐴) ⊆ 𝑓,𝑠𝐶𝑙(𝐴)-  

Now,  𝑠𝐶𝑙(𝐴) is semi closed in X. 

 𝑓,𝑠𝐶𝑙(𝐴)-  is closed in Y.       ∵ 𝑓 𝑖𝑠 𝑠 − 𝑐𝑙𝑜𝑠𝑒𝑑  

 𝑓,𝑠𝑐𝑙(𝐴)-  is closed superset of A. 

But  𝐶𝑙𝑓(𝐴)  is the smallest closed set containing 𝑓(𝐴)  
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 𝐶𝑙𝑓(𝐴) ⊆ 𝑓,𝑠𝐶𝑙(𝐴)-  

Conversely, 

                       Let  𝐴 𝜖 𝑆𝐶(𝑋)  

We show that  𝑓(𝐴) is closed in Y. 

By hypothesis,   𝐶𝑙𝑓(𝐴) ⊆ 𝑓,𝑠𝐶𝑙(𝐴)- = 𝑓(𝐴)           ∵ 𝐴𝜖𝑆𝐶(𝑋) 

 𝐶𝑙𝑓(𝐴) ⊆ 𝑓(𝐴)  ------------------------------------  ❶ 

But,   𝑓(𝐴) ⊆ 𝐶𝑙𝑓(𝐴) (𝑎𝑙𝑤𝑎𝑦𝑠)   -----------------------  ❷ 

By relation ❶ and ❷   𝑓(𝐴) = 𝐶𝑙𝑓(𝐴)  

 𝑓(𝐴) is closed. 

 𝑓  is s-closed.           (The proof) 

 

Theorem 6:- 

                      A surjection function  𝑓: 𝑋 ⟶ 𝑌  is s-closed if and only if for each 

subset B in Y and each semi closed set U in X containing  𝑓−1(𝐵), there exit an 

open set V in Y containing B such that,   𝑓−1(𝑉) ⊆ 𝑈.  

Proof:- 

             Let U be an arbitrary open set in X containing  𝑓−1(𝐵),  

Where  B ⊆ Y. 

Clearly,    𝑌 − 𝑓(𝑋 − 𝑈) =  𝑉 (𝑠𝑎𝑦) is open in Y. 

Since  𝑓−1(𝐵) ⊆ 𝑈  𝑎𝑛𝑑 𝑓  is onto, then simple calculations gives, B ⊆ V. 

Moreover, we have 

𝑓−1(𝑉) ⊆ 𝑋 − 𝑓−1,𝑓(𝑋 − 𝑈)- ⊆ 𝑈  
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                    𝑓−1(𝑉) ⊆ 𝑈  

Conversely, 

                       Let F be an arbitrary semi closed set in X and  𝑦 𝜖 𝑌 − 𝑓(𝐹) 

Then,  𝑓−1(𝑌) ⊆ 𝑓−1,𝑌 − 𝑓(𝐹)-  

 𝑓−1(𝑦) ⊆ 𝑋 − 𝑓−1𝑓(F) ⊆ 𝑋 − 𝐹  

 𝑓−1(𝑦) ⊆ 𝑋 − 𝐹  

Since  𝑋 − 𝐹  is semi open, therefore there exit an open set  𝑉𝑦   containing y 

such that,     𝑓−1 𝑉𝑦 ⊆ 𝑋 − 𝐹.  

 𝑦 𝜖 𝑉𝑦 ⊆ 𝑌 − 𝑓(𝐹)  

 𝑌 − 𝑓(𝐹) =   𝑉𝑦 : 𝑦 𝜖 𝑌 − 𝑓(𝐹)    is open in Y. 

 𝑓(𝐹)  is closed in Y. 

 𝑓  is s-closed.       (This completes the proof). 

 

Remark 1:- 

                  If  𝑓: 𝑋 ⟶ 𝑌  is s-continuous and closed (or irresolute and s-closed) 

surjection, then using theorem 2.2(iii) [2], one can easily see that the class 

SC(X) and C(X) (closed sets of X) coincide. 

 

Remark 2:- 

                     In general, an s-open function need not be s-closed. 

 

Example:- 

                   Let   𝑋 = *𝑎, 𝑏, 𝑐+,    𝜏𝑥 = *𝜑, *𝑎+, *𝑏+, *𝑎, 𝑏+, 𝑋+  
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And   𝑌 = *𝑎, 𝑏, 𝑐, 𝑑+    𝑎𝑛𝑑    𝜏𝑦 = *𝜑, *𝑎+, *𝑏+, *𝑎, 𝑏+, *𝑎, 𝑐+, *𝑏, 𝑐+, *𝑎, 𝑏, 𝑐+, 𝑌+  

Let  𝑓: 𝑋 ⟶ 𝑌  be an identity function. Then  𝑓  is s-open but not s-closed. 

 

Remark 3:- 

                    However, for bijection, it is easily seen that the notations of s-open 

and s-closed coincides. Moreover,  𝑓  is s-open if and only if  𝑓−1  is s-

continuous. 

Proof:- 

              Let  𝑓: 𝑋 ⟶ 𝑌  is s-open. 

 Image of every semi open set of X is open in Y. 

As image of every semi-open set is open under  𝑓.  

 By a well known theorem  𝑓−1  is s-continuous. (Since  𝑓  is s-continuous 

if inverse image of every semi-open set is open). 

Conversely, 

                       Let  𝑓−1  is s-continuous. 

 Image of every semi-open set of X is open in Y under  𝑓.  

  𝑓  is s-open. 

 

s-Closed Space:- 

                              A space X is said to be s-closed if for every semi-open cover of 

X, there exit a finite subfamily such that the union of their semi-closures cover 

X. 
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Compact Space (*):- 

                                     A topological space  (𝑋, 𝜏)  is said to be compact if every 

open cover for X has a finite sub cover. 

 

Semi-Compact Space:- 

                                         A topological space  (𝑋, 𝜏)  is said to be semi-compact, if 

for every semi open cover of X, there exit a finite sub family such that there 

union cover X. 

 

Almost Compact Space:- 

                                            A topological space  (𝑋, 𝜏)  is said to be almost compact 

if for every open cover of X, there exit a finite sub family such that union of 

their closures cover X. 

 

Note:- 

           Every compact space is almost compact, as well as semi-compact. 

 Moreover, every semi-compact space is s-closed. 

 

Theorem 7:- 

                      The inverse image of an almost compact space under s-open 

bijection is s-closed. 

Proof:- 

            Let  *𝑉𝛼 : 𝛼 𝜖 𝐼+  be semi open cover for X.  
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  𝑉𝛼 = 𝑋 𝛼𝜖𝐼  

As  𝑉𝛼   are semi-open in X and  𝑓: 𝑋 ⟶ 𝑌  is s-open. 

 𝑓(𝑉𝛼): 𝛼𝜖𝐼  are open in Y. 

  𝑓(𝑉𝛼) = 𝑓(𝑋) 𝛼𝜖𝐼  

  𝑓(𝑉𝛼) = 𝑌 𝛼𝜖𝐼  

 𝑓(𝑉𝛼)  is an open cover for Y. 

As Y is almost compact, therefore there exit finite sub family of   𝑓(𝑉𝛼) 𝛼𝜖𝐼  

such that the union of their closures cover Y. 

  𝐶𝑙,𝑓(𝑉𝛼)- = 𝑌 𝑁
𝑖=1  

 𝑌 =  𝐶𝑙,𝑓(𝑉𝛼)- 
𝑁
𝑖=1   

 𝑓−1(𝑌) = 𝑓−1[ 𝐶𝑙𝑓(𝑉𝛼)] 𝑁
𝑖=1   

 𝑋 = 𝑓−1[ 𝐶𝑙𝑓(𝑉𝛼)]  ⊆ 𝑓−1𝑁
𝑖=1 [ 𝑓*𝑠𝐶𝑙(𝑉𝛼)+]  𝑁

𝑖=1   

 𝑋 ⊆ 𝑓−1𝑓 𝑠𝐶𝑙(𝑉𝛼) ⊆  𝑠𝐶𝑙(𝑉𝛼) 
𝑁
𝑖=1

𝑁
𝑖=1   

 𝑋 ⊆  𝑠𝐶𝑙(𝑉𝛼) 
𝑁
𝑖=1  

As   (𝑉𝛼) 𝛼𝜖𝐼  is semi-open cover for X and we have find a finite sub family such 

that union of their semi closures cover X.  

 X is s-closed. 
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s-Regular Space:- 

                               A topological space  (𝑋, 𝜏)  is said to be s-regular if for each 

closed set F and  𝑋 𝜖 𝑋 − 𝐹,  there exit semi-open sets U and V in X such that 

 𝑥 𝜖 𝑈,     𝐹 ⊆ 𝑉      𝑎𝑛𝑑        𝑈 ∩ 𝑉 = 𝜑.  

 

 Every regular space is s-regular. 

 Every semi-regular space is s-regular. 

 

Almost Regular Space:- 

                                           A topological space  (𝑋, 𝜏)  is said to be almost regular 

space if for each regular closed set F and  𝑥 𝜖 𝑋 − 𝐹,  there exit open sets U and 

V such that,  𝑥 𝜖 𝑈,    𝐹 ⊆ 𝑉      𝑎𝑛𝑑    𝑈 ∩ 𝑉 = 𝜑.  

 

 F is regular closed in  (𝑋, 𝜏)  if  𝐹 = 𝐶𝑙,𝐼𝑛𝑡(𝐹)-  

 F is regular open in  (𝑋, 𝜏)  if  𝐹 = 𝐼𝑛𝑡,𝐶𝑙(𝐹)-  

 Every regular closed set is closed and semi-open. 

 A set which is semi-closed as well as semi open is called semi-regular 

set. 

 

Semi Compact/s-Compact Space:- 

                                                               A topological space  (𝑋, 𝜏)  is called s-compact 

if for every cover  *𝑈𝛼 : 𝛼 𝜖 ∇+  of X by sets  𝑈𝛼  𝜖 𝑆𝑂(𝑋),  there exit a finite 

subset  ∇ₒ  of  ∇  such that  𝑋 =  𝑈𝛼  𝛼𝜖∇ₒ   
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Theorem:- 

                   Let  (𝑋, 𝜏)  be a topological space, prove that an s-compact set A and 

disjoint regular closed set B in an s-regular space can be separated by semi-

open sets. 

Proof:- 

            Let  𝑎 𝜖 𝐴  

Since  X is s-regular and B is a regular closed set such that  𝑎 𝜖 𝑋 − 𝐵, 

Therefore there exit semi-open sets  𝐺𝛼  𝑎𝑛𝑑 𝐻𝛼  𝑠. 𝑡.  

𝑎 𝜖 𝐺𝛼 ;     𝐵 ⊆ 𝐻𝛼        𝑎𝑛𝑑      𝐺𝛼 ∩ 𝐻𝛼 = 𝜑  

Clearly,     *𝐺𝛼 : 𝛼 𝜖 𝐴+  is a cover of A by semi-open sets of X. 

Since A is s-compact, therefore there exit a finite sub collection (say) 

𝐺𝛼1
, 𝐺𝛼2

, 𝐺𝛼3
, …… , 𝐺𝛼𝑛        𝑠. 𝑡.  

𝐴 ⊆ 𝐺𝛼𝑖

𝑛

𝑖=1

= 𝐺 𝜖 𝑆𝑂(𝑋)    

Now corresponding to these    𝛼𝑖 ; 𝑖 = 1,2,3,… , 𝑛    we have 𝐻𝛼𝑖  𝑠. 𝑡.  𝐵 ⊆ 𝐻𝛼𝑖   

for each  𝑖 = 1,2,3,… , 𝑛    

 𝐵 ⊆ 𝐻𝛼1
∩ 𝐻𝛼2

∩ …∩ 𝐻𝛼𝑛    

 𝐵 = 𝑠𝐼𝑛𝑡(𝐵) ⊆ 𝑠𝐼𝑛𝑡 𝐻𝛼1
∩ 𝐻𝛼2

∩ … ∩ 𝐻𝛼𝑛           ∵ 𝐵 𝑖𝑠 𝑠𝑒𝑚𝑖 − 𝑜𝑝𝑒𝑛  

                = 𝐻  

 𝐵 ⊆ 𝐻 𝜖 𝑆𝑂(𝑋);    𝐻  is semi open. 

Consequently, G and H are required disjoint semi-open sets. 
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Completely Continuous Function:- 

                                                                A function  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦)   is said to be 

completely continuous if  𝑓−1(𝑉) 𝜖 𝑅𝑂(𝑋)  for each open set V in Y. 

 

Note:-  

            𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦)   is completely continuous if and only if  

 𝑓−1(𝑉) 𝜖 𝑅𝐶(𝑋)  for each closed set B in Y. 

 

Theorem:- 

                   Let  𝑓: 𝑋 ⟶ 𝑌  be a completely continuous and semi closed 

surjection with s-compact point inverses, if X is s-regular then Y is s-regular. 

Proof:- 

            Let X be s-regular. 

Let F be a closed set and  𝑦 𝜖 𝑌 − 𝐹, 𝑡𝑕𝑒𝑛 𝑓−1(𝑉) 𝜖 𝑅𝐶(𝑋) & 𝑓−1(𝑉)  is s-

compact. 

Clearly,     𝑓−1(𝑦) ∉ 𝑓−1(𝐹)  

Since X is s-regular, therefore there exit semi-open sets  𝑈𝑦  𝑎𝑛𝑑 𝑈𝐹   in X such 

that      𝑓−1(𝑦) 𝜖 𝑈𝑦   &  𝑓−1(𝐹) ⊆ 𝑈𝐹       𝑎𝑛𝑑     𝑈𝑦 ∩ 𝑈𝐹 = 𝜑  

Since  𝑓  is semi closed preserving, therefore there exit semi open sets 

 𝑉𝑦  𝑎𝑛𝑑 𝑉𝐹   𝑠. 𝑡.     𝑦 𝜖 𝑉𝑦   𝑎𝑛𝑑  𝐹 ⊆ 𝑉𝐹   

And      𝑓−1 𝑉𝑦 ⊆ 𝑈𝑦       𝑎𝑛𝑑       𝑓−1(𝑉𝐹) ⊆ 𝑈𝐹        𝑎𝑛𝑑     𝑈𝑦 ∩ 𝑈𝐹 = 𝜑  

Gives                𝑉𝑦 ∩ 𝑉𝐹 = 𝜑  

This proves that Y is s-regular. 
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Theorem:- 

                  Let  (𝑋, 𝜏𝑥) be a topological space then X is s-regular if and only if for 

each open set V containing  𝑥 𝜖 𝑋,  there exit a semi open set U containing x 

such that    𝑥 𝜖 𝑈 ⊆ 𝑠𝐶𝑙(𝑈) ⊆ 𝑉.  

Proof:- 

            Let  (𝑋, 𝜏𝑥) be s-regular space and V is an open set containing 

 𝑥 𝑖. 𝑒. 𝑥 𝜖 𝑉 . 

 𝑥 ∉ 𝑋 − 𝑉      (𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡)  

Since space is s-regular, therefore there exit  𝑈, 𝐿 𝜖 𝑆𝑂(𝑋)  𝑠. 𝑡.  

𝑥 𝜖 𝑈  ,     𝑋 − 𝑉 ⊆ 𝐿  

 𝑋 − 𝐿 ⊆ 𝑉          𝑎𝑛𝑑      𝑈 ∩ 𝐿 = 𝜑  

 𝑈 ⊆ 𝑋 − 𝐿        (𝑠𝑒𝑚𝑖 − 𝑐𝑙𝑜𝑠𝑒𝑑) 

 𝑠𝐶𝑙(𝑈) ⊆ 𝑋 − 𝐿          ∵ 𝑋 − 𝐿  is semi closed. 

Thus,              𝑥 𝜖 𝑈 ⊆ 𝑠𝐶𝑙(𝑈) ⊆ 𝑋 − 𝐿 ⊆ 𝑉  

 𝑥 𝜖 𝑈 ⊆ 𝑠𝐶𝑙(𝑈) ⊆ 𝑉         (𝑝𝑟𝑜𝑣𝑒𝑑)  

Conversely, 

                      We prove that X is s-regular. 

Let F be a closed subset of X and  𝑥 ∉ 𝐹      ⟹   𝑥 𝜖 𝑋 − 𝐹,  

Where  𝑋 − 𝐹  is open in X. 

By hypothesis, there exit a semi-open set U in X containing  𝑥  such that,  

𝑥 𝜖 𝑈 ⊆ 𝑠𝐶𝑙(𝑈)  ⊆ 𝑋 − 𝐹  

 𝑥 𝜖 𝑈     𝑎𝑛𝑑    𝐹 ⊆ 𝑋 − 𝑠𝐶𝑙(𝑈)   (𝑠𝑒𝑚𝑖 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡)  

Let  𝑉 = 𝑋 − 𝑠𝐶𝑙(𝑈),  
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Then,     𝑥 𝜖 𝑈 ,    𝐹 ⊆ 𝑉       𝑎𝑛𝑑     𝑈 ∩ 𝑉 = 𝜑  

 X is s-regular. 

 

Theorem:- 

                   Let  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦) be a continuous and semi closed preserving 

surjection. If  𝑓  is s-regular then Y is s-regular. 

Proof:- 

            Let X be s-regular. 

Let U be an open set in Y such that   𝑦 𝜖 𝑈  

Let    𝑥 𝜖 𝑓−1(𝑦).  Now  𝑓−1(𝑈)  is open in X and  𝑥 𝜖 𝑓−1(𝑈)  

Since X is s-regular, therefore there exit    𝑉 𝜖 𝑆𝑂(𝑋, 𝑥) 𝑠. 𝑡.  

                        𝑥 𝜖 𝑉 ⊆ 𝑠𝐶𝑙(𝑉)  ⊆  𝑓−1(𝑈)   

 𝑓(𝑥) 𝜖 𝑓(𝑉)  ⊆ 𝑓𝑠𝐶𝑙(𝑉)  ⊆ 𝑓𝑓−1(𝑈)  ⊆ 𝑈  

Where  𝑓(𝑉)  is semi-open and,  𝑠𝐶𝑙,𝑓(𝑈)-  ⊆ 𝑓,𝑠𝐶𝑙(𝑉)-  

Thus,        𝑦 𝜖 𝑓(𝑉)  ⊆ 𝑠𝐶𝑙,𝑓(𝑉)-  ⊆ 𝑓,𝑠𝐶𝑙(𝑉)-  ⊆ 𝑈  

 𝑦 𝜖 𝑓(𝑉)  ⊆ 𝑠𝐶𝑙,𝑓(𝑉)-  ⊆ 𝑈  

His proves that Y is s-regular. 

Prove That:-  

𝑠𝐵𝑑,𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- = 𝑠𝐵𝑑,𝑠𝐵𝑑(𝐴)-  

Proof:- 

          𝑠𝐵𝑑,𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- = 𝑠𝐶𝑙,𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- ∩ 𝑠𝐶𝑙,𝑋 − 𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+ -  
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                                                = 𝑠𝐵𝑑,𝑠𝐵𝑑(𝐴)- ∩ 𝑠𝐶𝑙,𝑋 − 𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- ------  ❶ 

Consider,    𝑋 − 𝑠𝐵𝑑,𝑠𝐵𝑑(𝐴)- = 𝑋 − ,𝑠𝐶𝑙*𝑠𝐵𝑑(𝐴)+ ∩ 𝑠𝐶𝑙*𝑋 − 𝑠𝐵𝑑(𝐴)+-  

                                                          = 𝑋 − ,𝑠𝐵𝑑(𝐴) ∩ 𝑠𝐶𝑙*𝑋 − 𝑠𝐵𝑑(𝐴)+ -   

                                                                      ∵ 𝑠𝐵𝑑(𝐴) 𝑖𝑠 𝑠𝑒𝑚𝑖 − 𝑐𝑙𝑜𝑠𝑒𝑑  

                                                          = ,𝑋 − 𝑠𝐵𝑑(𝐴)- ∪ ,𝑋 − 𝑠𝐶𝑙*𝑋 − 𝑠𝐵𝑑(𝐴)+-  

Now,   𝑠𝐶𝑙,𝑋 − 𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- =  𝑠𝐶𝑙 *𝑋 − 𝑠𝐵𝑑(𝐴)+ ∪  𝑋 − 𝑠𝐶𝑙 𝑋 − 𝑠𝐵𝑑(𝐴)     

                                                         = 𝑠𝐶𝑙,𝑋 − 𝑠𝐵𝑑(𝐴)- ∪ 𝑠𝐶𝑙,𝑋 − 𝑠𝐶𝑙*𝑋 − 𝑠𝐵𝑑(𝐴)+-  

                                                         = 𝐷 ∪ 𝑠𝐶𝑙(𝑋 − 𝐷) = 𝑋  

Where,     𝐷 = 𝑠𝐶𝑙,𝑋 − 𝑠𝐵𝑑(𝐴)-  

 𝑠𝐶𝑙,𝑋 − 𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- = 𝑋 -----------------------  ❷ 

By equation ❶ and ❷ 

𝑠𝐵𝑑,𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- = 𝑠𝐵𝑑,𝑠𝐵𝑑(𝐴)- ∩ 𝑋  

                 𝑠𝐵𝑑,𝑠𝐵𝑑*𝑠𝐵𝑑(𝐴)+- = 𝑠𝐵𝑑,𝑠𝐵𝑑(𝐴)-            (𝑝𝑟𝑜𝑣𝑒𝑑) 

s-Closed Space:- 

                                A topological space  (𝑋, 𝜏)  is said to be s-closed if for every 

cover  *𝑉𝛼 : 𝛼 𝜖 ∇+  of X by sets  𝑉𝛼   semi open in X for each  𝛼 𝜖 ∇, there exit a 

finite subset  ∇ₒ 𝑜𝑓 ∇  𝑠. 𝑡.  𝑋 =  𝑠𝐶𝑙(𝑉𝛼) 𝛼𝜖∇ₒ  

 

S-Closed Space:- 

                           A topological space  (𝑋, 𝜏)  is said to be S-closed if for each 

covering  *𝑉𝛼 : 𝛼 𝜖 ∇+  of X by semi-open sets of X, there exit a finite subset  ∇ₒ  

of ∇ 𝑠. 𝑡.     𝑋 =  𝐶𝑙(𝑉𝛼) 𝛼𝜖∇ₒ  
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Note:- 

          Every S-closed space is s-closed and every s-closed space is s-compact 

and every s-compact space is compact. 

 

s-Regular Space:- 

                                (Already defined) 

 

Theorem:- 

                   A topological space  (𝑋, 𝜏)  is s-closed if and only if every proper 

semi-regular subset of X is s-closed relative to X.  

Proof:- 

             Let  (𝑋, 𝜏)  be s-closed space. And  𝐺 ⊆ 𝐹  be a proper semi-regular 

subset of X. 

We prove that G is s-closed relative to X. 

Let  *𝑉𝛼 : 𝛼 𝜖 ∇+  be a cover for G, where    𝑉𝛼  𝜖 𝑆𝑂(𝑋)  ∀ 𝛼 𝜖 ∇  

 𝐺 ⊆   𝑉𝛼𝛼𝜖∇   

 𝑋 =  𝑉𝛼𝛼𝜖∇ ∪ (𝑋 − 𝐺), 𝑤𝑕𝑒𝑟𝑒   𝑋 − 𝐺 𝜖 𝑆𝑂(𝑋)  

Since X is s-closed, therefore there exit a finite sub set  ∇ₒ 𝑜𝑓 ∇   𝑠. 𝑡.  

                          𝑋 =  𝑠𝐶𝑙(𝑉𝛼) ∪ 𝑠𝐶𝑙(𝑋 − 𝐺)𝛼𝜖∇ₒ    

 𝐺 ⊆   𝑠𝐶𝑙(𝑉𝛼)𝛼𝜖∇ₒ   

 G is s-closed relative to X. 

Conversely, 

                       Let every proper semi-regular subset of X be s-closed relative to X. 
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We prove that X is s-closed. 

Let     *𝑉𝛼 : 𝛼 𝜖 ∇+  be a cover for X by sets semi-open in X. 

For some  𝛽 𝜖 ∇,    𝑠𝐶𝑙 𝑉𝛽  𝜖 𝑆𝑅(𝑋)  

Let      𝐺 = 𝑠𝐶𝑙 𝑉𝛽  𝜖 𝑆𝑅(𝑋)  

 𝑋 − 𝐺 𝜖 𝑠𝑅(𝑋)  

By hypothesis,   𝑋 − 𝐺  is s-closed relative to X. 

Since, 𝑋 − 𝐺 ⊆ ∪ *𝑉𝛼 : 𝛼 𝜖 ∇+  

Hypothesis ⟹      𝑋 − 𝐺 =  𝑠𝐶𝑙(𝑉𝛼) 𝛼𝜖∇ₒ     𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡 ∇ₒ 𝑜𝑓 ∇  

 𝑋 =  𝑠𝐶𝑙(𝑉𝛼)𝛼𝜖∇ₒ ∪ 𝑠𝐶𝑙 𝑉𝛽  

                =   𝑠𝐶𝑙(𝑉𝛼)𝛼𝜖∇ₒ∪{𝛽}   

This proves that X is s-closed space. 

 

Exercise:- 

                    Let A and B be subsets of a topological space  (𝑋, 𝜏)  such that 

𝐴 ⊆ 𝐵 ⊆ 𝑋  and  𝐵 𝜖 𝑆𝑂(𝑋).  If A is s-closed relative to X then prove that  A is 

s-closed relative to B. 

Proof:- 

                Let  *𝑉𝛼 : 𝛼 𝜖 ∇ +  be a cover for A, where  𝑉𝛼  𝜖 𝑆𝑂(𝐵)  ∀ 𝛼𝜖∇  

 𝐴 ⊆  𝑉𝛼𝛼𝜖∇   

As   𝐵 𝜖 𝑆𝑂(𝑋)   ⟹    𝐴 ⊆  𝑉𝛼𝛼𝜖∇     𝑠. 𝑡.    𝑉𝛼  𝜖 𝑆𝑂(𝑋)  ∀ 𝛼𝜖∇  
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As A is s-closed relative to X, therefore there exit a finite subset ∇ₒ 𝑜𝑓 ∇  such 

that,          𝐴 =  𝑠𝐶𝑙(𝑉𝛼)𝛼𝜖∇ₒ   

 𝐴 ∩ 𝐵 =   𝑠𝐶𝑙(𝑉𝛼)𝛼𝜖∇ₒ ∩ 𝐵  

 𝐴 =   𝑠𝐶𝑙𝐵(𝑉𝛼)𝛼𝜖∇ₒ ,        𝑤𝑕𝑒𝑟𝑒   𝑉𝛼  𝜖 𝑆𝑂(𝐵)  

 A is s-closed relative to B. 
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Almost Open Mapping:- 

                                           A mapping  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦)  is said to be almost 

open if for every open set U of Y,  

𝑓−1,𝐶𝑙(𝑈)-  ⊆ 𝐶𝑙,𝑓−1(𝑈)-  

 

Note:- 

 Every open mapping is almost open mapping. The converse is not true 

in general. 

 Composition of two almost open mappings is not almost open mapping 

in general. 

 

Example:- 

                  Let  𝑋 = 𝑌 = 𝑍 = {𝑎, 𝑏, 𝑐} 

𝜏𝑥 = *𝜑, *𝑎+, *𝑎, 𝑏+, *𝑎, 𝑐+, 𝑋+,      𝜏𝑦 = *𝜑, *𝑎+, *𝑎, 𝑏+, 𝑌+   

𝜏𝑧 = *𝜑, *𝑐+, 𝑍+  

𝑓: 𝑋 ⟶ 𝑌  be identity mapping.  

𝑔: 𝑌 ⟶ 𝑍  be defined by  𝑔(𝑎) = 𝑏, 𝑔(𝑏) = 𝑐, 𝑔(𝑐) = 𝑐  

Then  𝑓 & 𝑔  are almost open mappings but  𝑔ₒ𝑓  is not almost open. 

 

Almost Closed Mapping:- 

                                               A mapping  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦)  is said to be almost 

closed if for every closed set V of Y, 

𝐼𝑛𝑡,𝑓−1(𝑉)- ⊆ 𝑓−1,𝐼𝑛𝑡(𝑉)-  
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Theorem:- 

                  Let  𝑓: (𝑋, 𝜏𝑥) ⟶ (𝑌, 𝜏𝑦)  be almost open mappings, prove that  𝑔ₒ𝑓 is 

almost open if   𝑔  is continuous. 

Proof:- 

            Let U be an open set of Z. 

As  𝑔: 𝑌 ⟶ 𝑍  is continuous so  𝑔−1(𝑈) is open in Y. 

Now as  𝑓: 𝑋 ⟶ 𝑌  is almost open mapping and  𝑔−1(𝑈)  is open in Y. 

 𝑓−1,𝐶𝑙*𝑔−1(𝑈)+- ⊆ 𝐶𝑙,𝑓−1*𝑔−1(𝑈)+- ------------------- ⊛ 

Since  𝑔: 𝑌 ⟶ 𝑍  is almost open mapping and U is open in Z. 

 𝑔−1,𝐶𝑙(𝑈)- ⊆ 𝐶𝑙,𝑔−1(𝑈)-  

 𝑓−1*𝑔−1𝐶𝑙(𝑈)+ ⊆ 𝑓−1,𝐶𝑙*𝑔−1(𝑈)+-  

Put in equation ⊛ implies. 

𝑓−1*𝑔−1𝐶𝑙(𝑈)+ ⊆ 𝑓−1,𝐶𝑙𝑔−1(𝑈)- ⊆ 𝐶𝑙,𝑓−1𝑔−1(𝑈)-  

 𝑓−1,𝑔−1𝐶𝑙(𝑈)-  ⊆ 𝐶𝑙 𝑓−1 𝑔−1(𝑈)    

 (𝑓−1ₒ𝑔−1)𝐶𝑙(𝑈)  ⊆ 𝐶𝑙(𝑓−1ₒ𝑔−1)(𝑈)  

 (𝑔ₒ𝑓)−1𝐶𝑙(𝑈)  ⊆ 𝐶𝑙(𝑔ₒ𝑓)−1(𝑈)  

Now as U is open set in Z and, 

(𝑔ₒ𝑓)−1𝐶𝑙(𝑈)  ⊆ 𝐶𝑙[(𝑔ₒ𝑓)−1(𝑈)-  

 𝑔ₒ𝑓  is an almost open mapping. 
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s-Normal Space:- 

                                A topological space  (𝑋, 𝜏)  is said to be s-normal if for every 

pair of disjoint closed sets A and B of X, there exit disjoint semi-open sets U 

and V such that,       𝐴 ⊆ 𝑈 ,      𝐵 ⊆ 𝑉  

 

Note:- 

            A ⊆ X is semi closed in X  𝑖𝑓𝑓    𝐼𝑛𝑡,𝐶𝑙(𝐴)- = 𝐼𝑛𝑡(𝐴)  

 

Theorem:- 

                    Let  𝑓: 𝑋 ⟶ 𝑌 be a continuous semi-closed function. If  X is normal 

then Y is s-normal. 

Proof:- 

            Let  𝐹1   and  𝐹2   be disjoint closed sets of Y.  

Since  𝑓  is continuous therefore  𝑓−1(𝐹1)  and  𝑓−1(𝐹2)  are disjoint closed sets 

of X.  

As X is normal, therefore there exit disjoint open sets  𝑈1  and  𝑈2  in X such 

that,       𝑓−1(𝐹1) ⊆ 𝑈1     &     𝑓−1(𝐹2) ⊆ 𝑈2    𝑎𝑛𝑑     𝑈1 ∩ 𝑈2 = 𝜑  

Since  𝑓  is semi-closed, therefore there exit two semi open sets  𝑉1   and  𝑉2   in 

Y containing  𝐹1  and  𝐹2  respectively such that, 

𝑓−1(𝑉1)  ⊆ 𝑈1     𝑎𝑛𝑑      𝑓−1(𝑉2)  ⊆  𝑈2  

Since,    𝑈1 ∩ 𝑈2 = 𝜑  

 𝑓−1(𝑉1) ∩ 𝑓−1(𝑉2) = 𝜑 

 𝑉1 ∩ 𝑉2 = 𝜑  
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That is for two disjoint closed sets  𝐹1   and  𝐹2  of Y there exit two semi-open 

sets  𝑉1   and  𝑉2  in Y such that    𝐹1 ⊆ 𝑉1    𝑎𝑛𝑑    𝐹2 ⊆ 𝑉2      𝑎𝑛𝑑    𝑉1 ∩ 𝑉2 = 𝜑  

 Y is s-normal- 

 

Semi 𝑻𝟐-Space:- 

                             A topological space  (𝑋, 𝜏𝑥)  is said to be semi  𝑇2-space if for 

𝑥1, 𝑥2 𝜖 𝑋 𝑠. 𝑡. 𝑥1 ≠ 𝑥2 ,  there exit semi open sets U and V of X such that, 

𝑥1𝜖𝑈    &     𝑥2𝜖𝑉         𝑎𝑛𝑑       𝑈 ∩ 𝑉 = 𝜑  
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