
Section 3.1

Prob. 2

If x ⊥ y in an inner product space X, show that

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Extend the formula to m mutually orthogonal vectors.

Solution

If x ⊥ y, then 〈x, y〉 = 0, and so

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= ‖x‖2 + ‖y‖2,

as required.
From the above calculation we also have

‖x− y‖2 = ‖x+ (−y)‖2

= ‖x‖2 + ‖−y‖2

= ‖x‖2 + ‖(−1)y‖2

= ‖x‖2 + |−1|2‖y‖2

= ‖x‖2 + ‖y‖2.
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Thus we have shown that, for any elements x, y ∈ X, if x ⊥ y, then

‖x± y‖2 = ‖x‖2 + ‖y‖2.

Now suppose that, for some m ∈ N, we have

‖x1 ± · · · ± xm‖2 = ‖x1‖2 + · · ·+ ‖xm‖2 ,

where x1, . . . , xm ∈ X such that, for all i, j ∈ {1, . . . ,m}, we have 〈xi, xj〉 = 0
if i 6= j.

Then using this equality and the above result for two vectors, we obtain

‖x1 ± · · · ± xm ± xm+1‖2 = ‖(x1 ± · · · ± xm)± xm+1‖2

= ‖x1 ± · · · ± xm‖2 + ‖xm+1‖2

=
(
‖x1‖2 + · · ·+ ‖xm‖2

)
+ ‖xm+1‖2

= ‖x1‖2 + · · ·+ ‖xm‖2 + ‖xm+1‖2 ,

where x1, . . . , xm+1 ∈ X such that, for all i, j ∈ {1, . . . ,m + 1}, we have
〈xi, xj〉 = 0 if i 6= j.

For m = 1, the result is trivial.
Therefore by induction we can conclude that, for any natural number m,

if x1, . . . , xm ∈ X such that, for all i, j ∈ {1, . . . ,m}, 〈xi, xj〉 = 0 if i 6= j,
then we must have

‖x1 ± · · · ± xm‖2 = ‖x1‖2 + · · ·+ ‖xm‖2 .

Prob. 3

If X in Prob. 2 is real, show that, conversely, the given relation implies that
x ⊥ y. Show that this may not hold if X is complex. Give examples.

Solution

First, suppose that X is a real inner product space, and, for some x, y ∈ X,
we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.
Upon expanding the norm on the left-hand side of this equation in terms of
the inner product, this relation becomes

‖x‖2 + ‖y‖2 + 2〈x, y〉 = ‖x‖2 + ‖y‖2.
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which implies that
2〈x, y〉 = 0,

and hence
〈x, y〉 = 0,

showing that x ⊥ y.
However, if X is a complex inner product space, then we see that the

relation
‖x+ y‖2 = ‖x‖2 + ‖y‖2,

after expansion of the norm on the left-hand side in terms of the inner product
and cancellation of the terms on the two sides of the resulting equation, only
yields

<〈x, y〉 = 0,

which only implies that 〈x, y〉 is a pure imaginary complex number.
As an example, let X = C, the set of complex numbers, with the inner

product defined as 〈z, w〉 = zw for all z, w ∈ C, and let x = 1 and y = ι.
Then

‖x+ y‖2 = ‖1 + ι‖2 = |1 + ι|2 = 2,

and
‖x‖2 + ‖y‖2 = ‖1‖2 + ‖ι‖2 = |1|2 + |ι|2 = 1 + 1 = 2,

showing that
‖x+ y‖2 = ‖x‖2 + ‖y‖2.

But
〈x, y〉 = xy = 1(−ι) = −ι 6= 0,

showing that x 6⊥ y.

Prob. 4

If an inner product space X is real, show that the condition ‖x‖ = ‖x‖
implies 〈x + y, x − y〉 = 0. What does this mean geometrically if X = R2?
What does the condition imply if X is complex?

3

www.R
an

aM
at

hs
.co

m

www.RanaMaths.com

www.R
an

aM
at

hs
.co

m

http://www.RanaMaths.com
http://www.RanaMaths.com


Solution

First, suppose that X is a real inner product space, and x and y are some
elements of X for which ‖x‖ = ‖y‖. Then we see that

〈x+ y, x− y〉 = 〈x, x〉 − 〈x, y〉+ 〈y, x〉 − 〈y, y〉
= ‖x‖2 − 〈x, y〉+ 〈x, y〉 − ‖y‖2

= ‖x‖2 − ‖y‖2

= 0.

Goemetrically, this means that, if we have a parallelogram in the plane
whose two adjacent sides x and y are equal in length (i.e. ‖x‖ = ‖y‖ ), then
the diagonals x + y and x − y of this parallelogram are perpendicular (i.e.
〈x+ y, x− y〉 = 0).

Now suppose that X is a complex inner product space, and x, y ∈ X such
that ‖x‖ = ‖y‖. Then we see that

〈x+ y, x− y〉 = 〈x, x〉 − 〈x, y〉+ 〈y, x〉 − 〈y, y〉
= ‖x‖2 − 〈x, y〉+ 〈x, y〉 − ‖y‖2

= ‖x‖2 − ‖y‖2 − 2ι=〈x, y〉
= −2ι=〈x, y〉.

Thus, if X is a complex inner product space, then, for any elements x, y ∈ X,
if ‖x‖ = ‖y‖, then 〈x+ y, x− y〉 = −2ι=〈x, y〉.

Prob. 5

Verify by direct calculation that for any elements in an inner product space,

‖z − x‖2 + ‖z − y‖2 =
1

2
‖x− y‖2 + 2

∥∥∥∥z − 1

2
(x+ y)

∥∥∥∥2 .
Show that this identity can also be obtained from the parallelogram equality.
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Solution

Let X be an inner product space, and let x, y, z ∈ X. Then

‖z − x‖2 + ‖z − y‖2

−

[
1

2
‖x− y‖2 + 2

∥∥∥∥z − 1

2
(x+ y)

∥∥∥∥2
]

= 〈z − x, z − x〉+ 〈z − y, z − y〉

−
[

1

2
〈x− y, x− y〉+ 2

〈
z − 1

2
(x+ y), z − 1

2
(x+ y)

〉]
= ‖z‖2 − 2<〈z, x〉+ ‖x‖2 + ‖z‖2 − 2<〈z, y〉+ ‖y‖2

− 1

2

(
‖x‖2 − 2<〈x, y〉+ ‖y‖2

)
− 2

(
‖z‖2 − 2<

〈
z,

1

2
(x+ y)

〉
+

∥∥∥∥1

2
(x+ y)

∥∥∥∥2
)

= 2‖z‖2 − 2<〈z, x〉+ ‖x‖2 − 2<〈z, y〉+ ‖y‖2

− 1

2

(
‖x‖2 − 2<〈x, y〉+ ‖y‖2

)
− 2

(
‖z‖2 − 2<

(
1

2
〈z, x+ y〉

)
+

1

4
‖x+ y‖2

)
= 2‖z‖2 − 2<〈z, x〉+ ‖x‖2 − 2<〈z, y〉+ ‖y‖2

− 1

2

(
‖x‖2 − 2<〈x, y〉+ ‖y‖2

)
− 2‖z‖2 + 2<〈z, x+ y〉 − 1

2
‖x+ y‖2

= 2‖z‖2 − 2<〈z, x〉+ ‖x‖2 − 2<〈z, y〉+ ‖y‖2

− 1

2

(
‖x‖2 − 2<〈x, y〉+ ‖y‖2

)
− 2‖z‖2 + 2< (〈z, x〉+ 〈z, y〉)− 1

2
‖x+ y‖2

= −2<〈z, x〉+ ‖x‖2 − 2<〈z, y〉+ ‖y‖2

− 1

2

(
‖x‖2 − 2<〈x, y〉+ ‖y‖2

)
+ 2<〈z, x〉

+ 2<〈z, y〉 − 1

2

(
‖x‖2 + 2<〈x, y〉+ ‖y‖2

)
= −2<〈z, x〉+ ‖x‖2 − 2<〈z, y〉+ ‖y‖2

− 1

2

(
2‖x‖2 − 2<〈x, y〉+ 2<〈x, y〉+ 2‖y‖2

)
+ 2<〈z, x〉+ 2<〈z, y〉

= ‖x‖2 + ‖y‖2 − ‖x‖2 − ‖y‖2

= 0.
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Therefore,

‖z − x‖2 + ‖z − y‖2 =
1

2
‖x− y‖2 + 2

∥∥∥∥z − 1

2
(x+ y)

∥∥∥∥2 ,
as required.

Now we know that if u, v ∈ X, then the parallelogram identity gives

2‖u‖2 + 2‖v‖2 = ‖u+ v‖2 + ‖u− v‖2.

In this equality, put u : = z − x and v : = z − y and obtain

2‖z − x‖2 + 2‖z − y‖2 = ‖(z − x) + (z − y)‖2 + ‖(z − x)− (z − y)‖2

= ‖2z − (x+ y)‖2 + ‖−x+ y‖2

= 4

∥∥∥∥z − 1

2
(x+ y)

∥∥∥∥2 + ‖x− y‖2,

and upon dividing both sides by 2, we get our desired equality.

Prob. 15

If X is a finite dimensional vector space and (ej) is a basis for X, show that
an inner product on X is completely determined by its values γjk = 〈ej, ek〉.
Can we choose such scalars γjk in a completely arbitrary fashion?

Solution

Let X be a finite-dimensional vector space over the field R of real numbers
or the field C of complex numbers. Let K denote the field of scalars for X.
Then K is either R or C.

Let n : = dimX, and let {e1, . . . , en} be a basis for X. Then each element
u ∈ X can be uniquely represented as a linear combination of e1, . . . , en; that
is, there exists a unique ordered n-tuple (α1, . . . , αn) of scalars such that

u = α1e1 + · · ·+ αnen.

Let x, y ∈ X. Then there exist unique ordered n-tuples (µ1, . . . , µn) and
(ν1, . . . , νn) of scalars such that

x = µ1e1 + · · ·+ µnen and y = ν1e1 + · · ·+ νnen.
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So if 〈·, ·〉 is an inner product on X, then

〈x, y〉 = 〈µ1e1 + · · ·+ µnen , ν1e1 + · · ·+ νnen〉
= µ1 〈e1, ν1e1 + · · ·+ νnen〉+ · · ·+ µn 〈en, ν1e1 + · · ·+ νnen〉
= µ1 (ν1 〈e1, e1〉+ · · ·+ νn 〈e1, en〉)

+ · · ·+ µn (ν1 〈en, e1〉+ · · ·+ νn 〈en, en〉)

=
n∑
j=1

n∑
k=1

µjνk 〈ej, ek〉

=
n∑
j=1

n∑
k=1

µjνkγjk,

Thus, for any elements x, y ∈ X, the inner product 〈x, y〉 is conpletely
determined once we know the values

γjk : = 〈ej, ek〉

for j, k ∈ {1, . . . , n}.
By IP3, we can conclude that, for any j, k ∈ {1, . . . , n}, we have

〈ej, ek〉 =

{
〈ek, ej〉 if X is real,

〈ek, ej〉 if X is complex.

That is, for any j, k ∈ {1, . . . , n},

γjk =

{
γkj if X is real,

γkj if X is complex.
(0.1)

If X is not the trivial vector space consisting only of the zero vector, then
dimX > 0, and the basis vectors e1, . . . , en are all non-zero; therefore by IP4
we have

〈ek, ek〉 > 0

for all k ∈ {1, . . . , n}; that is, for all k ∈ {1, . . . , n}, we have

γkk > 0 (0.2)

Thus (0.1) and (0.2) are the conditions that the γjk must satisfy.

7

www.R
an

aM
at

hs
.co

m

www.RanaMaths.com
www.RanaMaths.com

www.R
an

aM
at

hs
.co

m

http://www.ranamath.com
http://www.RanaMaths.com
http://www.RanaMaths.com


Section 3.2

Prob. 1

What is Schwarz inequality in R2 or R3? Give another proof of it in these
cases.

Solution

The Shwarz inequality is as follows: For any elements x and y in an inner
product space X,

|〈x, y〉| ≤
√
〈x, x〉

√
〈y, y〉,

that is,
|〈x, y〉| ≤ ‖x‖‖y‖,

and the equality holds if and only if the set {x, y} is linearly dependent,
that is, if and only if y = αx for some scalar α. This is Lemma 3.2-1 (a) in
Kreyszig.

In the case of the Euclidean plane or space, we can argue as follows: Let
~x and ~y be any two vectors, and let θ ∈ [0, π] be the angle between these
vectors. Then we know that

~x · ~y = |~x||~y| cos θ,

and since −1 ≤ cos θ ≤ 1, therefore 0 ≤ |cos θ| ≤ 1, and so

|~x · ~y| = |~x||~y||cos θ| ≤ |~x||~y|,

and the equality holds if and only if cos θ = ±1, and this holds if and only if
θ = 0 or θ = π. Thus equality holds if and only if ~y = α~x for some scalar α.

Prob. 2

Give examples of subspaces of `2.

Solution

Recall that `2, by definition, is the inner product space consisting of all the
sequences (αn)n∈N of (real or) complex numbers for which the series

∑
|αn|2
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converges in R, with the inner product defined by

〈x, y〉 : =

{∑∞
n=1 ξnηn if X is real,∑∞
n=1 ξnηn if X is complex

for any elements x : = (ξn)n∈N and y : = (ηn)n∈N in `2, that is, for any
sequences x : = (ξn)n∈N and y : = (ηn)n∈N of (real or) complex numbers for

which the series
∑
|ξn|2 and

∑
|ηn|2 converge.

The (absolute) convergence of the series
∑
ξnηn or

∑
ξnηn then follows

from the Cauchy-Schwarz inequality (i.e. (11) Subsec. 1.2-3 in Kreyszig).
So the norm on `2 is given by

‖x‖`2 : =

√√√√ ∞∑
n=1

|ξn|2

for any element x : = (ξn)n∈N in `2, and the metric on `2 is defined by

d`2(x, y) : =

√√√√ ∞∑
n=1

|ξn − ηn|2

for any elements x : = (ξn)n∈N and y : = (ηn)n∈N in `2. And, with respect
to this metric, the space `2 is a complete metric space (i.e. a Hilbert space).
[Refer to Subsec. 1.5-4 in Kreyszig.]

Let N be a given natural number, and let

YN : =
{

(ξn)n∈N : ξn ∈ C ∀n ∈ N, ξn = 0 ∀n ∈ N such that n > N
}
.

Check that this YN is a (vector) subspace of `2.
Let

Y∞ : =
{
x : = (ξn)n∈N : ξn ∈ C, ∃Nx ∈ N such that ξn = 0 ∀n > Nx

}
.

That is, let Y∞ be the set of all those sequences of complex numbers which
have at most finitely many non-zero terms. We check that Y∞ is a (vector)
subspace of `∞.

First, note that if x : = (ξn)n∈N ∈ Y∞, then there exists a natural number
Nx (where the subscript x means that this natural numbers depends on the
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particular x in Y∞ and may be different for different x) such that ξn = 0 for
all natural numbers n > Nx. In this case

∞∑
n=1

|ξn|2 =
Nx∑
n=1

|ξn|2 < +∞,

showing that the series
∑
|ξn|2 converges in R. Thus x ∈ `2 and so Y∞ ⊂ `2.

If x : = (0, 0, 0, . . .), then x ∈ Y∞ because ξn = 0 for all natural numbers
n > 1, for example.

Now let x : = (ξn)n∈N and y : = (ηn)n∈N be elements of Y∞, and let α
and β be some scalars (i.e. complex numbers).

Then x and y are sequences of complex numbers for which there are
natural numbers Nx and Ny such that ξn = 0 for all n > Nx and ηn = 0 for all
n > Ny. Therefore, ξn = 0 = ηn for all natural numbers n > max {Nx, Ny},
and so αξn + βηn = 0 for all natural numbers n > max {Nx, Ny}, and as Nx

and Ny are natural numbers, so is max {Nx, Ny}. Now

αx+ βy = (αξn + βηn)n∈N

is a sequence of complex numbers. And, as αξn + βηn = 0 for all natural
numbers n > max {Nx, Ny}, so we can conclude that αx+βy ∈ Y∞ whenever
x, y ∈ Y∞ and α and β are any scalars. Hence Y∞ is a (vector) subspace of
`∞.

Similarly, show that

Yodd : =
{

(ξn)n∈N ∈ `
2 : ξ2n−1 = 0 ∀n ∈ N

}
and

Yeven : =
{

(ξn)n∈N ∈ `
2 : ξ2n = 0 ∀n ∈ N

}
are also subspaces of `2.

Prob. 3

Let X be the inner product space consisting of the zero polynomial and all
real polynomials in t, of degree not exceeding 2, considered for real t ∈ [a, b],
with inner product defined by

〈x, y〉 : =

∫ b

a

x(t)y(t)dt ∀x, y ∈ X.

Show that X is complete. Let Y consist of all x ∈ X such that x(a) = 0. Is
Y a subspace of X? Do all x ∈ X of degree 2 form a subspace of X?
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Solution

If x ∈ X, then x is a real-valued function with domain [a, b] defined by a
formula of the form

x(t) = α + βt+ γt2 ∀t ∈ [a, b],

for some real numbers α, β, and γ.
Now let e0, e1, and e2 be the real-valued functions defined on the closed

interval [a, b] by the formulas

e0(t) : = 1, e1(t) : = t, e2(t) : = t2

for all t ∈ [a, b].
These e0, e1, and e2 are all in X, and any x ∈ X can be written as a

linear combination of these as follows:

x = αe0 + βe1 + γe2.

Therefore,
X = span {e0, e1, e2} .

That is, X is a finite-dimensional inner product space and hence a finite-
dimensional normed space. Therefore, by Theorem 2.4-2 in Kreyszig, X is
complete.

The zero polynomial is in Y , and if y1, y2 ∈ Y and λ1, λ2 ∈ R, then we
note that

(λ1y1 + λ2y2) (a) = λ1y1(a) + λ2y2(a)

= λ1 × 0 + λ2 × 0

= 0,

showing that λ1y1 +λ2y2 ∈ Y also, and hence Y is a (vector) subspace of X.
The polynomials x(t) = t2 + 1 and y(t) = −t2 + 1 are both of degree 2,

but their sum x + y = 2 is of degree 0. So the set of all the polynomials of
degree 2 is not a subspace of X.

Prob. 4

Show that y ⊥ xn and xn → x together imply x ⊥ y.
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Solution

Let X be an inner product space; let x, y ∈ X; and let (xn)n∈N be a sequence
in X such that 〈y, xn〉 = 0 for all n ∈ N and xn → x in X as n → ∞. We
need to show that 〈x, y〉 = 0.

Now let’s take a real number ε > 0. As (xn)n∈N converges to x, so we can
find a natural number N such that

‖xn − x‖ <
ε

1 + ‖y‖

for every natural number n > N .
So,

|〈x, y〉|
= |〈x, y〉 − 〈xN+1, y〉| [ as 〈y, xn〉 = 0 for all n, so 〈xn, y〉 = 0 also ]

= |〈x− xN+1, y〉|
≤ ‖x− xN+1‖ ‖y‖ [ by Schwarz inequality ]

≤ ε

1 + ‖y‖
‖y‖

< ε.

Thus we have shown that
|〈x, y〉| < ε

for every real number ε > 0. Therefore

|〈x, y〉| = 0,

which implies that
〈x, y〉 = 0,

as required.

Prob. 5

Show that for a sequence (xn) in an inner product space the conditions
‖xn‖ → ‖x‖ and 〈xn, x〉 → 〈x, x〉 imply convergence xn → x.
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Solution

Let X be an inner product space, let x ∈ X, and let (xn)n∈N be a sequence
in X such that the sequence (‖xn‖)n∈N of norms converges in R to the real
number ‖x‖ and the sequence (〈xn, x〉)n∈N of inner products converges in K
to the inner product 〈x, x〉, where K denotes the field of scalars for X, and
K is either R or C both with their usual norms; that is,

lim
n→∞

‖xn‖ = ‖x‖, and lim
n→∞

〈xn, x〉 = 〈x, x〉. (0.3)

We need to show from this that the sequence (xn)n∈N converges in X to
the point x; this convergence is with respect to the metric induced by the
inner product on X.

We know that if a sequence (αn)n∈N of complex numbers converges to a
complex number α, then the sequence (<αn)n∈N of the real parts of the terms
of (αn)n∈N converges to the real part <α of α; that is,

lim
n→∞

<αn = < lim
n→∞

αn. (0.4)

We will use this fact shortly.
We note that, for each n ∈ N,

‖xn − x‖2 〈xn − x , xn − x〉
= 〈xn, xn〉 − 〈xn, x〉 − 〈x, xn〉+ 〈x, x〉
= ‖xn‖2 − 2< 〈xn, x〉+ ‖x‖2.

So,

lim
n→∞

‖xn − x‖2 = lim
n→∞

(
‖xn‖2 − 2< 〈xn, x〉+ ‖x‖2

)
= lim

n→∞
‖xn‖2 − lim

n→∞
2< 〈xn, x〉+ lim

n→∞
‖x‖2

[ the limit of a sum is the sum of the limits ]

= lim
n→∞

‖xn‖2 − 2<
(

lim
n→∞

〈xn, x〉
)

+ lim
n→∞
‖x‖2

[ using (0.4) above ]

= ‖x‖2 − 2<〈x, x〉+ ‖x‖2 [ using (0.3) above ]

= ‖x‖2 − 2<‖x‖2 + ‖x‖2

= ‖x‖2 − 2‖x‖2 + ‖x‖2

[ note ‖x‖2 = 〈x, x〉 is real by IP4, so <‖x‖2 = ‖x‖2 ]

= 0.
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Thus,
lim
n→∞

‖xn − x‖2 = 0.

This limit has been calculated in C.
Let us take a real number ε > 0. Then we can find a natural number N

such that ∣∣‖xn − x‖2 − 0
∣∣ =

∣∣‖xn − x‖2∣∣ = ‖xn − x‖2 < ε2

for any natural number n > N , which implies that

‖xn − x‖ < ε (0.5)

for any natural number n > N .
Thus we have shown that, for every real number ε > 0, we can find

a natural number N such that (0.5) holds. Hence the sequence (xn)n∈N
converges in X to the point x.

Prob. 7

Show that in an inner product space, x ⊥ y if and only if we have ‖x+αy‖ =
‖x− αy‖ for all scalars α.

Solution

Let X be an inner product space, and let x, y ∈ X.
Suppose that x ⊥ y. Then 〈x, y〉 = 0. So for every scalar α, we have

‖x+ αy‖2 = 〈x+ αy, x+ αy〉
= 〈x, x〉+ α〈x, y〉+ α〈x, y〉+ αα〈y, y〉
= 〈x, x〉+ α · 0 + α · 0 + αα〈y, y〉
= ‖x‖2 + |α|2‖y‖2.

And,

‖x− αy‖2 = 〈x− αy, x− αy〉
= 〈x, x〉 − α〈x, y〉 − α〈x, y〉+ αα〈y, y〉
= 〈x, x〉 − α · 0− α · 0 + αα〈y, y〉
= ‖x‖2 + |α|2‖y‖2.
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Therefore
‖x+ αy‖2 = ‖x‖2 + |α|2‖y‖2 = ‖x− αy‖2

for every scalar α. Hence

‖x+ αy‖ = ‖x− αy‖

for every scalar α.
Conversely, suppose that

‖x+ αy‖ = ‖x− αy‖

for every scalar α. Then

‖x+ αy‖2 = ‖x− αy‖2

for every scalar α. Upon expanding the two sides of the last equation we
obtain

〈x, x〉+ α〈x, y〉+ α〈x, y〉+ αα〈y, y〉 = 〈x, x〉 − α〈x, y〉 − α〈x, y〉+ αα〈y, y〉

for every scalar α. The last relation upon cancellation of the common terms
on both sides yields

α〈x, y〉+ α〈x, y〉 = −α〈x, y〉 − α〈x, y〉

for every scalar α, which implies that

2α〈x, y〉+ 2α〈x, y〉 = 0

for every scalar α. Therefore

α〈x, y〉+ α〈x, y〉 = 0 (0.6)

for every scalar α.
Now if X is a real inner product space, then (0.6) takes the fomr

2α〈x, y〉 = 0

for every scalar α, which upon putting α : = 1
2

gives

〈x, y〉 = 0,
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which is the same as x ⊥ y.
So suppose that X is a complex inner product space. By putting α : = 1

2

in (0.6) we obtain

<〈x, y〉 =
1

2

(
〈x, y〉+ 〈x, y〉

)
= 0, (0.7)

and by putting α : = − 1
2ι

in (0.6) we obtain

=〈x, y〉 =
1

2ι

(
〈x, y〉 − 〈x, y〉

)
= 0, (0.8)

From (0.7) and (0.8) we obtain 〈x, y〉 = 0, which means the same as
x ⊥ y.

Prob. 8

Show that in an inner product space, x ⊥ y if and only if ‖x + αy‖ ≥ ‖x‖
for all scalars α.

Solution

Let X be an inner product space, and let x, y ∈ X.
Suppose that x ⊥ y. This means that 〈x, y〉 = 0. So for every scalar α,

we have

‖x+ αy‖2 = 〈x+ αy, x+ αy〉
= 〈x, x〉+ α〈x, y〉+ α〈x, y〉+ αα〈y, y〉
= 〈x, x〉+ α · 0 + α · 0 + αα〈y, y〉
= ‖x‖2 + |α|2‖y‖2

≥ ‖x‖2,

And,

‖x− αy‖2 = 〈x− αy, x− αy〉
= 〈x, x〉 − α〈x, y〉 − α〈x, y〉+ αα〈y, y〉
= 〈x, x〉 − α · 0− α · 0 + αα〈y, y〉
= ‖x‖2 + |α|2‖y‖2

≥ ‖x‖2.

16

www.R
an

aM
at

hs
.co

m

www.RanaMaths.com
www.RanaMaths.com

www.R
an

aM
at

hs
.co

m

http://www.ranamath.com
http://www.RanaMaths.com
http://www.RanaMaths.com


Thus we have shown that

‖x± αy‖2 ≥ ‖x‖2

for every scalar α, and both the norms involved are non-negative; so we can
conclude that

‖x± αy‖ ≥ ‖x‖ (0.9)

for every scalar α.
Conversely, suppose that (0.9) holds. Upon squaring both sides, we obtain

‖x± αy‖2 ≥ ‖x‖2

for every scalar α, and upon expanding the left-hand side of the last inequality
we obtain

‖x‖2 ±
(
α〈x, y〉+ α〈x, y〉

)
+ |α|2‖y‖2 ≥ ‖x‖2

for every scalar α, which implies that

±
(
α〈x, y〉+ α〈x, y〉

)
+ |α|2‖y‖2 ≥ 0 (0.10)

for every scalar α.
If y = 0X , the zero vector in X, then we note that

〈x, y〉 = 〈x,0X〉 = 〈x, 0x〉 = 0〈x, x〉 = 0 · ‖x‖2 = 0,

which is the same as x ⊥ y.
So let’s assume that y is not the zero vector in X. Then, by IP4,

‖y‖2 = 〈y, y〉 > 0.

By putting α : = 〈x,y〉
‖y‖2 in (0.10), we obtain

±

(
〈x, y〉
‖y‖2

〈x, y〉+
〈x, y〉
‖y‖2

〈x, y〉

)
+

∣∣∣∣〈x, y〉‖y‖2

∣∣∣∣2 ‖y‖2 ≥ 0,

which simplifies to

±2
|〈x, y〉|2

‖y‖2
+
|〈x, y〉|2

‖y‖2
≥ 0,
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and as ‖y‖2 > 0, so we obtain

±2 |〈x, y〉|2 + |〈x, y〉|2 ≥ 0;

that is,
3 |〈x, y〉|2 ≥ 0 and − |〈x, y〉|2 ≥ 0,

which implies that
|〈x, y〉|2 ≤ 0 ≤ |〈x, y〉|2 ;

so
|〈x, y〉|2 = 0,

which implies that
|〈x, y〉| = 0,

and therefore
〈x, y〉 = 0,

which is the same as x ⊥ y.

Prob. 9

Let V be the vector space of all continuous complex-valued functions on
J = [a, b]. Let X1 = (V, ‖·‖∞), where ‖x‖∞ = maxt∈J |x(t)|, and let X2 =
(V, ‖·‖2), where

‖x‖2 = 〈x, x〉1/2, 〈x, y〉 =

∫ b

a

x(t)y(t)dt.

Show that the identity mapping x 7→ x of X1 onto X2 is continuous. (It is
not a homeomorphism. X2 is not complete. )
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Solution

Let d denote the metric induced by the inner product on X2. Then for any
x, y ∈ X2, we see that

[d(x, y)]2 = 〈x− y, x− y〉

=

∫ b

a

(x(t)− y(t)) (x(t)− y(t))dt

=

∫ b

a

|x(t)− y(t)|2 dt

≤
∫ b

a

max
s∈[a,b]

|x(s)− y(s)|2 dt

= max
s∈[a,b]

|x(s)− y(s)|2
∫ b

a

dt

= ‖x− y‖2∞(b− a).

So
d(x, y) ≤ ‖x− y‖∞

√
b− a

for all x, y ∈ X2.
Let’s choose a real number ε > 0, and let δ be any real number such that

0 < δ ≤ ε√
b− a

.

Then for any elements x, y ∈ X1 for which

‖x− y‖∞ < δ,

we have

d(x, y) ≤ ‖x− y‖∞
√
b− a < δ

√
b− a ≤ ε√

b− a
√
b− a = ε.

showing that the identity mapping x 7→ x of X1 onto X2 is uniformly con-
tinuous and hence continuous.

Prob. 10

Let X be a complex inner product space, and let T : X → X be a linear
operator. If 〈 T (x) , x〉 = 0 for all x ∈ X, then show that T is the zero
operator.
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Show that this result does not hold in a real inner product space. Hint.
Consider a rotation of the Euclidean plane.

What if we take the same rotation of the complex plane?

Solution

Here X is a complex inner product space. This means that the field of scalars
for X is the set C of complex numbers.

Let u, v ∈ X. Then, as 〈 T (x) , x〉 = 0 for all x ∈ X, so for any scalar
(i.e. complex number) α, we have

0 = 〈 T (u+ αv) , u+ αv〉
[ using the property of T with x : = u+ αv ]

= 〈 T (u) + αT (v) , u+ αv〉 [ using the linearity of T ]

= 〈T (u), u〉+ α 〈T (u), v〉+ α 〈T (v), u〉+ αα 〈T (v), v〉
= 0 + α 〈T (u), v〉+ α 〈T (v), u〉+ |α|2 · 0
= α 〈T (u), v〉+ α 〈T (v), u〉 .

Thus we have shown that

α 〈T (u), v〉+ α 〈T (v), u〉 = 0 (0.11)

for every complex number α.
Now putting α : = 1 in (0.11), we obtain

〈T (u), v〉+ 〈T (v), u〉 = 0, (0.12)

and by putting α : = −ι in (0.11), we obtain

−ι 〈T (u), v〉 − ι 〈T (v), u〉 = 0,

which simplifies to
ι 〈T (u), v〉 − ι 〈T (v), u〉 = 0,

which upon division by ι of both sides yields

〈T (u), v〉 − 〈T (v), u〉 = 0. (0.13)

Now adding (0.12) and (0.13) and then dividing the resulting equation
by 2, we obtain

〈 T (u) , v〉 = 0
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for any elements u, v ∈ X.
In the last equation, we put v : = T (u) and obtain

〈 T (u) , T (u) 〉 = 0,

which by IP4 implies that
T (u) = 0X

for all u ∈ X, where 0X denotes the zero vector in X.
Now the domain of T is X, and T (u) = 0X for all u ∈ X. So T is the

zero operator.
Now we turn to the real inner product space R2, which is the Euclidean

plane with the dot product of vectors as the inner product.
Note that if P is the point in the plane given by

P : = (ξ, η) = (r cos θ, r sin θ),

then by rotating the segment OP counter-clockwise about the origin O, we
obtain the point

Q =
(
r cos

(
θ +

π

2

)
, r sin

(
θ +

π

2

) )
= ( −r sin θ , r cos θ ) = (−η, ξ).

So let’s define a mapping T : R2 → R2 by

T (x) : = (−ξ2, ξ1)

for any point x : = (ξ1, ξ2) in R2.
Then we note that

〈 T (x), x〉 = 〈 (−ξ2, ξ1) , (ξ1, ξ2) 〉
= −ξ2ξ1 + ξ1ξ2

= 0

for any point x : = (ξ1, ξ2) in R2.
But if we put e1 : = (1, 0) and e2 : = (0, 1), then e1, e2 ∈ R2, but

T (e1) = (0, 1) = e2 6= (0, 0), and T (e2) = (−1, 0) = −e1 6= (0, 0).

Thus T is not the zero operator on R2.
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We finally show that T is linear. The domain of T is the vector space R2.
Let u : = (µ1, µ2) and v : = (ν1, ν2) be some points of R2, and let α and β
be some real numbers. Then

αu+ βv = α (µ1, µ2) + β (ν1, ν2) = ( αµ1 + βν1 , αµ2 + βν2 ) ,

and so

T (αu+ βv) = T ( ( αµ1 + βν1 , αµ2 + βν2 ) )

= ( − (αµ2 + βν2) , αµ1 + βν1 )

= ( −αµ2 − βν2 , αµ1 + βν1 )

= α (−µ2, µ1) + β (−ν2, ν1)
= αT (u) + βT (v).

Thus T is linear.
As R2 is a finite-dimensional normed space, so (by Theorem 2.7-8 in

Kreyszig) every linear operator with R2 as its domain is bounded. Thus our
T is also a bounded linear operator.

We now directly show that T is bounded as follows: Let p : = (ξ, η) be
any point of R2. Then we note that

‖T (p)‖ = ‖T ( (ξ, η) )‖
= ‖(−η, ξ)‖
=
√

(−η)2 + ξ2

=
√
η2 + ξ2

=
√
ξ2 + η2

= ‖(ξ, η)‖
= ‖p‖.

and so
‖T (p)‖
‖p‖

= 1

for all p ∈ R2 such that p 6= (0, 0). Therefore, T is bounded and

‖T‖ = sup

{
‖T (p)‖
‖p‖

: p ∈ R2 such that p 6= (0, 0)

}
= sup{ 1 } = 1.
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Next, we take X : = C, the set of complex numbers, regarded as a one-
dimensional vector space over the field C (i.e. over itself), with the inner
product defined by

〈x, y〉 : = xy

for all x, y ∈ X.
Note that if z = r (cos θ + ι sin θ) is a non-zero complex number, then the

complex number w obtained by increasing the argument of z by π/2 is given
by

w = r (cos(θ + π/2) + ι sin(θ + π/2)) = r (cos θ + ι sin θ)
(

cos
π

2
+ ι sin

π

2

)
= zι.

So let’s define the mapping T : C→ C by

T (z) : = ιz

for all z ∈ C. Then we note that, for any z ∈ C,

〈 T (z), z〉 = 〈ιz, z〉
= (ιz) z

= ι|z|2,

so that
〈 T (z), z〉 = 0

if and only if
|z|2 = 0,

which holds if and only if z = 0. So this T does not satisfy the condition
given in this problem.

We now show that this T is linear. The domain of T is the vector space
C. Suppose w, z ∈ C, where C is regarded as a vector space, and suppose
that α, β ∈ C, where we now regard C as the field of scalars for the vector
space C. ( Recall that every field is a vector space of dimension 1 over itself.
) Then

T (αw + βz) = ι(αw + βz)

= α(ιw) + β(ιz)

= αT (w) + βT (z),
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which shows that T is linear.
As the domain of T is the finite-dimensional normed space C, so (by

Theorem 2.7-8 in Kreyszig) T is also bounded. This fact we show directly as
follows:

For any complex number z 6= 0, we see that

‖T (z)‖
‖z‖

=
‖ιz‖
‖z‖

=
|ιz|
|z|

[ using the definition of the norm in C ]

=
|ι||z|
|z|

= 1. [ because |ι| = |0 + 1ι| =
√

02 + 12 = 1 ]

Therefore, T is bounded and

‖T‖ = sup

{
‖T (z)‖
‖z‖

: z ∈ C and z 6= 0

}
= sup{ 1 } = 1.

And, this T is not the zero operator; for example, T (1) = ι 6= 0.

Section 3.3

Prob. 1

Let H be a Hilbert space, M ⊂ H a convex subset, and (xn) a sequence in
M such that ‖xn‖ → d, where D = infx∈M‖x‖. Show that (xn) converges in
H.

Solution

Here we have a Hilbert space H, a convex subset M of H, and a sequence
(xn)n∈N of elements of M for which the sequence (‖xn‖)n∈N of norms con-
verges in R to the real number D, where

D : = inf{ ‖x‖ : x ∈M }.

Note that as the norm of every element is non-negative, so the set { ‖x‖ : x ∈
M } is bounded below, with the real number 0 being a lower bound of this
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set, which implies that D ≥ 0 because D is the infimum or the greatest lower
bound of this set.

For each n ∈ N, as xn ∈M and as D : = inf{ ‖x‖ : x ∈M }, so we must
have

‖xn‖ ≥ D.

As M is convex, so for every elements x, y ∈ M and for every scalar
α ∈ [0, 1], the linear convex combination (1 − α)x + αy ∈ M also. In
particular, for every elements x, y ∈M , the linear convex combination

1

2
(x+ y) =

1

2
x+

1

2
y =

(
1− 1

2

)
x+

1

2
y ∈M

also.
And, as the norm of H is induced by the inner product on H, so this

norm satisfies the parallelogram identity. That is, for all x, y ∈ H,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Since M ⊂ H, therefore this identity holds for all x, y ∈M also.
As

lim
n→∞

‖xn‖ = D,

so
lim
n→∞

‖xn‖2 = D2,

which implies that, for every real number ε > 0, we can find a natural number
N such that ∣∣‖xn‖2 −D2

∣∣ < ε2

4

for any natural number n > N .
Let d denote the metric induced by the inner product on H. Then, for
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any natural numbers m and n such that m > N and n > N , we have

[d (xm, xn)]2 = ‖xm − xn‖2

= 2 ‖xm‖2 + 2 ‖xn‖2 − ‖xm + xn‖2

= 2 ‖xm‖2 + 2 ‖xn‖2 −
∥∥∥∥2

[
1

2
(xm + xn)

]∥∥∥∥2
= 2 ‖xm‖2 + 2 ‖xn‖2 − 4

∥∥∥∥1

2
(xm + xn)

∥∥∥∥2
≤ 2 ‖xm‖2 + 2 ‖xn‖2 − 4D2

= 2
(
‖xm‖2 −D2

)
+ 2

(
‖xn‖2 −D2

)
≤ 2

∣∣‖xm‖2 −D2
∣∣+ 2

∣∣‖xn‖2 −D2
∣∣

< 2
ε2

4
+ 2

ε2

4
= ε2,

which implies that d (xm, xn) < ε.
Thus we have shown that, for every real number ε > 0, we can find a

natural number N such that d (xm, xn) < ε for any natural numbers m and
n such that m > N and n > N . Therefore the sequence (xn)n∈N is a Cauchy
sequence in M ⊂ H and hence a Cauchy sequence in the Hilbert space H.

Now as (xn)n∈N is a Cauchy sequence in H with respect to the metric
induced by the inner product on H and as H is complete with respect to this
metric, so this sequence converges in H.

Prob. 2

Show that the subset M = { y = (ηj) :
∑
ηj = 1 } of complex space Cn is

complete and convex. Find the vector of minimum norm in M .

Solution

Here Cn is the inner product space of all the ordered n-tuples of complex
numbers, with the inner product defined by

〈x, y〉 : =
n∑
j=1

ξjηj
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for all x : = (ξ1, . . . , ξn) and y : = (η1, . . . , ηn) in Cn.
And, the set M is given by

M : =

{
(η1, . . . , ηn) ∈ Cn :

n∑
j=1

ηj = 1

}
.

We first show that this set M is convex. For this, let x : = (ξ1, . . . , ξn) and
y : = (η1, . . . , ηn) be some elements of M , and let α be a (real) scalar such
that 0 ≤ α ≤ 1.

Then
n∑
j=1

ξj = 1 =
n∑
j=1

ηj,

and as 0 ≤ α ≤ 1, so 0 ≤ 1− α ≤ 1 also. Now the element

(1− α)x+ αy = ( (1− α)ξ1 + αη1, . . . , (1− α)ξn + αηn ) ,

and

n∑
j=1

[(1− α)ξj + αηj] = (1− α)
n∑
j=1

ξj + α
n∑
j=1

ηj = (1− α) · 1 + α · 1 = 1,

which shows that (1− α)x+ αy ∈M for any elements x, y ∈M and for any
(real) scalar α ∈ [0, 1]. Hence M is convex.

The norm induced by the inner product on Cn is defined by

‖x‖ : =
√
〈x, x〉 =

√√√√ n∑
j=1

ξjξj =

√√√√ n∑
j=1

|ξj|2

for all x : = (ξ1, . . . , ξn) in Cn, and the metric induced by this norm is defined
by

d(x, y) : = ‖x− y‖ =

√√√√ n∑
j=1

|ξj − ηj|2

for all x : = (ξ1, . . . , ξn) and y : = (η1, . . . , ηn) in Cn. We now show that set
M is complete with respect to this metric.

For this, let (xm)m∈N be a Cauchy sequence in M , where

xm : = (ξm1, . . . , ξmn)
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for any natural number m.
For each m ∈ N, as xm ∈M , so we must have

n∑
j=1

ξmj = 1. (0.14)

Let us take a real number ε > 0. Then there is a natural number N such
that

d (xk, xm) < ε

for any natural numbers k > N and m > N . That is,√√√√ n∑
j=1

|ξkj − ξmj|2 < ε

for any natural numbers k > N and m > N .
So, for each i = 1, . . . , n, we have

|ξki − ξmi| =
√
|ξki − ξmi|2

≤

√√√√ n∑
j=1

|ξkj − ξmj|2

= d (xk, xm)

< ε

for any natural numbers k > N and m > N , from which it follows that the
sequence (ξmi)m∈N is a Cauchy sequence in the usual metric space C, and
since the usual mettic space C is complete, the sequence (ξmi)m∈N converges
in C; let us put

ξi : = lim
m→∞

ξmi (0.15)

for each i = 1, . . . , n.
And, let x : = (ξ1, . . . , ξn). Then x ∈ Cn.
We show that this x is in M and that our original Cauchy sequence

(xm)m∈N converges in Cn to this same x.
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From (0.15) and (0.14), we obtain

n∑
i=1

ξi =
n∑
i=1

lim
m→∞

ξmi [ by (0.15) ]

= lim
m→∞

n∑
i=1

ξmi

= lim
m→∞

1 [ by (0.14) ]

= 1,

which shows that x = (ξ1, . . . , ξn) ∈M .
Now from (0.15) we can conclude that, for each i = 1, . . . , n, we can find

a natural number Ni such that

|ξmi − ξi| <
ε√
n

for any natural number m > Ni.
So for any natural number m > max {N1, . . . , Nn}, we see that

d (xm, x) =

√√√√ n∑
i=1

|ξmi − ξi|2

<

√√√√ n∑
i=1

ε2

n

=
√
ε2

= ε,

Thus, for every real number ε > 0, we can find a natural number
N0 : = max {N1, . . . , Nn} such that

d (xm, x) < ε

for any natural number m > N0. Hence (xm)m∈N converges to x in Cn.
Thus we have shown that every Cauchy sequence in M converges to a

point which also lies in M . Hence M is complete.
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In order to find the vector of minimum norm in M , you have to minimize

f(x) = ‖x‖2 =
n∑
j=1

|ξj|2

subject to the constraint
n∑
j=1

ξj = 1,

where each ξj is a complex variable, and so we can write it as ξj = <ξj+ι=ξj,
for each j = 1, . . . , n. Our problems now take the following form.

Minimize

f(x) =
n∑
j=1

(<ξj)2 +
n∑
j=1

(=ξj)2

subject to the constraints

n∑
j=1

<ξj = 1, and
n∑
j=1

=ξj = 0.

Thus now becomes a minimization problem of 2n real variables. Do it your-
selves.

Prob. 3

(a) Show that the vector space X of all real-valued continuous functions on
[−1, 1] is the direct sum of the set of all even continuous functions and the
set of all odd continuous functions on [−1, 1].

(b) Give examples of representations of R3 as a direct sum (i) of a subspace
and its orthogonal complement, (ii) of any complementary pair of subspaces.

Solution

(a) For each f ∈ X, let g and h be the functions defined on [−1, 1] by

g(x) : =
f(x) + f(−x)

2
and h(x) : =

f(x)− f(−x)

2

for all x ∈ [−1, 1].
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Let the function i : [−1, 1]→ R be defined by

i(x) : = x

for all x ∈ [−1, 1].
Then

g =
1

2
(f + f ◦ (−i)) and h =

1

2
(f − f ◦ (−i)) . (0.16)

As the constant (or scalar) multiple of a continuous function is continuous
and as i is continuous, so is −i.

As the composite of two continuous functions is also continuous and as f
and −i are continuous, so is the composite function f ◦ (−i).
Refer to ( 0.16 ) above.

Finally, as any linear combination of two continuous functions is contin-
uous and as f and f ◦ (−i) are continuous, so are g and h. Thus g, h ∈ X.

Now for any x ∈ [−1, 1], we see that

g(−x) =
1

2
[ f(−x) + f(−(−x)) ]

=
1

2
(f(−x) + f(x))

= g(x),

showing that g is even, and,

h(−x) =
1

2
[ f(−x)− f(−(−x)) ]

=
1

2
(f(−x)− f(x))

= −1

2
(f(x)− f(−x))

= −h(x),

showing that h is odd.
Moreover, for all x ∈ [−1, 1],

g(x) + h(x) =
1

2
(f(x) + f(−x)) +

1

2
(f(x)− f(−x)) = f(x),

and so f = g + h.
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Now we show that this representation of f as a sum of an even (continu-
ous) function and an odd (continuous) function is unique. For this, suppose
that f = g1 + h1, where g1 is an even (continuous) function defined on
[−1, 1] and h1 is an odd (continuous) function defined on [−1, 1]. Then for
all x ∈ [−1, 1], we have

f(x) = g1(x) + h1(x),

and f(−x) = g1(−x) + h1(−x),

that is, f(−x) = g1(x)− h1(x), [ since g1 is even and h1 is odd ]

and hence

f(x) + f(−x) = 2g1(x) and f(x)− f(−x) = 2h1(x),

which imply

g1(x) =
1

2
(f(x) + f(−x)) = g(x) and h1(x) =

1

2
(f(x) + f(−x)) = h(x),

which imply that g1 = g and h1 = h, which is our desired uniqueness proof.
Let E denote the set of all the real-valued even continuous functions de-

fined on [−1, 1], and let O denote the set of all the real-valued odd continuous
functions defined on [−1, 1].

Thus we have shown that for every f ∈ X, there is a unique element
g ∈ E and a unique element h ∈ O such that

f = g + h.

Hence
X = E ⊕O,

as required.
Exactly the same proof will work for complex-vlued functions too.
(b) Let the subsets U and V of R3 be defined as follows:

U : =
{

(ξ1, ξ2, ξ3) ∈ R3 : ξ3 = 0
}
,

and
V : =

{
(ξ1, ξ2, ξ3) ∈ R3 : ξ1 = 0 = ξ2

}
.

Then both U and V are (vector) subspaces of R3.
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First, note that U ∩ V = { (0, 0, 0) }.
Moreover, for each x : = (ξ1, ξ2, ξ3) ∈ R3, there exist unique elements

y : = (ξ1, ξ2, 0) ∈ U and z : = (0, 0, ξ3) ∈ V such that x = y + z. Hence
R3 = U ⊕ V .

Moreover, for all u : = (α, β, 0) ∈ U and v : = (0, 0, γ) ∈ V , we have

〈u, v〉 = ~u · ~v = α · 0 + β · 0 + 0 · γ = 0,

which shows that V ⊂ U⊥.
moreover, if x = (λ1, λ2, λ3) ∈ U⊥, then, for every y : = (ξ1, ξ2, 0) ∈ U ,

we have 〈x, y〉 = 0, that is,

ξ1λ1 + ξ2λ2 = 0 (0.17)

for all ξ1, ξ2 ∈ R.
By putting ξ1 = 1 and ξ2 = 0 in (0.17) we obtain λ1 = 0, and by putting

ξ1 = 0 and ξ2 = 1 we obtain λ2 = 0. Therefore x = (0, 0, λ3) ∈ V . So
U⊥ ⊂ V .

Therefore V = U⊥, and so

R3 = U ⊕ V = U ⊕ U⊥.

Now let W be the subset of R3 given by

W : =
{

(ξ1, ξ2, ξ3) ∈ R3 : ξ1 = ξ2 = ξ3
}
.

Then again U ∩W = { (0, 0, 0) }.
Moreover, for each element x : = (ξ1, ξ2, ξ3) ∈ R3, there are unique ele-

ments u : = (ξ1 − ξ3, ξ2 − ξ3, 0) ∈ U and w : = (ξ3, ξ3, ξ3) ∈ W such that
x = u+ w. So R3 = U ⊕W .

However, we note that (1, 1, 0) ∈ U and (1, 1, 1) ∈ W , but

〈(1, 1, 0), (1, 1, 1)〉 = 1 · 1 + 1 · 1 + 0 · 1 = 2,

showing that neither of U and W is orthogonal to the other.
Geometrically, U is our well-known xy-plane, V is the z-axis, and W is

the straight line through the origin and the point (1, 1, 1).

Prob. 5

Let X = R2. Find M⊥ if M is (a) { x }, where x = (ξ1, xi2) 6= 0, (b) a
linearly independent set { x1, x2 } ⊂ X.
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Solution

(a) By definition,

M⊥ =
{
y ∈ R2 : 〈y, v〉 = 0 for all v ∈M

}
=
{
y ∈ R2 : 〈y, x〉 = 0

}
=
{

(η1, η2) ∈ R2 : 〈(η1, η2) , (ξ1, ξ2)〉 = 0
}

=
{

(η1, η2) ∈ R2 : η1ξ1 + η2ξ2 = 0
}
,

which is a straight line through the origin in the so-called xy-plane since
x = (ξ1, ξ2) 6= (0, 0). If ξ2 6= 0, then this line has slope equal to −ξ1

ξ2
, and

if ξ2 = 0, then this is the vertical line through the origin (i.e. the so-called
y-axis).

(b) Let us put x1 : = (α11, α12), and x2 : = (α21, α22). Then as the set
M = { x1, x2 } is a linearly independent subset of R2, so neither of x1 and
x2 is a scalar multiple of the other (and hence neither is the zero vector in
R2).

So,

M⊥ =
{
y ∈ R2 : 〈y, v〉 = 0 for all v ∈M

}
=
{
y ∈ R2 : 〈y, x1〉 = 0 = 〈y, x2〉

}
=
{

(η1, η2) ∈ R2 : 〈(η1, η2) , (α11, α12)〉 = 0 = 〈(η1, η2) , (α21, α22)〉
}

=
{

(η1, η2) ∈ R2 : η1α11 + η2α12 = 0 = η1α21 + η2α22

}
=
{

(η1, η2) ∈ R2 : α11η1 + α12η2 = 0 = α21η1 + α22η2
}

Thus, writing all the elements of R2 as column vectors, we can conclude that

M⊥ is the set of all the vectors

[
η1
η2

]
in the plane that are the solutions to

the following homogenous system of simultaneous linear equations:

α11η1 + α12η2 = 0,

α21η1 + α22η2 = 0;

and, passing to matrices, M⊥ is the set of all the vectors

[
η1
η2

]
in the plane

such that [
α11η1 + α12η2
α21η1 + α22η2

]
=

[
0
0

]
,
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that is, [
α11 α12

α21 α22

] [
η1
η2

]
=

[
0
0

]
.

As x1 and x2 are linearly independent, so the rows of the matrix[
α11 α12

α21 α22

]
are linearly independent (and so neither is a scalar multiple of the other),
which implies that this matrix is invertible, and multiplying both sides of the
last matrix equation on the left by this inverse matrix yields the solution

y =

[
η1
η2

]
=

[
0
0

]
.

Hence M⊥ = { (0, 0) }.

Prob. 6

Show that Y = { x | x = (ξj) ∈ `2, ξ2n = 0, n ∈ N } is a closed subspace of
`2 and find Y ⊥. What is Y ⊥ if Y = span {e1, . . . , en} ⊂ `2, where ej = (δjk)?

Solution

Recall that `2, by definition, is the inner product space consisting of all the
sequences (αn)n∈N of (real or) complex numbers for which the series

∑
|αn|2

converges in R, with the inner product defined by

〈x, y〉 : =

{∑∞
n=1 ξnηn if X is real,∑∞
n=1 ξnηn if X is complex

for any elements x : = (ξn)n∈N and y : = (ηn)n∈N in `2, that is, for any
sequences x : = (ξn)n∈N and y : = (ηn)n∈N of (real or) complex numbers for

which the series
∑
|ξn|2 and

∑
|ηn|2 converge.

The (absolute) convergence of the series
∑
ξnηn or

∑
ξnηn then follows

from the Cauchy-Schwarz inequality (i.e. (11) Subec. 1.2-3 in Kreyszig).
So the norm on `2 is given by

‖x‖`2 : =

√√√√ ∞∑
n=1

|ξn|2
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for any element x : = (ξn)n∈N in `2, and the metric on `2 is defined by

d`2(x, y) : =

√√√√ ∞∑
n=1

|ξn − ηn|2

for any elements x : = (ξn)n∈N and y : = (ηn)n∈N in `2. And, with respect
to this metric, the space `2 is a complete metric space (i.e. a Hilbert space).
[Refer to Subsec. 1.5-4 in Kreyszig.]

Here
Y =

{
(ξn)n∈N ∈ `

2 : ξ2n = 0 ∀ n ∈ N
}
.

First, note that the zero sequence

0`2 : = (0, 0, 0, . . .)

is in Y . Suppose that x : = (ξn)n∈N and y : = (ηn)n∈N are some elements of
Y and α and β are some scalars (i.e. some real or complex numbers). Then
x, y ∈ `2, and

ξ2n = η2n = 0

for all n ∈ N.
Then the sequence αx + βy also belongs to `2 [Refer to Subsecs. 1.2-3

and 2.2-3 in Kreyszig.],

αx+ βy = (αξn + βηn)n∈N ,

and, for all n ∈ N, we have

αξ2n + βη2n = α · 0 + β · 0 = 0,

which shows that αx+ βy ∈ Y also. Thus Y is a (vector) subspace of `2.
In order to show that Y is closed in `2, let (xm)m∈N be a sequence in Y

and suppose that this sequence converges in `2 to a point x. Let’s put

xm : = (ξm,n)n∈N for all m ∈ N,

and
x : = (ξn)n∈N .
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Suppose a real number ε > 0 is given. Then there exists a natural number
N such that

d (xm, x) =

√√√√ ∞∑
n=1

|ξm,n − ξn|2 =

√√√√ lim
n→∞

n∑
j=1

|ξm,j − ξj|2 < ε

for any natural number m > N .
Let k be an arbitrary natural number. Then we see that

|ξm,k − ξk|

=

√
|ξm,k − ξk|2

≤

√√√√ n∑
j=1

|ξm,j − ξj|2 for any natural number n ≥ k

≤

√√√√ lim
n→∞

n∑
j=1

|ξm,j − ξj|2

[ because the sequence of partial sums is monotonically increasing ]

=

√√√√ ∞∑
n=1

|ξm,n − ξn|2

= d (xm, x)

< ε

for any natural number m > N , and thus it follows that the sequence
(ξm,k)m∈N of (real or complex) numbers converges to ξk in the usual met-
ric space R or C.

Thus for all k ∈ N, we have

lim
m→∞

ξm,k = ξk.

But, for each m ∈ N, as xm = (ξm,n)n∈N ∈ Y , so

ξm,2n = 0 for all n ∈ N,

and therefore
ξ2n = lim

m→∞
ξm,2n = 0 for all n ∈ N,
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which shows that x = (ξn)n∈N ∈ Y .
Thus we have shown that the limit of every convergent sequence of points

of Y also belongs to Y . Hence ( by Theorem 1.4-6(a) in Kreyszig) Y is closed
in `2.

Thus we have shown that Y is a (vector) subspace of `2 and that Y is
also closed in `2.

Now, by definition,

Y ⊥

=
{
x ∈ `2 : 〈x, y〉 = 0 ∀y ∈ Y

}
=
{

(ξn)n∈N ∈ `
2 :

〈
(ξn)n∈N , (ηn)n∈N

〉
= 0 ∀ (ηn)n∈N ∈ Y

}
=

{
(ξn)n∈N ∈ `

2 :
∞∑
n=1

ξnηn = 0 ∀ (ηn)n∈N ∈ Y

}

=

{
(ξn)n∈N ∈ `

2 :
∞∑
n=1

ξnηn = 0 ∀ (ηn)n∈N ∈ `
2 such that η2n = 0 ∀n ∈ N

}
={

(ξn)n∈N ∈ `
2 :

∞∑
n=1

ξ2n−1η2n−1 = 0 ∀ (ηn)n∈N ∈ `
2 such that η2n = 0 ∀ n ∈ N

}
.

Thus Y ⊥ is given by

Y ⊥ ={
(ξn)n∈N ∈ `

2 :
∞∑
n=1

ξ2n−1η2n−1 = 0 ∀ (ηn)n∈N ∈ `
2 such that η2n = 0 ∀ n ∈ N

}
.

(0.18)

Let S be the subset of `2 given by

S : =
{

(ξn)n∈N ∈ `
2 : ξ2n−1 = 0 ∀n ∈ N

}
. (0.19)

We first show that S ⊂ Y ⊥. Let x : = (ξn)n∈N be any point of S. Then
x ∈ `2 and ξ2n−1 = 0 for all n ∈ N.

Let y : = (ηn)n∈N be any element of Y . Then y ∈ `2 and η2n = 0 for all
n ∈ N.
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Then, by the definition of `2, we have

〈x, y〉 =
〈
(ξn)n∈N , (ηn)n∈N

〉
=
∞∑
n=1

ξnηn

= lim
n→∞

n∑
j=1

ξjηj

= lim
n→∞

[0 · η1 + ξ2 · 0 + 0 · η3 + ξ4 · 0 + 0 · η5 + ξ6 · 0 + · · · ]︸ ︷︷ ︸
n terms

= 0

Thus, we have shown that 〈x, y〉 = 0 for all y ∈ Y , which implies that x ∈ Y ⊥
and hence S ⊂ Y ⊥.

We now show that Y ⊥ ⊂ S also. For this we show that Sc ⊂
(
Y ⊥
)c

.
Let z : = (ζn)n∈N be any element of `2 such that z 6∈ S. Then there exists
a natural number n such that ζ2n−1 6= 0. Refer to the definition of set S in
(0.19) above. Let N be the smallest natural number such that ζ2N−1 6= 0.
Let y : = (ηn)n∈N, where

ηn : =

{
1 if n = 2N − 1,

0 otherwise.

This y belongs to Y , and moreover,

〈z, y〉 = ζ2N−1 6= 0, .

which implies that z 6∈ Y ⊥. So z ∈
(
Y ⊥
)c

. Thus Sc ⊂
(
Y ⊥
)c

, which implies
that Y ⊥ ⊂ S.

Hence

Y ⊥ = S =
{

(ξn)n∈N ∈ `
2 : ξ2n−1 = 0 ∀n ∈ N

}
.

Now let n be a given natural number, and let e1, . . . , en be defined as
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follows:

e1 : = (1, 0, 0, . . .)

e2 : = (0, 1, 0, 0, . . .)

e3 : = (0, 0, 1, 0, 0, . . .)

...
...

en : =

 0, . . . , 0,︸ ︷︷ ︸
n− 1 terms

1, 0, 0, . . .

 .

That is, for each j = 1, . . . , n, we define ej : = (δjk)k∈N. Here the function
δ : N× N→ { 0, 1 } is defined by

δjk : =

{
1 if j = k,

0 if j 6= k

for all (j, k) ∈ N× N, and it is called the Kronecker’s delta function.
You can easily verify that all of the ej belong to `2.
Now let Y be ths span (i.e. the set of all the finite linear combinations)

of the set { e1, . . . , en }. Then

Y = { η1e1 + · · ·+ ηnen : η1, . . . , ηn are complex numbers }
= { (η1, . . . , ηn, 0, 0, . . .) : η1, . . . , ηn are complex numbers }
=
{

(ηk)k∈N : (η1 . . . , ηn) ∈ Cn, ηk = 0 for k > n
}

=
{

(ηk)k∈N ∈ `
2 : ηk = 0 for k > n

}
.

Now

Y ⊥

=
{
x ∈ `2 : 〈x, y〉 = 0 ∀ y ∈ Y

}
=
{

(ξk)k∈N ∈ `
2 :

〈
(ξk)k∈N , (ηk)k∈N

〉
= 0 ∀ (ηk)k∈N ∈ Y

}
=
{

(ξk)k∈N ∈ `
2 :

〈
(ξk)k∈N , (ηk)k∈N

〉
= 0 ∀ (ηk)k∈N ∈ `

2 such that ηk = 0 for all k > n
}

=

{
(ξk)k∈N ∈ `

2 :
∞∑
k=1

ξkηk = 0 ∀ (ηk)k∈N ∈ `
2 such that ηk = 0 for all k > n

}

=

{
(ξk)k∈N ∈ `

2 :
n∑
k=1

ξkηk = 0 ∀ (ηk)k∈N ∈ `
2 such that ηk = 0 for all k > n

}
.
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Let S be the subset of `2 given by

S : =
{

(ξk)k∈N ∈ `
2 : ξk = 0 for k = 1, . . . , n

}
.

We show that Y ⊥ = S.
Let x : = (ξk)k∈N be any element of S. Then (ξk)k∈N ∈ `2 such that

ξk = 0 for each k = 1, . . . , n.
And, let y : = (ηk)k∈N ∈ Y . Then (ηk)k∈N ∈ `2 such that ηk = 0 k > n.

So we have

〈x, y〉 =
〈
(ξk)k∈N , (ηk)k∈N

〉
=
∞∑
k=1

ξkηk

= lim
k→∞

k∑
j=1

ξjηj

= lim
k→∞

[0 · η1 + · · ·+ 0 · ηn + ξn+1 · 0 + ξn+2 · 0 + · · · ]︸ ︷︷ ︸
k terms

= 0.

Thus we have shown that 〈x, y〉 = 0 for all y ∈ Y . So x ∈ Y ⊥. Therefore
S ⊂ Y ⊥.

Now we show that Y ⊥ ⊂ S. For this we show that Sc ⊂
(
Y ⊥
)c

.
Let x : = (ξk)k∈N be any element of `2 such that x 6∈ S. Then, there exists

a natural number k ∈ {1, . . . , n } such that ξk 6= 0; let K be the smallest
such natural number. Let y : = (ηk)k∈N be a sequence of complex numbers
such that

ηk : =

{
1 if k = K,

0 otherwise.

This y ∈ Y because ηk = 0 for all k ∈ N such that k > n. And, we note
that

〈x, y〉 = ξK 6= 0,

which shows that x 6∈ Y ⊥ and so x ∈
(
Y ⊥
)c

, showing that Sc ⊂
(
Y ⊥
)c

.
Therefor Y ⊥ ⊂ S.

Hence

Y ⊥ = S =
{

(ξk)k∈N ∈ `
2 : ξk = 0 for k = 1, . . . , n

}
.
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Section 3.4

Prob. 8

Show that an element x of an inner product space X cannot have “too
many” Fourier coefficients 〈x, ek〉 which are “big”; here, (ek) is a given or-
thonormal sequence; more precisely, show that the number nm of 〈x, ek〉 such
that |〈x, ek〉| > 1/m must satisfy nm ≤ m2‖x‖2.

Solution

As (ek)k∈N is an orthonormal sequence in the inner product space X, so by
Theorem 3.4-6 (Bessel Inequality) in Kreyszig, for any x ∈ X, the series∑
|〈x, ek〉|2 converges in R, and

∞∑
k=1

|〈x, ek〉|2 ≤ ‖x‖2.

Let x ∈ X, let m be a given natural number, and let Am(x) be ths subset
of N given by

Am(x) : =

{
k ∈ N : |〈x, ek〉| >

1

m

}
.

Let nm denote the cardinality of the set Am(x) (which is the same as the
number of elements in the set Am(x) if Am(x) is finite ), where

nm ∈ { 0 } ∪ N ∪ { ℵ0 },

where ℵ0 (pronounced “aleph null”) denotes the cardinality of the set N of
natural numbers, because the set Am(x) can be empty, non-empty but finite,
or countably infinite. Furthermore, as Am(x) ⊂ N and as N is countable, so
Am(x) cannot be uncountable.

If x = 0X , the zero vector in X, then

〈x, ek〉 = 0

for all k ∈ N, and so the set Am(x) is empty, and therefore

nm = 0 = m2 · 0 = m2‖x‖2.
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So let’s suppose that x is not the zero vector in X, and suppose also that
nm ≥ m2‖x‖2. Then as

|〈x, ek〉|2 ≥ 0

for all k ∈ N and as

|〈x, ek〉|2 >
1

m2

for all k ∈ Am(x), so we note that

∞∑
k=1

|〈x, ek〉|2 =
∑
k∈N

|〈x, ek〉|2

=
∑

k∈Am(x)

|〈x, ek〉|2 +
∑

k∈N−Am(x)

|〈x, ek〉|2

≥
∑

k∈Am(x)

|〈x, ek〉|2

>
nm
m2

≥ m2‖x‖2

m2

= ‖x‖2,

which contradicts the Bessel’s inequality. Hence we must have

nm < m2‖x‖2,

as required.
In the above calculation, we have used the equality

∞∑
k=1

|〈x, ek〉|2 =
∑
k∈N

|〈x, ek〉|2 .

This is because of Theorem 3.55 in the book Principles of Mathematical
Analysis by Walter Rudin, 3rd edition, which says that if a series of complex
numbers converges absolutely, then, by altering the order of the terms of
that series in any way whatsoever, we obtain a series that also converges
absolutely and has the same sum as the sum of the original series.
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Section 3.5

Prob. 1

Let (en)n∈N be an orthonormal sequence in an inner product space X, let
(αn)n∈N be a sequence of scalars, and let x ∈ X. If the series

∑
αnen con-

verges in X and has sum x, show that then the series
∑
|αn|2 converges in

R and has sum ‖x‖2.

Solution

Suppose the series
∑
αnen converges in X and

∞∑
n=1

αnen = x.

Let (sn)n∈N be the sequence of the partial sums of the series
∑
αnen; that is,

let

sn : =
n∑
j=1

αjej

for all n ∈ N. Then by our supposition the sequence (sn)n∈N converges in X
to the point x.

Thus, for every real number ε > 0, we can find a natural number N such
that

‖sn − x‖ < ε

for every natural number n > N .
But we know that

|‖u‖ − ‖v‖| ≤ ‖u− v‖

for all u, v ∈ X.
So, we can conclude that

|‖sn‖ − ‖x‖| < ε

for every natural number n > N .
Thus it follows that the sequence (‖sn‖)n∈N converges in R to the real

number ‖x‖; so the sequence
(
‖sn‖2

)
n∈N of squares of the norms converges
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to the real number ‖x‖2. But, for each n ∈ N,

‖sn‖2 = 〈sn, sn〉
= 〈α1e1 + · · ·+ αnen, α1e1 + · · ·+ αnen〉
= α1α1 〈e1, e1〉+ · · ·+ αnαn 〈en, en〉
= |α1|2 + · · ·+ |αn|2

Thus we can conclude that the sequence
(
‖sn‖2

)
n∈N is in fact the sequence(∑n

j=1 |αj|
2
)
n∈N

of the partial sums of the series
∑
|αn|2, and as the former

sequence converges in R to the real number ‖x‖2, we can conclude that so
does the latter sequence, which implies that the series

∑
|αn|2 of non-negative

real numbers converges in R and has the sum ‖x‖2.
Thus we have shown that, if the series

∑
αnen converges in X, and if

∞∑
n=1

αnen = x,

then the series
∑
|αn|2 converges in R and

∞∑
n=1

|αn|2 = ‖x‖2,

as required.

Prob. 3

Illustrate with an example that a convergent series
∑
〈x, ek〉 ek need not have

the sum x.

45

www.R
an

aM
at

hs
.co

m

www.RanaMaths.com
www.RanaMaths.com

www.R
an

aM
at

hs
.co

m

http://www.ranamath.com
http://www.RanaMaths.com
http://www.RanaMaths.com


Solution

Let X = `2, and let the sequence (ek)k∈N in `2 be defined as follows:

e1 : = (0, 1, 0, 0, 0, 0, . . .),

e2 : = (0, 0, 0, 1, 0, 0, . . .),

e3 : = (0, 0, 0, 0, 0, 1, 0, 0, . . .),

...,

ej : = (0, . . . , 0, 1︸︷︷︸
2j-th term

, 0, 0, . . .),

....

Let x : = (ξk)k∈N, where

ξk : =
1

2k

for all k ∈ N. The sum

∞∑
k=1

|ξk|2 =
∞∑
k=1

∣∣∣∣ 1

2k

∣∣∣∣2 =
∞∑
k=1

1

4k
=

1/4

1− 1/4
=

1

3
< +∞,

so

x =

(
1

2
,

1

22
,

1

23
,

1

24
, . . .

)
∈ `2.

Then

〈x, e1〉 =
1

22
,

〈x, e2〉 =
1

24
,

〈x, e3〉 =
1

26
,

...

〈x, ej〉 =
1

22j
,

... .
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For all k, r ∈ N, we note that

〈ek, er〉 =

{
1 if k = r,

0 if k 6= r;

that is, the sequence (ek)k∈N is an orthonormal sequence in `2. By Theorem

3.4-6 (Bessel’s inequality) in Kreyszig, the series
∑
|〈x, ek〉|2 converges in R

with the sum
∞∑
k=1

|〈x, ek〉|2 ≤ ‖x‖2,

and since `2 is a Hilbert space, therefore by Theorem 3.5-2(a) in Kreyszig,
we can conclude that the series

∑
〈x, ek〉 ek also converges in `2, and we find

the sum of this series as follows:

∞∑
k=1

〈x, ek〉 ek = lim
k→∞

k∑
j=1

〈x, ej〉 ej

= lim
k→∞

k∑
j=1

1

22j
(0, . . . , 0, 1︸︷︷︸

2j-th term

, 0, 0, . . .)

= lim
k→∞

k∑
j=1

0, . . . , 0,
1

22j︸︷︷︸
2j-th term

, 0, 0, . . .



= lim
k→∞

0,
1

22
, 0,

1

24
, . . . , 0,

1

22k︸︷︷︸
2k-th term

, 0, . . .


=

(
0,

1

22
, 0,

1

24
, 0,

1

26
, 0,

1

28
, 0, . . .

)
6=
(

1

2
,

1

22
,

1

23
,

1

24
, . . .

)
= x.
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Let us now show that

lim
k→∞

0,
1

22
, 0,

1

24
, . . . , 0,

1

22k︸︷︷︸
2k-th term

, 0, . . .


=

(
0,

1

22
, 0,

1

24
, 0,

1

26
, 0,

1

28
, 0, . . .

)
.

Let us take a real number ε > 0. Let’s put

yk : =

0,
1

22
, 0,

1

24
, . . . , 0,

1

22k︸︷︷︸
2k-th term

, 0, . . .


for all k ∈ N, and let

y : =

(
0,

1

22
, 0,

1

24
, 0,

1

26
, 0,

1

28
, 0, . . .

)
.

Then, for each k ∈ N, we have

y − yk =

 0, . . . , 0︸ ︷︷ ︸
2k + 1 terms

,
1

22k+2
, 0,

1

22k+4
, 0, . . .

 ,

and so

‖y − yk‖2 =
1

24k+4

∞∑
i=0

1

24i

=
1

16k+1

∞∑
i=0

1

16i

=
1

16k+1

1

1− 1
16

=
1

16k
1

15
,

which implies

‖y − yk‖`2 =
1

4k
1√
15
.
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As the set N of natural numbers is not bounded from above in R, so
we can find a natural number K such that K > 1/ε. And, for any natural
number k, we can prove by induction that 4k > k.

So, for any natural number k > K, we have

4k
√

15 > 4k > k > K > 1/ε,

which implies that

‖y − yk‖`2 =
1

4k
√

15
< ε

for any natural number k > K.
Since ε was an arbitrary positive real number, we can conclude that

lim
k→∞

0,
1

22
, 0,

1

24
, . . . , 0,

1

22k︸︷︷︸
2k-th term

, 0, . . .


=

(
0,

1

22
, 0,

1

24
, 0,

1

26
, 0,

1

28
, 0, . . .

)
.

Prob. 4

If (xi) is a sequence in an inner product space X such that the series ‖x1‖+
‖x2‖ + · · · converges, show that (sn) is a Cauchy sequence, where sn =
x1 + · · ·+ xn.

Solution

This result holds in any normed space X. Let (σn)n∈N be the sequence of the
partial sums of the convergent series

‖x1‖+ ‖x2‖+ · · · .

Then
σn = ‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖

for all n ∈ N.
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First of all, we note that, for any natural numbers m and n such that
m < n, we have

|σm − σn| =

∣∣∣∣∣
m∑
j=1

‖xj‖ −
n∑
j=1

‖xj‖

∣∣∣∣∣
=

∣∣∣∣∣−
n∑

j=m+1

‖xj‖

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=m+1

‖xj‖

∣∣∣∣∣
=

n∑
j=m+1

‖xj‖ .

As (σn)n∈N is a convergent sequence, so it is also Cauchy. Therefore, for
every real number ε > 0, we can find a natural number N such that

|σm − σn| < ε

for any natural numbers m and n > N .
So, for any natural numbers m and n such that n > m > N , we have

n∑
j=m+1

‖xj‖ < ε,

which implies that

‖sm − sn‖ = ‖sn − sm‖

=

∥∥∥∥∥
n∑
j=1

xj −
m∑
j=1

xj

∥∥∥∥∥
=

∥∥∥∥∥
n∑

j=m+1

xj

∥∥∥∥∥
≤

n∑
j=m+1

‖xj‖

< ε.
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And, for any natural numbers m and n such that m > n > N , we interchange
the roles of m and n in the last calculation and obtain again

‖sm − sn‖ < ε.

And, for m = n, we see that

‖sm − sn‖ = 0 < ε.

Thus we have shown that, for every real number ε > 0, there exists a natural
number N such that

‖sm − sn‖ < ε

for any natural numbers m and n such that m > N and n > N . Hence
(sn)n∈N is a Cauchy sequence in X.

Note that in the above proof, we have used only the properties of X as a
normed space.

Prob. 5

Show that in a Hilbert space H, convergence of
∑
‖xj‖ implies convergence

of
∑
xj.

Solution

This result holds in any Banach space. Suppose the series
∑
‖xj‖ converges

(in R). Then, as in the preceding problem (i.e. Prob. 4, Sec. 3.5, in
Kreyszig), the sequence (sn)n∈N of the partial sums of the series

∑
xj is a

Cauchy sequence, and sinceX is complete (with respect to the metric induced
by the norm on X), the sequence (sn)n∈N is convergent, and this implies that
the series

∑
xj converges in X.

Prob. 6

Let (ej) be an orthonormal sequence in a Hilbert space H. Show that if

x =
∞∑
j=1

αjej and y =
∞∑
j=1

βjej, then 〈x, y〉 =
∞∑
j=1

αjβj,

the series being absolutely convergent.
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Solution

For each n ∈ N, let

xn : =
n∑
j=1

αjej, and yn : =
n∑
j=1

βjej.

Thus, (xn)n∈N and (yn)n∈N are the sequences of the partial sums of the se-
ries

∑
αjej and

∑
βjej, respectively, and therefore, by our hypothesis, the

sequences (xn)n∈N and (yn)n∈N converge in H to the points x and y, respec-
tively.

Therefore, (by Lemma 3.2-2 in Kreyszig) the sequence (〈xn, yn〉)n∈N of
the inner products converges (in R or C) to the (real or complex) number
〈x, y〉.

But, as the sequence (ej)j∈N is an orthonormal sequence in H, so, for each
n ∈ N, we have

〈xn, yn〉 = 〈α1e1 + · · ·+ αnen, β1e1 + · · ·+ βnen〉 = α1β1 + · · ·+ αnβn.

So
lim
n→∞

(
α1β1 + · · ·+ αnβn

)
= lim

n→∞
〈xn, yn〉 = 〈x, y〉;

that is, the series
∑
αjβj converges, and

∞∑
j=1

αjβj = 〈x, y〉.

By the Cauchy-Schwarz inequality (i.e. (11), Subsec. 1.2-3, in Kreyszig), we
see that

∞∑
j=1

∣∣αjβj∣∣ ≤
√√√√ ∞∑

j=1

|αj|2
√√√√ ∞∑

j=1

∣∣βj∣∣2
=

√√√√ ∞∑
j=1

|αj|2
√√√√ ∞∑

j=1

|βj|2

= ‖x‖‖x‖. [ Refer to Prob. 1, Sec. 3.5, in Kreyszig ]
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Thus the series
∑
αjβj converges absolutely, and the sum

∞∑
j=1

αjβj = 〈x, y〉.

Note that, in the above proof, we have not used the completeness of the
Hilbert space H. Thus the above result holds in any inner product space.

Prob. 7

Let (ek) be an orthonormal sequence in a Hilbert space H. Show that for
every x ∈ H, the vector

y =
∞∑
k=1

〈x, ek〉 ek

exists in H and x− y is orthogonal to every ek.

Solution

As (ek)k∈N is an orthonormal sequence in the inner product space H, so (by

Theorem 3.4-6 in Kreyszig) the series
∑
|〈x, ek〉|2 converges (in R); therefore

(by Theorem 3.5-2 (a) or (c) in Kreyszig) the series
∑
〈x, ek〉 ek converges in

H. Let

y : =
∞∑
k=1

〈x, ek〉 ek.

Then y ∈ H.
Now, for each n ∈ N, let

yn : =
n∑
j=1

〈x, ej〉 ej.

Thus (yn)n∈N is the sequence of the partial sums of the series
∑
〈x, ek〉 ek

and therefore this sequence converges to the point y in H.
Now let k be an arbitrary but fixed natural number, and let us take a
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natural number n > k. Then

〈x− yn, ek〉 = 〈x, ek〉 − 〈yn, ek〉

= 〈x, ek〉 −

〈
n∑
j=1

〈x, ej〉 ej, ek

〉

= 〈x, ek〉 −
n∑
j=1

〈x, ej〉 〈ej, ek〉

= 〈x, ek〉 − 〈x, ek〉 〈ek, ek〉
= 〈x, ek〉 − 〈x, ek〉 · 1
= 0,

and so
lim
n→∞

〈x− yn, ek〉 = 0. (0.20)

But as yn → y in H as n→∞, so the sequence (x− yn)n∈N converges to
x− y, and so the sequence (〈x− yn, ek〉)n∈N of inner products converges (in
R or C) to the inner product 〈x− y, ek〉. That is,

lim
n→∞

〈x− yn, ek〉 = 〈x− y, ek〉 . (0.21)

But, in any metric space, the limit of a convergent sequence is unique. So
from (0.20) and (0.21) we can conclude that

〈x− y, ek〉 = 0.

But as k ∈ N was arbitrary, so we can conclude that x− y is orthogonal
to every ek.

Prob. 8

Let (ek) be an orthonormal sequence in a Hilbert space H, and let M =
span (ek). Show that for any x ∈ H we have x ∈ M if and only if x can be
represented by

x =
∞∑
k=1

αkek

with coefficients αk = 〈x, ek〉.
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Solution

If

x =
∞∑
k=1

〈x, ek〉 ek,

then x is the limit (in H) of the sequence (xn)n∈N, where

xn : =
n∑
k=1

〈x, ek〉 ek

for all n ∈ N, and (xn)n∈N is a sequence in M : = span (ek), which (by

Theorem 1.4-6 (a) in Kreyszig) implies that x ∈M = span (ek).
Conversely, suppose that x ∈ M . Then, for every real number ε > 0, we

can find a point v ∈M such that

‖x− v‖ < ε. (0.22)

As v ∈ M = span (ek), so v can be written as a (finite) linear combination
of the terms of the orthonormal sequence (ek)k∈N; that is, there is a natural
number N and an N -tuple (β1, . . . , βN) of scalars such that

v = β1e1 + · · ·+ βNeN .

Now this v belongs to the span of (e1, . . . , eN), so (by Prob. 6, Sec. 3.4,
in Kreyszig) we can conclude that∥∥∥∥∥x−

N∑
j=1

〈x, ej〉 ej

∥∥∥∥∥ ≤ ‖x− v‖ ,
which together with (0.22) implies that∥∥∥∥∥x−

N∑
j=1

〈x, ej〉 ej

∥∥∥∥∥ < ε. (0.23)

Let

yN : =
N∑
j=1

〈x, ej〉 ej.

Then yN ∈ span (e1, . . . , eN).
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And, for any natural number n > N , we note that

{e1, . . . , eN} ⊂ {e1, . . . , en} ,

and so
span (e1, . . . , eN) ⊂ span (e1, . . . , en) ,

which implies that yN ∈ span (e1, . . . , en), and therefore (again by Prob. 6,
Sec. 3.4, in Kreyszig) we can conclude that∥∥∥∥∥x−

n∑
j=1

〈x, ej〉 ej

∥∥∥∥∥ ≤ ‖x− yN‖ .
Then (0.23) yields ∥∥∥∥∥x−

n∑
j=1

〈x, ej〉 ej

∥∥∥∥∥ < ε.

Thus, for every real number ε > 0, we can find a natural number N such
that ∥∥∥∥∥x−

n∑
j=1

〈x, ej〉 ej

∥∥∥∥∥ < ε

for any natural number n > N . Therefore the sequence
(∑n

j=1 〈x, ej〉 ej
)
n∈N

of the partial sums of the series
∑
〈x, ek〉 ek converges to the point x, which

means that the series
∑
〈x, ek〉 ek converges and has sum x.

That is,

lim
n→∞

n∑
j=1

〈x, ej〉 ej = x,

and so we can write

x =
∞∑
k=1

〈x, ek〉 ek,

as required.
Note that for the above proof, we have not needed the completeness of

H. So this result holds even if H is any inner product space that is not
necessarily a Hilbert space.
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Prob. 9

Let (en) and (ẽn) be orthonormal sequences in a Hilbert space H, and let
M1 = span(en) and M2 = span(ẽn). Using Prob. 8, show that M1 = M2 if
and only if

(a) en =
∞∑
m=1

αnmẽm, (b) ẽn =
∞∑
m=1

αmnem, αnm = 〈en, ẽm〉 .

Solution

Let us define
αnm : = 〈en, ẽm〉 (0.24)

for all (n,m) ∈ N× N.
If M1 = M2, then M1 ⊂M2 and M2 ⊂M1.
For each n ∈ N, as en ∈ span (em)m∈N = M1 and as M1 ⊂ M1 ⊂ M2, so

en ∈ M2 = span (ẽm)m∈N, and therefore ( by Prob. 8, Sec. 3.5, in Kreyszig)
we have

en =
∞∑
m=1

〈en, ẽm〉 ẽm =
∞∑
m=1

αnmẽm,

using (0.24) above.
Similarly, for each n ∈ N, as ẽn ∈ span (ẽm)m∈N = M2 and as M2 ⊂M2 ⊂

M1, so ẽn ∈ M1 = span (em)m∈N, and therefore ( again by Prob. 8, Sec. 3.5,
in Kreyszig) we have

ẽn =
∞∑
m=1

〈ẽn, em〉 em

=
∞∑
m=1

〈em, ẽn〉em

=
∞∑
m=1

αmnem, [ using (0.24) ]

as required.
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Prob. 10

Let X be an inner product space, let M be a non-empty orthonormal subset
of X, and let x ∈ X. Let M(x) be the subset of M defined as follows:

M(x) : = { v ∈M : 〈x, v〉 6= 0 } . (0.25)

Then set M(x) is at most countable (i.e. either finite or countable).

Solution

Recall that a set S is said to be finite if either S is empty or, for some natural
number N , there exists a bijective function f : { 1, . . . , N } → S; otherwise
S is said to be infinite. And, recall also that the set S is said to be countable
if there exists a bijective function f : N → S. If the set S is neither finite
nor countable, then S is said to be uncountable. [ Refer to Sections 6 and
7 in the book Topology by James R. Munkres, 2nd edition. Or, refer to
Definitions 2.3 and 2.4 in the book Principles of Mathematical Analysis by
Walter Rudin, 3rd edition.]

If x = 0X , the zero vector in X, then we note that, for any element y ∈ X,

〈x, y〉 = 〈0X , y〉 = 〈0y, y〉 = 0〈y, y〉 = 0.

So 〈x, v〉 = 0 for all v ∈ M also, and in this case the set M(x) in (0.25) is
empty.

So let’s suppose that x 6= 0X .
If the vector space X is finite-dimensional, then (by definition) every

linearly independent subset of X has at most finitely many elements ( the
number of elements in any linearly independent subset of X not exceeding
the dimension of X), and as M is orthonormal, so M is linearly independent
and thus finite, which implies that the subset M(x) of M is also finite.

So let’s assume that X is infinite-dimensional. If M is countable, then
every subset of M is either finite or countable (by Corollary 7.3 in the book
Topology by James R. Munkres, 2nd edition, or Theorem 2.8 in the book
Principles of Mathematical Analysis by Walter Rudin, 3rd edition), and
therefore M(x) is also either finite or countable (i. e. at most countable).

So we assume that X is infinite-dimensional and also that set M is un-
countable.

We know that, for any real or complex number α, the following holds:
α = 0 if and only if |α| = 0; therefore we can conclude that α 6= 0 if and
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only if |α| 6= 0. But |α| 6< 0. So we can also conclude that α 6= 0 if and only
if |α| > 0.

For any elements u and v in X, as the inner product 〈u, v〉 of u and v is
a real or complex number, so we can rewrite the set M(x) as follows:

M(x) = { v ∈M : |〈x, v〉| > 0 } . (0.26)

Refer to (0.25) above.
For each n ∈ N, let Mn(x) be the subset of M defined as follows:

Mn(x) : =

{
v ∈M : |〈x, v〉| > 1

n

}
. (0.27)

Let r be any given real number. If r > 0, then we can find a natural
number n such that nr > 1, by Theorem 1.20 (a) in the book Principles of
Mathematical Analysis by Walter Rudin, 3rd edition. Therefore r > 1/n.
Conversely, if there exists a natural number n such that r > 1/n, then as
n > 0, so 1/n > 0 also and therefore r > 0.

Thus we have shown that, for any real number r, we have r > 0 if and
only if there exists a natural number n such that r > 1/n. Using this result,
we can now conclude that

M(x) =
⋃
n∈N

Mn(x). (0.28)

Refer to (0.26) and (0.27) above.
If each of the sets of the collection

{ Mn(x) : n ∈ N }

is at most countable, then so is their union M(x). [Refer to Theorem 7.5 in
the book Topology by James R. Munkres, 2nd edition, or Theorem 2.12 in
the book Principles of Mathematical Analysis by Walter Rudin, 3rd edition.]

So we assume that there exists a natural number m such that the set
Mm(x) is uncountable. We show that this assumption leads to a contradic-
tion.

We construct a sequence (ek)k∈N of distinct points in set Mm(x) as follows:
As Mm(x) is uncountable by our assumption, so this set is non-empty;

thus we can choose an element from this set and call that element e1.
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Now suppose that k ∈ N, and suppose that we have chosen some distinct
elements e1, . . . , ek from set Mm(x).

As set Mm(x) is uncountable, so it is infinite, and therefore the set

Mm(x)− {e1, . . . , ek}

is non-empty; so we can choose an element from this set and call that element
ek+1. Then

ek+1 6∈ {e1, . . . , ek} ,

which implies that ek+1 6= ej for any natural number j ∈ { 1, . . . , k }.
By “induction”, we have chosen a sequence (ek)k∈N of points of set Mm(x)

such that, if j and k are any two natural numbers such that j < k, then we
have ej 6= ek.

Thus we have a sequence (ek)k∈N of distinct points from set Mm(x). And,
as Mm(x) ⊂M and as M is orthonormal by our hypothesis, so is Mm(x).

Thus (ek)k∈N is an orthonormal sequence in X. So (by Theorem 3.4-6 in

Kreyszig), the series
∑
|〈x, ek〉|2 converges in R and we have the inequality

∞∑
k=1

|〈x, ek〉|2 ≤ ‖x‖2. (0.29)

By the definition of the set Mm(x), we note that

|〈x, v〉| > 1

m
,

for each v ∈ Mm(x). Refer to (0.27) above. And, for each k ∈ N, as
ek ∈Mm(x), so we must also have

|〈x, ek〉| >
1

m
. (0.30)

As the set N of natural numbers is uncounded from above, so we can
choose a natural number greater than any given real number. Let us choose
a natural number N such that

N >
(
m2 + 1

)
‖x‖2. (0.31)
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Then using (0.30), we conclude that

∞∑
k=1

|〈x, ek〉|2

= lim
n→∞

n∑
k=1

|〈x, ek〉|2

≥
N∑
k=1

|〈x, ek〉|2

[ note that the sequence of the partial sums of
∑
|〈x, ek〉|2 is a

monotonically increasing sequence; so

limn→∞
∑n

k=1 |〈x, ek〉|
2 = sup

{ ∑n
k=1 |〈x, ek〉|

2 : n ∈ N
}

]

>
N∑
k=1

1

m2
[ using (0.30) above ]

=
N

m2

>
(m2 + 1) ‖x‖2

m2
[ using (0.31) above ]

≥ ‖x‖2,

which contradicts (0.29).
Thus our assumption that some set Mm(x) in (0.27) is uncountable has

led to a contradiction.
Hence all the sets in (0.27) are at most countable, and so by (0.28) we

can conclude that set M(x) is also at most countable.
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