Section 3.1

Prob. 2

If x 1 y in an inner product space X, show that
lz + yll* = ll=l* + [lyl*.

Extend the formula to m mutually orthogonal vectors.

Solution

If z Ly, then (z,y) =0, and so

lz+yll? = (z +y,2+y)
= (z,z) + (z,y) + (y,7) + (¥, 9)
= ||95H2 + (x, >+W+ ly|”

as required.
From the above calculation we also have

lz = ylI* = [l + (=»)II"
= [l2]* + |-y
= [lzl* + I(=1)y]*
= [lzl* + -1yl
= [llI* + llyl*
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Thus we have shown that, for any elements x,y € X, if x L y, then
lz £ ylI* = [l=]1* + flyl*.
Now suppose that, for some m € N, we have
o1 £ - £zl = [l |® + -+ [Jzm],

where z1, ..., 2, € X such that, for all4,j € {1,...,m}, we have (z;,z,;) =0
if i # 7.
Then using this equality and the above result for two vectors, we obtain
[ = S ixm+1||2 = [(z1 & £ 2) ixm—i—lHQ
= llev £ F x|+ T
2 2 2
= (el + - + lzwll”) + lzmel
2 2 2
= llzall”+ - + llzmll” + [zmal”
where z1,..., 2,11 € X such that, for all i,5 € {1,...,m + 1}, we have
For m = 1, the result is trivial.
Therefore by induction we can conclude that, for any natural number m,

if x1,..., 2, € X such that, for all 4,5 € {1,...,m}, (z;,z;) = 0if i # j,
then we must have

s £ £l = o)’ + -+ lenl”

Prob. 3

If X in Prob. 2 is real, show that, conversely, the given relation implies that
x L y. Show that this may not hold if X is complex. Give examples.

Solution

First, suppose that X is a real inner product space, and, for some z,y € X,
we have
lz +ylI* = [l2]1* + [yl

Upon expanding the norm on the left-hand side of this equation in terms of
the inner product, this relation becomes

l]* + [[yll* + 2¢2, y) = ll2]1* + ly]I*.
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which implies that
2(z,y) =0,

and hence
(z,y) =0,

showing that x L y.
However, if X is a compler inner product space, then we see that the
relation
Iz + ylI* = ll=l1* + llyll*,

after expansion of the norm on the left-hand side in terms of the inner product
and cancellation of the terms on the two sides of the resulting equation, only
yields

R(z,y) =0,

which only implies that (x,y) is a pure imaginary complex number.

As an example, let X = C, the set of complex numbers, with the inner
product defined as (z,w) = 2w for all z,w € C, and let z = 1 and y = ¢.
Then

lz+yll* = 1+ = 1+ =2,
and
1+ yll* = 1L+ el® = (17 + [ =1+ 1 =2,
showing that
Iz + ylI* = [l2]” + llyl*
But
(r,y) =2y = (=) = =t #0,

showing that = £ y.

Prob. 4

If an inner product space X is real, show that the condition ||z| = |z
implies (z + y,z —y) = 0. What does this mean geometrically if X = R??
What does the condition imply if X is complex?
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Solution

First, suppose that X is a real inner product space, and x and y are some
elements of X for which ||z|| = ||y||. Then we see that

(z+y,z—y) = (z,2) = (x,y) + (¥, ) — (v, y)
= |l=]1> = (z, y) + (z, ) — [lyl]?
= [J]|* = [ly|I”
=0.

Goemetrically, this means that, if we have a parallelogram in the plane
whose two adjacent sides x and y are equal in length (i.e. ||z|| = ||y|| ), then
the diagonals x + y and = — y of this parallelogram are perpendicular (i.e.

(x+y,x—y)=0).
Now suppose that X is a complex inner product space, and z,y € X such
that ||z|| = ||y||. Then we see that

(+y,x—y)=(z,2) — (z,9) + (¥, ) — (y,y)
= ll* = (=, y) + (z, y) — llylI”
= [zl = lyll* — 2:3(z, )
= —215(z, y).

Thus, if X is a complex inner product space, then, for any elements z,y € X,
if ||| = [lyll, then (z +y, z — y) = =2:3(z, ).

Prob. 5

Verify by direct calculation that for any elements in an inner product space,

2

1 1
2 = 2l + ll2 =yl = Slle = yl> +2 |2 = 5(z +)

Show that this identity can also be obtained from the parallelogram equality.
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Solution

Let X be an inner product space, and let z,y, z € X. Then
Iz = ]|* + ||z — yII*

1 2
2
— |2 = 2

1
Z—§($+y)

:<z—.€£,z—$>+<z—y73_y>
— %(x_y,x_y>+2<z—%(m+y),z—%($+y)>]

= [l2l? = 200z, 2) + [l + [|2]1* = 2R(z, y) + [ly[I*
) 1 i

=2 =" = 2R (2 5 +y) ) +| 5@ +y)

= 22|” — 2R(z, z) + ||l2” — 2R(z, y) + [ly]|*

1
el - 2R + )
1 2 2
= L (e — 2R ) + 1)
1 1
~2 ([l - 2% (fese +00) + 1 o+ o)
= 20l - 2R{z.2) + |l — 2R(z.0) + o)

1
— 5 (" = 2R¢z, y) + [ly1°)
1
—2[2” + 2%z, +y) - 5 e+ yll’
= 2||2))* — 2R(z, 2) + ||=]|* — 2R(z, y) + [ly|I*
1
=5 (ll* = 2%¢z, y) + [ly1°)
1
—2[21” + 2R ((2,2) + (z,9) — 5 o + yl’
= —2R(z,2) + ||z]|* — 2R(z, y) + [ly]I®
1
— 5 (ll* = 2%(z, y) + [lyll*) + 20(z, z)

1
+2R(z,9) — 5 (Il + 2%¢, y) + y[1*)
= —2R(z,2) + ||z]|* — 2R(z, y) + [ly]I”
1
— 5 Cllzl® = 2%z, y) +52%(z, ) + 2[lyII")

+2R(z, x) + 2R(z,y)
= lll” + yll* = ll=[* — [y
= 0.
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Therefore,

2

z—l(:rer)

1
2 2 2
— — = Z|lx — 2

Y

as required.
Now we know that if u,v € X, then the parallelogram identity gives

2[Jull* +2[v]|* = [lu+ of* + lu — o]
In this equality, put u: = 2z —x and v: = 2z — y and obtain

2z —z* + 2z =yl = Iz — 2) + = I* + I(z = 2) = (z = )II*

=2z = (@ +y)I* + |-z +y|*
2

1
=4z —=(z+y)|| +z—y|>

2

and upon dividing both sides by 2, we get our desired equality.

Prob. 15

If X is a finite dimensional vector space and (e;) is a basis for X, show that
an inner product on X is completely determined by its values v, = (e;, ex).
Can we choose such scalars 7, in a completely arbitrary fashion?

Solution

Let X be a finite-dimensional vector space over the field R of real numbers
or the field C of complex numbers. Let K denote the field of scalars for X.
Then K is either R or C.

Let n: = dim X, and let {ey,...,e,} be a basis for X. Then each element
u € X can be uniquely represented as a linear combination of ey, ..., e,; that
is, there exists a unique ordered n-tuple (aq, ..., a,) of scalars such that

U= 11 + -+ apey,.

Let z,y € X. Then there exist unique ordered n-tuples (p1, ..., i) and
(v1,...,uy,) of scalars such that

$:u1€1+"'+ﬂn6n and y:V161+"'+Vnen-

6
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So if (-, -) is an inner product on X, then

(x,y) = (per + -+ + fnen , vier + -+ vpey)
=y {e1, vier + -+ vpen) + o+ iy (€n, vi€1 + -+ Uney)
= g1 (V1 (er, e1) + -+ U (€1, )
+ ot (77 (en, €1) + -+ T (e €n))

=Y > i e ex)

=1 k=1

= Z Z iV Yk

=1 k=1

Thus, for any elements x,y € X, the inner product (z,y) is conpletely
determined once we know the values

Yir: = (€5, ex)

for j, ke {l,...,n}.
By IP3, we can conclude that, for any j, k € {1,...,n}, we have

(ek, €5) if X is real,
<€ja 6k> = . .
(ex, €5) if X is complex.

That is, for any j, k € {1,...,n},

(0.1)

IR if X is real,
e Vij if X is complex.

If X is not the trivial vector space consisting only of the zero vector, then
dim X > 0, and the basis vectors ey, ..., e, are all non-zero; therefore by 1P4
we have

<€k; €k> >0

for all k € {1,...,n}; that is, for all k € {1,...,n}, we have
Yk > 0 (0.2)

Thus (0.1) and (0.2) are the conditions that the v, must satisfy.
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Section 3.2

Prob. 1

What is Schwarz inequality in R? or R3? Give another proof of it in these
cases.

Solution

The Shwarz inequality is as follows: For any elements z and y in an inner

product space X,
](x,y>| < v <Z‘,$> Y% <y,y>,

that is,
(@, )| < ll=([llyll,

and the equality holds if and only if the set {z,y} is linearly dependent,
that is, if and only if y = ax for some scalar o. This is Lemma 3.2-1 (a) in
Kreyszig.

In the case of the Euclidean plane or space, we can argue as follows: Let
Z and ¥ be any two vectors, and let § € [0,7] be the angle between these
vectors. Then we know that

T -y = |Z||y] cos b,
and since —1 < cosf < 1, therefore 0 < |cosf| < 1, and so
|7+ 4| = |Z]|g]]cos 0] < |Z[|7],

and the equality holds if and only if cos# = £1, and this holds if and only if
6 =0 or §# = 7. Thus equality holds if and only if ¥ = aZ for some scalar «.

Prob. 2

Give examples of subspaces of £2.

Solution

Recall that ¢2, by definition, is the inner product space consisting of all the
sequences (ay,), oy Of (real or) complex numbers for which the series | |, |
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converges in R, with the inner product defined by

() = {ZZI fnn_n %f X %s real,
Yo T if X is complex

for any elements z: = (&),cy and y: = (9,),cy 0 €%, that is, for any
sequences z: = (&§,),cy and y: = (1,),,cy Of (real or) complex numbers for
which the series 3 |€,]* and 3 [1,|* converge.

The (absolute) convergence of the series ) &,7, or > &,n, then follows
from the Cauchy-Schwarz inequality (i.e. (11) Subsec. 1.2-3 in Kreyszig).

So the norm on #? is given by

]l
for any element z: = (&,), oy in 2, and the metric on ¢ is defined by
de2(x,y):
for any elements x: = (&,),ey and y: = (n),cy in €. And, with respect

to this metric, the space £? is a complete metric space (i.e. a Hilbert space).
[Refer to Subsec. 1.5-4 in Kreyszig,.|
Let N be a given natural number, and let

Yn: :{(fn)neN €, €CVneN, fn:0‘v’n€Nsuchthatn>N}.

Check that this Yy is a (vector) subspace of (2.
Let

Vao: ={ 2 =(&)pen : & €C, 3N, € Nsuch that & =0Vn > N, }.

That is, let Y, be the set of all those sequences of complex numbers which
have at most finitely many non-zero terms. We check that Y, is a (vector)
subspace of £*°.

First, note that if 2: = (&,),cn € Yoo, then there exists a natural number
N, (where the subscript # means that this natural numbers depends on the
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particular = in Y., and may be different for different x) such that &, = 0 for
all natural numbers n > N,. In this case

o) Ny
Z |§n|2 = Z |€n|2 < +o00,
n=1 n=1
showing that the series 3 [€,|° converges in R. Thus z € £% and so Y., C ¢2.

If z: =(0,0,0,...), then x € Y, because &, = 0 for all natural numbers
n > 1, for example.

Now let x: = (&,),ey and y: = (9),cn be elements of Y, and let «
and 3 be some scalars (i.e. complex numbers).

Then x and y are sequences of complex numbers for which there are
natural numbers IV, and NN, such that &, = 0 for all n > N, and n,, = 0 for all
n > N,. Therefore, §, = 0 = n, for all natural numbers n > max {N,, N,},
and so a&,, + fn, = 0 for all natural numbers n > max {N,, N,}, and as N,
and N, are natural numbers, so is max {N,, N, }. Now

ar + By = (Oégn + 577n)neN

is a sequence of complex numbers. And, as «&, + 1, = 0 for all natural
numbers n > max {N,, N, }, so we can conclude that az+ fy € Y whenever
x,y € Y, and o and 8 are any scalars. Hence Y, is a (vector) subspace of

0.
Similarly, show that
Vodd: ={ E)nen €+ &n-1=0VneN }
and
Yeveni = { (én)nGN € 62 : 5277, =0VneN }

are also subspaces of 2.

Prob. 3

Let X be the inner product space consisting of the zero polynomial and all
real polynomials in ¢, of degree not exceeding 2, considered for real ¢t € [a, b],
with inner product defined by

b
(x,y): :/ z(t)y(t)dt Yo,y € X.

Show that X is complete. Let Y consist of all x € X such that xz(a) = 0. Is
Y a subspace of X7 Do all z € X of degree 2 form a subspace of X7

10
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Solution

If € X, then x is a real-valued function with domain [a,b] defined by a
formula of the form

z(t) = a+ Bt +4t* Vt € [a, b],

for some real numbers «, 5, and 7.
Now let eg, e, and ey be the real-valued functions defined on the closed
interval [a, b] by the formulas

for all t € [a, b].
These eg, €1, and ey are all in X, and any x € X can be written as a
linear combination of these as follows:

x = aey + [ey + ves.

Therefore,
X = Span {607 €1, 62} :

That is, X is a finite-dimensional inner product space and hence a finite-
dimensional normed space. Therefore, by Theorem 2.4-2 in Kreyszig, X is
complete.

The zero polynomial is in Y, and if 4,92 € Y and A\, Ay € R, then we
note that

(M1 + Aay2) (@) = Miyi(a) + Agya(a)
= )\1 x 0+ )\2 x 0
= O’
showing that A1y; + Aay2 € Y also, and hence Y is a (vector) subspace of X.
The polynomials z(t) = t* + 1 and y(t) = —t*> + 1 are both of degree 2,

but their sum x + y = 2 is of degree 0. So the set of all the polynomials of
degree 2 is not a subspace of X.

Prob. 4
Show that y L x, and x,, — x together imply = L y.

11
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Solution

Let X be an inner product space; let z,y € X; and let (x,),.y be a sequence
in X such that (y,z,) =0 for alln € N and z, — = in X as n — co. We
need to show that (x,y) = 0.

Now let’s take a real number ¢ > 0. As (), converges to x, so we can
find a natural number N such that

Jon — ol < 7
Tp — X
L+ lyll
for every natural number n > N.
So,
(2, y)]
= [z, y) = (zn+1,9)] [ as (y, xn) = 0 for all n, so (zy,y) = 0 also |
= |[(* — 2n11,9)]
<z = zna] |yl [ by Schwarz inequality ]
€
< — vl
1+ lyll
<eE.

Thus we have shown that
[(z,y)| <e
for every real number € > 0. Therefore

[{z,y)| =0,

which implies that
<.CE, y> =0,

as required.

Prob. 5

Show that for a sequence (x,) in an inner product space the conditions
lzn]l = ||lz|| and (x,,x) — (x,x) imply convergence z,, — x.

12
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Solution

Let X be an inner product space, let x € X, and let (x,),.y be a sequence
in X such that the sequence (||z,]|), oy of norms converges in R to the real
number ||z|| and the sequence ((n,)), oy of inner products converges in K
to the inner product (z,z), where K denotes the field of scalars for X, and
K is either R or C both with their usual norms; that is,

lim ||z,] = ||z|, and lim (z,,x) = (z,x). (0.3)
n—oo n—o0

We need to show from this that the sequence (z,), oy converges in X to
the point z; this convergence is with respect to the metric induced by the
inner product on X.

We know that if a sequence (as,),, oy of complex numbers converges to a
complex number «, then the sequence (R, ), o of the real parts of the terms
of (o), ey converges to the real part Ra of a; that is,

lim Ra,, = R lim . (0.4)

n—oo n—00

We will use this fact shortly.
We note that, for each n € N,

|z, — xH2 (xp —x, Ty —T)
= (Tp, Tn) — (T, x) — (T, 2,,) + (T, T)

= [|zall* — 2R (20, 2) + |l2]*

So,
: 2 2 2
i i — ol = lim (e = 2R (2. ) + )

= lim ||z, |]> = lim 2R (z,, z) + lim ||z

[ the limit of a sum is the sum of the limits |

Jg ol 2R (Ji (1) + J
[ using (0.4) above |
= ||lz|* — 2R(z, ) + ||=|? [ using (0.3) above |
— el — 2Rl + 1]
= llzl* = 2l|=[* + [|=[*
[ note ||x[|? = (x, z) is real by IP4, so R||z||* = ||z||* ]
= 0.

13
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Thus,
lim ||z, — z||> = 0.
n—oo

This limit has been calculated in C.
Let us take a real number € > 0. Then we can find a natural number N
such that
|z —z)|* = 0] = [[lzn — 2|*| = llzn — 2|* < &

for any natural number n > N, which implies that
|z —z|| < e (0.5)

for any natural number n > N.

Thus we have shown that, for every real number ¢ > 0, we can find
a natural number N such that (0.5) holds. Hence the sequence (z,)
converges in X to the point z.

neN

Prob. 7

Show that in an inner product space, x L y if and only if we have ||z 4+ ay|| =
||z — ayl|| for all scalars .

Solution

Let X be an inner product space, and let z,y € X.
Suppose that L y. Then (z,y) = 0. So for every scalar «, we have

|z + ay|]? = (z + ay,z + ay)

(
= (z,7) + a(z,y) + ofz,y) + oa(y, y)
=(z,z)+a-0+a- -0+ aaly,y)

= [lz]1* + |a*[y*.

And,

(
= (z,7) — a(z,y) — afz,y) + aa(y,y)
= (v,z) —a-0—a-0+aaly,y)

= [lz]|* + |a*[ly]|*

14
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Therefore
Iz + ayl? = lz)* + [Pyl = llz — ay|?

for every scalar a. Hence
2+ ayll = llz — ayll

for every scalar a.
Conversely, suppose that

[l + ayll = llz — ayll
for every scalar a. Then
lz + ayl* = [lo — ayl®

for every scalar . Upon expanding the two sides of the last equation we
obtain

(z,2) +a(z,y) + afz,y) + aaly,y) = (v,2) —alz,y) — afz,y) + aaly,y)

for every scalar a. The last relation upon cancellation of the common terms
on both sides yields

a(r,y) + afz,y) = —a(zr,y) — alz,y)

for every scalar o, which implies that

20(z,y) +2a(r,y) =0

for every scalar ov. Therefore

a(z,y) +alzr,y) =0 (0.6)

for every scalar a.
Now if X is a real inner product space, then (0.6) takes the fomr

20(w,y) =0
for every scalar o, which upon putting a: = % gives
(z,y) =0,

15
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which is the same as x | y.
So suppose that X is a complex inner product space. By putting a: =
in (0.6) we obtain

1
2

Rir,y) = 3 ((0)+ o) =0 07)
and by putting a: = —% in (0.6) we obtain
S(r.y) = 5 ((0.9) ~ T09)) =0 08)

From (0.7) and (0.8) we obtain (z,y) = 0, which means the same as
1 y.

Prob. 8

Show that in an inner product space, L y if and only if ||z 4+ ay|| > ||z||
for all scalars a.

Solution

Let X be an inner product space, and let z,y € X.
Suppose that = L y. This means that (z,y) = 0. So for every scalar «,
we have

|z + ay|]* = (z + ay, z + ay)

(
= (v, z) + alz,y) + afz,y) + aa(y,y)
=(z,z)+a-04+a -0+ aa(y,y)

|| + e |ly|?

And,

16
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Thus we have shown that
o £ ayl® > ||z

for every scalar o, and both the norms involved are non-negative; so we can

conclude that
|z £ ayl| > ||| (0.9)

for every scalar a.
Conversely, suppose that (0.9) holds. Upon squaring both sides, we obtain

lz %= ayl® > |||

for every scalar «, and upon expanding the left-hand side of the last inequality
we obtain

loll® + (@(e v} + ale, g}) + laPlly)? = Jlo]?

for every scalar «, which implies that
+ (@) + ale,y)) + laPyl* = 0 (0.10)

for every scalar a.
If y = Oy, the zero vector in X, then we note that

(z,y) = (z,0x) = (z,0z) :6<x,x> =0- HxHZ =0,

which is the same as x L y.
So let’s assume that y is not the zero vector in X. Then, by IP4,

ly[|> = (y,y) > 0.

By putting a: = ?ﬁ/ﬁ’g in (0.10), we obtain

@), (2, y) o~
i(ww<”**mw<”0+

(z,y)|”
=1 lyll* >0,

Iyl

which simplifies to

(2, y)|” N [z, y)|”

+2
Iyl 1yl

> 0,

17
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and as ||y]|> > 0, so we obtain
+2|(z, y)|* + [{z, 9)[* > 0;

that is,
3|(z,y)]* >0 and —|(z,y)|* >0,

which implies that
[, ) * <0 < [z y) [

SO

[, y)|" =0,
which implies that

[(z,y)| =0,
and therefore

(z,y) =0,

which is the same as x L .

Prob. 9

www.RanaMaths.com

Let V' be the vector space of all continuous complex-valued functions on
J = [a,b]. Let X = (V,|]||oc), Where ||z|o = maxics|z(t)], and let Xy =

(V,]]]|2), where

b
]2 = {x, 2)"/?, (x,y) = / x(t)y(t)dt.

Show that the identity mapping = — z of X onto Xj is continuous. (It is

not a homeomorphism. X, is not complete. )
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Solution

Let d denote the metric induced by the inner product on Xs. Then for any
x,y € Xy, we see that

[d(z,y))* = (z -y, 2 —y)

:/ (x(t) — y(t)) (x(t) — y())dt

/yx () dt

< max |z(s) — y(s)[> dt

— Ja s€lab]

= max |z(s) — y(s)|? / dt

sE[ab

= Jlz = yl% (- a)
So

d(z,y) < [lz —yllVb—a
for all z,y € Xs.
Let’s choose a real number € > 0, and let 6 be any real number such that
€

Vb—a

Then for any elements z,y € X; for which

0<od<

|z =yl <6,
we have

d(z,y) < [z = ylloVb—a <ovVb—a <

° b €
—a=c¢.
vb—a
showing that the identity mapping  — x of X; onto X, is uniformly con-
tinuous and hence continuous.

Prob. 10

Let X be a complex inner product space, and let T: X — X be a linear
operator. If (T(x), x) = 0 for all x € X, then show that T is the zero
operator.

19
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Show that this result does not hold in a real inner product space. Hint.
Consider a rotation of the Euclidean plane.
What if we take the same rotation of the complex plane?

Solution

Here X is a complex inner product space. This means that the field of scalars
for X is the set C of complex numbers.

Let u,v € X. Then, as ( T(xz) , ) = 0 for all x € X, so for any scalar
(i.e. complex number) «, we have

0=(T(u+ av), u+ av)
[ using the property of T" with z: = u + av |
(T(u)+aT(v), u+ av) [ using the linearity of T" |
= (T'(u),u) +a(T(u),v) + (T (v),u) + aa (T'(v),v)

Thus we have shown that
a(T(u),v) +a(T(v),u) = (0.11)

for every complex number a.
Now putting a: = 1in (0.11), we obtain

(T'(u),v) + (T'(v),u) =0, (0.12)
and by putting a: = —¢ in (0.11), we obtain
—(T(u),v) — (T (v),u) =0,

which simplifies to
L <T(U), U> -t <T(U)7 u> = Oa

which upon division by ¢ of both sides yields
(T(u),v) — (T(v),u) = 0. (0.13)

Now adding (0.12) and (0.13) and then dividing the resulting equation
by 2, we obtain
(T(u), v)=0
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for any elements u,v € X.
In the last equation, we put v: = T'(u) and obtain

which by IP4 implies that
T(U) = OX

for all u € X, where Ox denotes the zero vector in X.

Now the domain of T is X, and T'(u) = Ox for all u € X. So T is the
zero operator.

Now we turn to the real inner product space R?, which is the Euclidean
plane with the dot product of vectors as the inner product.

Note that if P is the point in the plane given by

P: =(&mn) = (rcosf,rsinf),

then by rotating the segment OP counter-clockwise about the origin O, we
obtain the point

Q= (rcos (0—1—%) , Tsin (9+g> > = ( —rsinf , rcosf )= (—n,§).
So let’s define a mapping 7: R? — R? by

T(z): = (=&;,&)

for any point z: = (£;,&) in R
Then we note that

(T(x),z) = ((=&,&) , (£1,&) )
= —&6 + 6
=0

for any point z: = (&,&) in R2.
But if we put e;: = (1,0) and e5: = (0, 1), then e, e5 € R?, but

T (e1) =(0,1) =e2 # (0,0), and T (e2) = (—1,0) = —ey # (0,0).

Thus T is not the zero operator on R2.
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We finally show that 7" is linear. The domain of T is the vector space R2.
Let u: = (u1, u2) and v: = (v, 1) be some points of R?, and let o and 3
be some real numbers. Then

au+ v =a(p, p) + B (1, 1) = (o + P, aps+ Prs ),

and so

T(au+ pv) =T ( (o + Brr, aps + Pra))
= (—(ap2+ Bra) , api + Pr1)
=(—aus — Pry, apy + pr1 )
= o (—po, 1) + B (=1, 1)
= aT(u) + BT (v).

Thus T is linear.

As R? is a finite-dimensional normed space, so (by Theorem 2.7-8 in
Kreyszig) every linear operator with R? as its domain is bounded. Thus our
T is also a bounded linear operator.

We now directly show that 7" is bounded as follows: Let p: = (£,71) be
any point of R2. Then we note that

1Tl = 1T (& m) )l
= [[(=n, &)l

= V(=) +&

N AR

SN
[esull

Pl

and so
Tl

il
for all p € R? such that p # (0,0). Therefore, T is bounded and

T
1T = Sup{ ” H;]T')H . p € R? such that p # (0,0) } =sup{1}=1
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Next, we take X : = C, the set of complex numbers, regarded as a one-
dimensional vector space over the field C (i.e. over itself), with the inner
product defined by

(z,y): =y

for all z,y € X.
Note that if z = r (cos 6 + ¢sin @) is a non-zero complex number, then the
complex number w obtained by increasing the argument of z by 7/2 is given

by
: , T .
w =1 (cos(0 4+ m/2) 4+ ¢sin(f + 7/2)) = r (cos§ + ¢sin h) (COS 5. bsin 5) = zL.
So let’s define the mapping 7: C — C by
T(z): =z

for all z € C. Then we note that, for any z € C,

(T(2),2) = (12, 2)

= (12)z
= |2l
so that
(T(2),2) =0
if and only if
|2 =0,

which holds if and only if 2 = 0. So this 7" does not satisfy the condition
given in this problem.

We now show that this 7" is linear. The domain of T is the vector space
C. Suppose w,z € C, where C is regarded as a vector space, and suppose
that a, 8 € C, where we now regard C as the field of scalars for the vector
space C. ( Recall that every field is a vector space of dimension 1 over itself.

) Then

T(aw + Bz) = tlaw + Bz)
— a(w) + A(e2)
— aT(w) + BT(2),
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which shows that T is linear.

As the domain of T is the finite-dimensional normed space C, so (by
Theorem 2.7-8 in Kreyszig) T is also bounded. This fact we show directly as
follows:

For any complex number z # 0, we see that

[T _ el
2]l 2]
= % [ using the definition of the norm in C |
z
s
2]
=1. [ because [¢| = [0+ 1] = V02 +12=1]
Therefore, T" is bounded and
T
HTH:sup{ % : zE(Candz;éO}:sup{ 1}=1.
2

And, this T" is not the zero operator; for example, T'(1) = ¢ # 0.

Section 3.3

Prob. 1

Let H be a Hilbert space, M C H a convex subset, and (x,) a sequence in
M such that ||z,|| — d, where D = inf,cp/||z||. Show that (x,) converges in
H.

Solution

Here we have a Hilbert space H, a convex subset M of H, and a sequence
(#n),,en Of elements of M for which the sequence (||z,]]), ey of norms con-
verges in R to the real number D, where

D: =inf{ ||z| : z € M }.

Note that as the norm of every element is non-negative, so the set { ||z|| : = €
M } is bounded below, with the real number 0 being a lower bound of this
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set, which implies that D > 0 because D is the infimum or the greatest lower
bound of this set.
For eachn € N, as x,, € M and as D: = inf{ ||z|| : x € M }, so we must
have
lzall > D.

As M is convex, so for every elements x,y € M and for every scalar
a € [0,1], the linear convex combination (1 — a)xr + ay € M also. In
particular, for every elements x,y € M, the linear convex combination

1 1 1 1 1
= == —y=11-—= —ye M
2(x+y) 58T Y < 2)w+2y6
also.

And, as the norm of H is induced by the inner product on H, so this
norm satisfies the parallelogram identity. That is, for all x,y € H,

Iz +ylI* + llz — l* = 2]lzl” + 2[lyl>

Since M C H, therefore this identity holds for all z,y € M also.
As

lim ||z,| = D,
n—oo

SO
lim ||z,|* = D?,
n—o0

which implies that, for every real number € > 0, we can find a natural number

N such that

62

|Han2 - D2‘ < 4

for any natural number n > N.
Let d denote the metric induced by the inner product on H. Then, for
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any natural numbers m and n such that m > N and n > N, we have

d (fpmvxn)]Q = ||xm — InHZ

=2 |@wl* + 2 [|zall® = l2m + za]”
2

2 2 1
=2l + 21l - 2|5 G+ 20

1 2
2 2
=2l + 2l =4 o+ )

< 2@l + 2 [z, |* ~ 4D?
2 2
= 2(Jlamll’ = D?) + 2 (Jea - D?)

< 2|l|lzl® = D?| + 2|||za]* — D?|

g2 g2

<2— 42—
4Jr 4

= 52,
which implies that d (z,,, x,) < €.

Thus we have shown that, for every real number € > 0, we can find a
natural number N such that d (z,,,x,) < € for any natural numbers m and
n such that m > N and n > N. Therefore the sequence (z),, .y is a Cauchy
sequence in M C H and hence a Cauchy sequence in the Hilbert space H.

Now as (xy),cy is a Cauchy sequence in H with respect to the metric
induced by the inner product on H and as H is complete with respect to this
metric, so this sequence converges in H.

Prob. 2

Show that the subset M ={ y=(n;) : > n; =1} of complex space C" is
complete and convex. Find the vector of minimum norm in M.

Solution

Here C" is the inner product space of all the ordered n-tuples of complex
numbers, with the inner product defined by

(r,y): =) &7
j=1
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forall z: = (&,...,&) and y: = (n1,...,n,) in C™.
And, the set M is given by

M :{(nl,...,nn yeC™: Zm—l }

We first show that this set M is convex. For this, let z: = (&,...,¢&,) and

y: = (M1, ...,m,) be some elements of M, and let a be a (real) scalar such
that 0 < a < 1.
Then

D &G=1=>
j=1 j=1
andas 0 <a<1,s00<1-—a<1also. Now the element

I-a)ztay=(1-a)&+an, ... (1-a)+an),
and
Z (1—-a);+an]=(1—-a) Z@—i—@Zm— (l-—a) - 1+a-1=1,
j=1 Jj=1 J=1

which shows that (1 — a)z + ay € M for any elements z,y € M and for any
(real) scalar o € [0, 1]. Hence M is convex.
The norm induced by the inner product on C" is defined by

lzll: =V x) = [ D &8 =D I&
i=1 j=1

forallz: = (&,...,&,) in C", and the metric induced by this norm is defined
by

d(z,y): =z -yl =

> Ig =l
j=1
forall z: = (&,...,&,) and y: = (m,...,m,) in C". We now show that set

M is complete with respect to this metric.
For this, let (xy,),,.y be a Cauchy sequence in M, where

= (€m17 s 7€mn)
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for any natural number m.
For each m € N, as z,,, € M, so we must have

n

D bmj=1. (0.14)

j=1

Let us take a real number € > 0. Then there is a natural number N such
that
d (v, xm) <€

for any natural numbers k£ > N and m > N. That is,

n
Z |§k] - 6mj|2 <e
j=1

for any natural numbers £ > N and m > N.
So, for each © = 1,...,n, we have

1€t — Emil = A\ |€ps — Emil”

n
<D 16k — sl
j=1

=d (Tg, Tm)

<€

for any natural numbers £ > N and m > N, from which it follows that the
sequence (&mi),en 15 @ Cauchy sequence in the usual metric space C, and
since the usual mettic space C is complete, the sequence (&), cOnverges
in C; let us put

&: = lim &, (0.15)

m—00

foreach:=1,...,n.

And, let z: = (&,...,&,). Then x € C™.

We show that this x is in M and that our original Cauchy sequence
(Zm) ey converges in C" to this same .
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From (0.15) and (0.14), we obtain
Y &= lm &y [by(0.15)]
i=1 i=1

= lim ng
= lim 1 [ by (0.14) ]

m—ro0

=1,

which shows that = = (&,...,&,) € M.
Now from (0.15) we can conclude that, for each i = 1,...,n, we can find
a natural number N; such that

€
&mi — &| < %

for any natural number m > N;.
So for any natural number m > max {Ni,..., N, }, we see that

=1

Thus, for every real number £ > 0, we can find a natural number
No: =max{Ny,...,N,} such that

d(Tm,z) <e

for any natural number m > Ny. Hence (z,),,oy converges to z in C".
Thus we have shown that every Cauchy sequence in M converges to a
point which also lies in M. Hence M is complete.
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In order to find the vector of minimum norm in M, you have to minimize

fl@) = |lz|* = Z &1

subject to the constraint
n
>.6=1
j=1

where each ¢; is a complex variable, and so we can write it as §; = RE; 43¢,
for each 7 = 1,...,n. Our problems now take the following form.

Minimize
flz) = Z (RE;)* + Z
7j=1

subject to the constraints

ig%fj = 1, and i%fj =0.
j=1 &

Thus now becomes a minimization problem of 2n real variables. Do it your-
selves.

Prob. 3

(a) Show that the vector space X of all real-valued continuous functions on
[—1,1] is the direct sum of the set of all even continuous functions and the
set of all odd continuous functions on [—1, 1].

(b) Give examples of representations of R3 as a direct sum (i) of a subspace
and its orthogonal complement, (ii) of any complementary pair of subspaces.

Solution

(a) For each f € X, let g and h be the functions defined on [—1, 1] by

@) s = ) 1)

g(z): 5 5

for all = € [-1,1].
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Let the function i: [—1,1] — R be defined by
i(x): ==

for all z € [-1,1].
Then

g=3(f+fo(=i)) and h=2(f=fo(-i)). (010

As the constant (or scalar) multiple of a continuous function is continuous
and as ¢ is continuous, so is —i.

As the composite of two continuous functions is also continuous and as f
and —i are continuous, so is the composite function f o (—i).
Refer to ( 0.16 ) above.

Finally, as any linear combination of two continuous functions is contin-
uous and as f and f o (—i) are continuous, so are g and h. Thus g, h € X.

Now for any = € [—1, 1], we see that

g(~a) = 3 [ f(=a) + f(=(~o) ]
= 2 (=) + /@)
= g(x),

showing that ¢ is even, and,
h(=a) = 3 [ f(=2) ~ f(~(~2))]
1

= 5 (f(=2) ~ @)
= =3 (@) = (=)
= ~h(z),

showing that A is odd.
Moreover, for all x € [—1,1],

(F(2) + F(—2) + £ (F(@) = f(—a)) = (o),

g(z) + () = ;

N | —

and so f =g+ h.
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Now we show that this representation of f as a sum of an even (continu-
ous) function and an odd (continuous) function is unique. For this, suppose
that f = g1 + hy, where g; is an even (continuous) function defined on
[—1,1] and h; is an odd (continuous) function defined on [—1,1]. Then for
all z € [—1, 1], we have

g1(z) + hi(x),
and f(—z) = g1(—z) + hi(—x),
g1

(—
that is, f(—z) = g1(x) — hy(x), [ since g; is even and h; is odd |

and hence

f(@) + f(=z) = 2g1(x) and f(z) — f(=x) = 2 (2),
which imply

1

9i(x) = 2 (F(@) + F(—)) = gle) and hs(a) = L (F(a) + F(~)) = h(),

which imply that g; = g and h; = h, which is our desired uniqueness proof.
Let E denote the set of all the real-valued even continuous functions de-
fined on [—1, 1], and let O denote the set of all the real-valued odd continuous
functions defined on [—1,1].
Thus we have shown that for every f € X, there is a unique element
g € F and a unique element h € O such that

f=g+h

Hence
X=F®O,

as required.

Exactly the same proof will work for complex-vlued functions too.
(b) Let the subsets U and V of R? be defined as follows:

U: ={ (&,6.6) R &=01,

and
Vi = { (51762763) GRg : 51 :()252 }
Then both U and V are (vector) subspaces of R3.
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First, note that U NV = { (0,0,0) }.
Moreover, for each x: &1,&,83) € R3, there exist unique elements
= (£,£,0) € U and z: = (0,0,&3) € V such that © = y + z. Hence
R3 UaV.

Moreover, for all u: = (a, 4,0) € U and v: = (0,0,v) € V, we have
(u,v) =tU-T=a-0+3-04+0-v=0,

which shows that V c U+.
moreover, if z = (A, Ao, A3) € UL, then, for every y: = (&,&,0) € U,
we have (x,y) = 0, that is,

§1A1 + &AM =0 (0.17)

for all &,& € R.

By putting & = 1 and & = 0 in (0.17) we obtain A; = 0, and by putting
& = 0 and & = 1 we obtain Ay = 0. Therefore z = (0,0,3) € V. So
Uutcv.

Therefore V = U+, and so

R°=UeV=UsU"
Now let W be the subset of R? given by
W: = { (51762)53) e R3: E1=6=6& }

Then again UNW = { (0,0,0) }.

Moreover, for each element x: = (£1,&,&3) € R3, there are unique ele-
ments u: = (§ —&3,6 —&3,0) € U and w: = (&3,&3,&3) € W such that
T =u-+w. SOR3 U W.

However, we note that (1,1,0) € U and (1,1,1) € W, but

((1,1,0),(1,1,1)) =1-141-140-1 =2,

showing that neither of U and W is orthogonal to the other.
Geometrically, U is our well-known zy-plane, V' is the z-axis, and W is
the straight line through the origin and the point (1,1, 1).

Prob. 5

Let X = R% Find Mt if M is (a) { z }, where z = (&, 2i3) # 0, (b) a
linearly independent set { z1, 29 } C X.
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Solution
(a) By definition,

M-={yeR*: (yv)=0 forallve M }
:{yE]RQ: <y,x):0}
={ (m,m) eR*: ((m.m),(&.&)) =0}
:{ (m,m2) € R* : 7]151‘1‘?7252:0}7

which is a straight line through the origin in the so-called xy-plane since
= (£,&) # (0,0). If & # 0, then this line has slope equal to =L, and

&)
if & = 0, then this is the vertical line through the origin (i.e. the so-called
y-axis).
(b) Let us put z1: = (aq1,a12), and zo: = (ag1, ag). Then as the set

M = { 21,75 } is a linearly independent subset of R?, so neither of x; and
x9 is a scalar multiple of the other (and hence neither is the zero vector in

R?).
So,
{yERQ' y,v) =0 forallvEM}

:{yeRQ- y,$1>—0:<y>3’2>}

= { ) D ((mm2) s (a1, az)) = 0= (1, m2) , (21, a2)) }
= { M5 72) Doaar + neang = 0 = gy + a2 }
={ (n1,m2) D anm 4 ane = 0= g + g }

Thus, writing all the elements of R? as column vectors, we can conclude that

2
the following homogenous system of simultaneous linear equations:

M+ is the set of all the vectors {771} in the plane that are the solutions to

o + ageng =0,
Q11 + pame = 0;

m

] in the plane
2

and, passing to matrices, M~ is the set of all the vectors {

i + awnz| _ (0
91”11 + QoMo 0’
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that is,
Qur Qa2 |Th| _ 0
Qg1 Q2| (M2 0]
As z1 and x5 are linearly independent, so the rows of the matrix
11 Q12
Qa1 (23
are linearly independent (and so neither is a scalar multiple of the other),

which implies that this matrix is invertible, and multiplying both sides of the
last matrix equation on the left by this inverse matrix yields the solution

Hence M+ = { (0,0) }.

Prob. 6

Show that Y ={ z | 2 = (§;) € £?, &, =0, n € N } is a closed subspace of
(% and find Y*. What is Y+ if Y = span{ey,...,e,} C (% where e; = (§;3)7

Solution

Recall that ¢2, by definition, is the inner product space consisting of all the
sequences (ay,), oy Of (real or) complex numbers for which the series | |, |
converges in R, with the inner product defined by

() Yoo €nn if X is real,
T,y): = n=lSnin e
{ Y1 nlin if X is complex

for any elements x: = (&),cy and y: = (9,),cy 0 €%, that is, for any
sequences z: = (&,),cy and y: = (1,),,cy Of (real or) complex numbers for
which the series 3 |£,]* and 3 [1,|* converge.

The (absolute) convergence of the series Y &,7, or > &,n, then follows
from the Cauchy-Schwarz inequality (i.e. (11) Subec. 1.2-3 in Kreyszig).

So the norm on #? is given by

o]l =
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for any element z: = (&,), oy in 2, and the metric on ¢? is defined by
dp(2,y): = Z|£n_77n|2
n=1
for any elements x: = (&,),ey and y: = (n),cy 0 €%, And, with respect

to this metric, the space £? is a complete metric space (i.e. a Hilbert space).
[Refer to Subsec. 1.5-4 in Kreyszig.]
Here

V={()pn € : &u=0VneN}.
First, note that the zero sequence
02: =(0,0,0,...)

is in Y. Suppose that x: = (&), and y: = (15),,cy are some elements of
Y and a and [ are some scalars (i.e. some real or complex numbers). Then
x,y € (%, and

Son = N2n =0

for all n € N.
Then the sequence ax + By also belongs to £* [Refer to Subsecs. 1.2-3
and 2.2-3 in Kreyszig.|,

ar + By = (Ozﬁn + 577n)neN )
and, for all n € N, we have
abop + Bnoy =a-0+5-0=0,

which shows that ax + Sy € Y also. Thus Y is a (vector) subspace of (2.
In order to show that Y is closed in ¢, let (x,,),,. be a sequence in YV’
and suppose that this sequence converges in 2 to a point z. Let’s put

Tt = (Emn)pey for all m € N,

and

T = (€n>neN‘
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Suppose a real number € > 0 is given. Then there exists a natural number
N such that

d(Tm, ) = Z |&mn — §n|2 = nh_{goz |Em.j — €j|2 <e€
n=1 J=1

for any natural number m > N.
Let k be an arbitrary natural number. Then we see that

|€m,k - £k|

=/ |&mk — &l

n
< Z |Em.; — §j|2 for any natural number n > k
j=1

n
. 2
< | Jim D 1émi — &l
j=1

[ because the sequence of partial sums is monotonically increasing |

= \ Z ’fm,n - §n|2
n=1
d(zm,, )

<é€

for any natural number m > N, and thus it follows that the sequence
(Emok) ey Of (real or complex) numbers converges to & in the usual met-
ric space R or C.

Thus for all £ € N, we have

m—ro0
But, for each m € N, as 2, = ({mn) ey € Y, 80

Emon =0 forall neN,

and therefore
Eon = lim &0, =0 forall neN,
m—o0
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which shows that z = (&,),cn €Y.

Thus we have shown that the limit of every convergent sequence of points
of Y also belongs to Y. Hence ( by Theorem 1.4-6(a) in Kreyszig) Y is closed
in /2.

Thus we have shown that Y is a (vector) subspace of ¢? and that Y is
also closed in /2.

Now, by definition,

YJ_

e

x : (x,y)zOVyEY}
<€n)n€N €. <(5n)neN ) (nn)neN> =0V (nn)neN ey }

(gn)neN cr? . ann_n =0 v(nn)neN cY }

Il
A

n=1

n=1

(én)pen € 2 ann_n =0V (1n)pen € ¢* such that 7, =0Vn €N }

{ (§n)pen € 2 Zggn_mgn_l =0V (Mn),en € ¢* such that 7y, =0VYneN } )

n=1
Thus Y+ is given by

Y+ =

n=1

{ (§n)pen € 2 ifgn_lm =0V (Nn)pen € ¢* such that 75, =0V neN } )
(0.18)
Let S be the subset of 2 given by
St ={(6)pen €€ ¢ &1 =0VneEN }. (0.19)

We first show that S C Y. Let : = (&,),,cy be any point of S. Then
x € 0% and &y, = 0 for all n € N.

Let y: = (1,),cn be any element of Y. Then y € 2 and 1, = 0 for all
n € N.
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Then, by the definition of £, we have
<937 y) = <(€")n€N ) (nn)neN>

= Z énm
n=1

= lm > &7
j=1
= h_{nlo‘ﬁl+52‘0+0'773+§4'0+0'775+§6'0+"‘l
n terms
=0

Thus, we have shown that (z,y) = 0 for all y € Y, which implies that z € Y
and hence S C Y.

We now show that Y+ C S also. For this we show that S¢ C (YL)C.
Let z: = ((n),ey be any element of £% such that z ¢ S. Then there exists
a natural number n such that (5, 1 # 0. Refer to the definition of set S in
(0.19) above. Let N be the smallest natural number such that (on_1 # 0.
Let y: = (Nn),en, Where

)1 if n=2N —1,
T 0 otherwise.

This y belongs to Y, and moreover,
(z,y) = Gan-1 #0,.
which implies that z € Y. So z € (YL)C. Thus 5S¢ C (YL)C, which implies

that Y+ C S.
Hence

Y =8={(&),en€’: &u1=0VneN }.

Now let n be a given natural number, and let eq,...,e, be defined as
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follows:
er: =(1,0,0,...)
ey =(0,1,0,0,...)
es: =(0,0,1,0,0,...)
€n: = 0,...,0, 1,0,0,...
——
n — 1 terms
That is, for each j = 1,...,n, we define ¢;: = (0;1),y. Here the function

0: NxN—{0,1} is defined by

1 it j =k,
Ojk: = e
0 if j#k
for all (j,k) € N x N, and it is called the Kronecker’s delta function.

You can easily verify that all of the e; belong to ¢2.

Now let Y be ths span (i.e. the set of all the finite linear combinations)
of the set { ey,...,e, }. Then

Y ={mei+ -+ ey : N,...,N, are complex numbers }
:{(7717"‘777n70 O ) My, Ny are Complex numbers }
{ nkkeN: ~-77]n)€(cn,77k=0f0rk>n}

{ UkkeNef : nkzofork:>n}.

)keN el <(fk)keN ) (nk)k:eN> =0V (nk)keN ey }
§k)pen € 2 <(fk)keN , (nk)k€N> =0V (M)en € (% such that n, =0 for all k > n }

k=1

{
{
{
= { (&k)pen € € - Zﬁkm =0V ()ey € €7 such that n, =0 for all k > n }

(&k)pey € 0 ngm =0V (M)pey € 07 such that m, = 0 for all k > n } .

k=1
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Let S be the subset of £ given by
St ={ (&)pen € &=0fork=1,...,n}.

We show that Y+ = S.

Let 2: = (&),ey be any element of S. Then (&), € ¢ such that
& =0foreach k=1,... n.

And, let y: = (M)pey € Y. Then (i), € €% such that n, =0 k > n.
So we have

(z,y)

<<€k)keN ) (nk)k:EN>

R
k=

k
= lim Z;é“jm
]:

:lem [0'771+'-~+0'77n+5n+1'0+§n+2-0+---l

k terms

= 0.

Thus we have shown that (z,y) = 0 for all y € Y. So x € Y. Therefore
Scyt

Now we show that Y+ C S. For this we show that S¢ C (Y*+)".

Let x: = (&)yen be any element of £2 such that & ¢ S. Then, there exists
a natural number k£ € {1,...,n } such that & # 0; let K be the smallest

such natural number. Let y: = (n),cy be a sequence of complex numbers
such that
)1 it k=K,
T = 0 otherwise.

This y € Y because 1, = 0 for all k¥ € N such that £ > n. And, we note
that

<xvy> = £K 7é 07

which shows that x € Y+ and so = € (Yl)c, showing that S¢ C (YL)C.
Therefor Y+ C S.
Hence

YL:S:{(S;C)%NGEQ: fk,zoforkzl,...,n}.
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Section 3.4

Prob. 8

Show that an element x of an inner product space X cannot have “too
many” Fourier coefficients (z,ex) which are “big”; here, (ex) is a given or-
thonormal sequence; more precisely, show that the number n,, of (z, e;) such
that |(z,ex)| > 1/m must satisfy n,, < m?||z|*

Solution

As (er) ey s an orthonormal sequence in the inner product space X, so by
Theorem 3.4-6 (Bessel Inequality) in Kreyszig, for any x € X, the series
S [z, e)|? converges in R, and

> Hzen < el

00
k=1

Let x € X, let m be a given natural number, and let A,,(z) be ths subset
of N given by

A(z): = { EeN: |z el >% }

Let n,, denote the cardinality of the set A,,(x) (which is the same as the
number of elements in the set A,,(z) if A,,(x) is finite ), where

nm €{0FUNU{ Ny },

where Y, (pronounced “aleph null”) denotes the cardinality of the set N of
natural numbers, because the set A,,(z) can be empty, non-empty but finite,
or countably infinite. Furthermore, as A,,(z) C N and as N is countable, so
A, (x) cannot be uncountable.

If x = Oy, the zero vector in X, then

(x,ex) =0
for all £ € N, and so the set A,,(z) is empty, and therefore

Ny =0 =m?-0=m?|z|*
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So let’s suppose that z is not the zero vector in X, and suppose also that
nm > m?||z||>. Then as
(@, en)|* >0
for all £ € N and as

1

2
|(x, ex)| >W

for all k € A,,,(x), so we note that

Sl e = 3 (e, )

1 keN

= Y et Y e

k€Am(x) keEN—A,, (x)

Y el

k€Am ()

- Ttm

[e’e)
k=

v

[
which contradicts the Bessel’s inequality. Hence we must have
Ny < m?||2]|?,

as required.
In the above calculation, we have used the equality

Do lwed =) el

o
k=1 keN

This is because of Theorem 3.55 in the book Principles of Mathematical
Analysis by Walter Rudin, 3rd edition, which says that if a series of complex
numbers converges absolutely, then, by altering the order of the terms of
that series in any way whatsoever, we obtain a series that also converges
absolutely and has the same sum as the sum of the original series.
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Section 3.5

Prob. 1

Let (en),cy be an orthonormal sequence in an inner product space X, let
(an),en be a sequence of scalars, and let x € X. If the series ) aye, con-

verges in X and has sum z, show that then the series > |a,|” converges in
R and has sum ||z?.

Solution

Suppose the series Y ay,e, converges in X and

%)
E apey = T.
n=1

Let (s,),cy be the sequence of the partial sums of the series ) aye,; that is,

let
n
Sp. = E ;€
J=1

for all n € N. Then by our supposition the sequence (s,,),, .y converges in X
to the point x.
Thus, for every real number € > 0, we can find a natural number N such
that
[sn —all <e

for every natural number n > N.
But we know that
ull = ol < [lu— vl

for all u,v € X.
So, we can conclude that

[l[snll = llzll] <&

for every natural number n > N.
Thus it follows that the sequence (|[s,]|),cy converges in R to the real

number ||z||; so the sequence (||sn||2) of squares of the norms converges

neN
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to the real number ||z||*. But, for each n € N,

l[5n]1> = (S0, Sn)
= (a1e1 + -+ apen, arer + - + aney)
= ag (er,e1) + - + a0, (€, €n)

= loaf* + -+ fon ]

Thus we can conclude that the sequence (||3n||2)n is in fact the sequence

eN
<Z?:1 |ozj|2> of the partial sums of the series 3 |o,|?, and as the former
neN

sequence converges in R to the real number ||z]|?, we can conclude that so
does the latter sequence, which implies that the series 3 |a,|” of non-negative
real numbers converges in R and has the sum ||z|%.

Thus we have shown that, if the series ) ay,e, converges in X, and if

9]
E apCy = I,
n=1

then the series  |a,|” converges in R and

o)

2
> ol =z,

n=1

as required.

Prob. 3

[lustrate with an example that a convergent series ) (x, ex) e, need not have
the sum .
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y 10 % be defined as follows:

er: =(0,1,0,0,0,0,...),
es: =1(0,0,0,1,0,0,...),
es: =(0,0,0,0,0,1,0,0,...),
e;: =(0,...,0, 1 ,0,0,...),
2j-th term
Let x: = (&) e, Where
o1
& = o
for all £k € N. The sum
> 1P &1 1/4 1
2
— _— — _— = :—<
D lal =2 || =2 m=1-1a-5 <t
k=1 k=1 k=1
% 11 1 1
== = — — ...) er’
(2’22’23’24’ )
Then
1
<$,61>:§,
1
<$,€2>—§,
1
<$,€3>—%,
1
<x7ej>_ﬁ7
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For all k,r € N, we note that

1 ifk=r,
<€k7€7"> = .
0 if k£ r;

that is, the sequence (eg),y is an orthonormal sequence in ¢?. By Theorem
3.4-6 (Bessel’s inequality) in Kreyszig, the series 3 |(z, e;)|* converges in R
with the sum

2
Z |<J}, 6k>| < ||ZL‘||2,

k=1
and since ¢* is a Hilbert space, therefore by Theorem 3.5-2(a) in Kreyszig,
we can conclude that the series Y (z,e.) e, also converges in /2, and we find

the sum of this series as follows:

00 k
> (we) e = Jim 3 (r.e))e;
k=1 j=1
U
:klgilo ﬁ(o,...,o, 1 ,0,0,...)
i=1 2j-th term
=1 4 0 0 ! 0,0
_kggo yeeey U, %) ,U,0, ...
Jj=1 ~~
27-th term
i 1 1
:kl—{{olo 07_2707?7 y Yy ﬁ s
=~
2k-th term

1 1 1 1
= 07?707?707¥70a§707'“

1 1 1 1
%(57?7?7?7"')

x.
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Let us now show that

. 1 1 1
]}LI{.IO 0,2—2,0,§,...,0, ﬁ ,0,...
=~
2k-th term

1 1 1 1
= Ovﬁvoa?aovﬁa()?%)O)"' .

Let us take a real number € > 0. Let’s put

2k-th term
for all £ € N, and let

_ 1111
Yy = Oaﬁaovﬁvoa%voaﬁaowﬂ .
Then, for each k € N, we have
1 1

y—yp = 0,...,0 " 92427 92kta
2k + 1 terms

0,... |,

and so

1 1

2

||y_yk|| :24k+42ﬁ
=0

1 1
:WZT@'
=0
1 1
Tek+11 1
165411 — L
11
16% 15’

which implies
1

Iy = el = 55

ot
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As the set N of natural numbers is not bounded from above in R, so
we can find a natural number K such that K > 1/e. And, for any natural
number k, we can prove by induction that 4* > k.

So, for any natural number k > K, we have

AR5 > 45 > k> K > 1/,
which implies that

1
— Yl =—=<c¢
ly = ville: = 7 T
for any natural number k£ > K.
Since £ was an arbitrary positive real number, we can conclude that

. 1 1 1
]}LIEO 0,2—2,0,?,...,07 ﬁ ,0,..‘
=~
2k-th term
1 1 1 1

= Oaﬁvoa?aoaﬁa(L%)Ow” .
Prob. 4
If (z;) is a sequence in an inner product space X such that the series ||| +
||x2|| + -+ converges, show that (s,) is a Cauchy sequence, where s, =
T+t T
Solution

This result holds in any normed space X. Let (0,,), oy be the sequence of the
partial sums of the convergent series

o]l + [zl +- -

Then
On = ||z1]| + [Jz2f] + - + ||lnll

for all n € N.
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First of all, we note that, for any natural numbers m and n such that
m < n, we have

m n
om = onl = D Ml = Nl
i=1 j=1
n
== > lzll

j=m+1

n

=1 > layl

j=m+1

n

= > llll.

j=m+1

As (0n),,cn 18 a convergent sequence, so it is also Cauchy. Therefore, for
every real number ¢ > 0, we can find a natural number N such that

lom — o] < e

for any natural numbers m and n > N.
So, for any natural numbers m and n such that n > m > N, we have

n

> llzll <,

j=m+1

which implies that

[8m = snll = [lsn — smll

n m
= E 93]'—5 Lj
j=1 j=1
n

13 4

j=m+1

n

> llll

j=m+1
<eE.

IN
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And, for any natural numbers m and n such that m > n > N, we interchange
the roles of m and n in the last calculation and obtain again

|Sm — sul| < e.
And, for m = n, we see that
|Sm — snll =0 < e.

Thus we have shown that, for every real number £ > 0, there exists a natural
number N such that
[$m — sall <€

for any natural numbers m and n such that m > N and n > N. Hence
(8n)pen is a Cauchy sequence in X.

Note that in the above proof, we have used only the properties of X as a
normed space.

Prob. 5

Show that in a Hilbert space H, convergence of ) ||z;|| implies convergence
Solution

This result holds in any Banach space. Suppose the series > ||z;|| converges
(in R). Then, as in the preceding problem (i.e. Prob. 4, Sec. 3.5, in
Kreyszig), the sequence (s, ),y of the partial sums of the series ) z; is a
Cauchy sequence, and since X is complete (with respect to the metric induced
by the norm on X'), the sequence (s,),, oy is convergent, and this implies that
the series ) x; converges in X.

Prob. 6

Let (e;) be an orthonormal sequence in a Hilbert space H. Show that if

x = Zajej and y = Zﬁjej, then (z,y) = Za]ﬂ_j,
j=1 j=1 j=1
the series being absolutely convergent.
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Solution

For each n € N, let

n n
Tp: = E ajej, and y,: = E Bje;.
Jj=1 Jj=1

Thus, (zn),cy and (Yn),ey are the sequences of the partial sums of the se-
ries Y aje; and Y fBje;, respectively, and therefore, by our hypothesis, the
sequences (Zn,),cy and (yn), oy converge in H to the points = and y, respec-
tively.

Therefore, (by Lemma 3.2-2 in Kreyszig) the sequence ((Zn,¥n)),cn Of
the inner products converges (in R or C) to the (real or complex) number
(z,y).

But, as the sequence (¢;)
n € N, we have

jeN is an orthonormal sequence in H, so, for each

(T, Yn) = (Q1€1 + -+ anep, Brer + -+ Bpen) = 1By + - -+ + ap .

So
lim (OCIE‘f' s an@) = lim <Im yn> = (m,y>;
n—o00 n—00

that is, the series » Ozjﬁ_j converges, and
>
Z%‘ﬁj = (2,y).
j=1

By the Cauchy-Schwarz inequality (i.e. (11), Subsec. 1.2-3, in Kreyszig), we
see that

> JesBs| < \ Sl Y15
j=1 j=1 j=1

- . 12 & 12
—\;|O‘J| \;Wﬂ

= [|z||||z]]- [ Refer to Prob. 1, Sec. 3.5, in Kreyszig |
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Thus the series » ozjﬁ_j converges absolutely, and the sum

Z ajﬁ_j = <£L’, y)
j=1

Note that, in the above proof, we have not used the completeness of the
Hilbert space H. Thus the above result holds in any inner product space.

Prob. 7

Let (ex) be an orthonormal sequence in a Hilbert space H. Show that for

every x € H, the vector
oo

y = Z (x,ex) e

k=1
exists in H and x — y is orthogonal to every ey.

Solution

As (ex),ey is an orthonormal sequence in the inner product space H, so (by
Theorem 3.4-6 in Kreyszig) the series 3 |(z, e;)|* converges (in R); therefore
(by Theorem 3.5-2 (a) or (c) in Kreyszig) the series > (z, ex) ex converges in
H. Let

N (x,er) eg.
k=1
Then y € H.

Now, for each n € N, let

n

Yp: = Z (x,e;)e;.

J=1

Thus (yn),ey is the sequence of the partial sums of the series ) (, ex) e
and therefore this sequence converges to the point y in H.
Now let k be an arbitrary but fixed natural number, and let us take a
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natural number n > k. Then

(T = Yn,ex) = (T, ex) — (Yn, 1)

n
(x,ex) g (T, e;)e;, e

Jj=1

3

= <$vek> - <x7€j> <ejv ek’)

= (z,ex) — (x,ex) - 1
=0,
and so
lim (z — yn,ex) = 0. (0.20)
n—oo

But as y,, = y in H as n — 00, so the sequence (z — y,),,oy converges to
r —y, and so the sequence ((z — ¥y, €x)), ey Of inner products converges (in
R or C) to the inner product (x — y, ex). That is,

lim (x — yn,ex) = (x —y, ex) . (0.21)

n—oo

But, in any metric space, the limit of a convergent sequence is unique. So
from (0.20) and (0.21) we can conclude that

<ZE - y76k> = 0.

But as k£ € N was arbitrary, so we can conclude that x — y is orthogonal
to every ey.

Prob. 8

Let (er) be an orthonormal sequence in a Hilbert space H, and let M =
span (eg). Show that for any x € H we have x € M if and only if = can be

represented by
o
r = Z QALCL
k=1
with coefficients ay, = (z, ey).
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Solution

If

(x,er) ek,
1

o0
Tr =
k=
then z is the limit (in H) of the sequence (x),,.y, where

n

Tyt = Z (x,er) e

k=1

for all n € N, and (z,),.y s a sequence in M: = span (e;), which (by
Theorem 1.4-6 (a) in Kreyszig) implies that = € M = span (ey).

Conversely, suppose that € M. Then, for every real number € > 0, we
can find a point v € M such that

|z — v < e. (0.22)

As v € M = span (eg), so v can be written as a (finite) linear combination
of the terms of the orthonormal sequence (ex),y; that is, there is a natural
number N and an N-tuple (fi,..., Sy) of scalars such that

v=pe; + -+ Bnen.

Now this v belongs to the span of (eq,...,ey), so (by Prob. 6, Sec. 3.4,
in Kreyszig) we can conclude that

N
=Y (v.e)e
j=1

which together with (0.22) implies that

< ||,I’—U||7

N
T — Z (x,e;)e;ll <e. (0.23)
j=1
Let
N
yv: =) (w.e))e;
j=1

Then yy € span (e, ..., exN).
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And, for any natural number n > N, we note that

{e1,...,en} C{er,...,ent},
and so
span (eq,...,ey) C span(eg,...,e,),

which implies that yy € span (ey,...,e,), and therefore (again by Prob. 6,
Sec. 3.4, in Kreyszig) we can conclude that

n

x— Z(w, e;)e;

Jj=1

< |lz = ywll.

Then (0.23) yields

n

r= > @)

Jj=1

< E.

Thus, for every real number € > 0, we can find a natural number N such
that

n

=3 @)

J=1

<e€

for any natural number n > N. Therefore the sequence (Z?zl (x,ej) ej)
neN

of the partial sums of the series Y (x, ex) e, converges to the point =, which
means that the series Y (z, ex) e converges and has sum z.

That is,
n
lim E (x,e5) e =,
n—oo
Jj=1
and so we can write
o
T = § <.§L’, €k> €k,
k=1

as required.

Note that for the above proof, we have not needed the completeness of
H. So this result holds even if H is any inner product space that is not
necessarily a Hilbert space.

56


http://www.ranamath.com
http://www.RanaMaths.com
http://www.RanaMaths.com

www., RanaMat hs. con

www.RanaMaths.com

Prob. 9

Let (e,) and (é,) be orthonormal sequences in a Hilbert space H, and let
M; = span(e,) and My = span(é,). Using Prob. 8, show that M; = M, if
and only if

% %
(a) €n = Z anméma (b) én = Z XmnCm, Apm = <6n7 ém> .
m=1 m=1

Solution

Let us define
A = (€n, €m) (0.24)
for all (n,m) € N x N.
If M, = M,, then M; C M, and M, C M;.
For each n € N, as e,, € span (em)meN = M, and as M, C M; C M,, so
en € My = span (€,),,cn, and therefore ( by Prob. 8, Sec. 3.5, in Kreyszig)
we have

oo oo
€n = E <€n) €m> Em = E OpmCm,
m=1 m=1

using (0.24) above.

Similarly, for each n € N as €,, € span (ém)mEN = M, and as My C M, C
M, so &, € M, = span (em)men»> and therefore ( again by Prob. 8, Sec. 3.5,
in Kreyszig) we have

= Z Qrrn€m)s [ using (0.24) |

as required.
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Prob. 10

Let X be an inner product space, let M be a non-empty orthonormal subset
of X, and let x € X. Let M(z) be the subset of M defined as follows:

M(z): ={veM: (z,v)#0 }. (0.25)

Then set M (z) is at most countable (i.e. either finite or countable).

Solution

Recall that a set S is said to be finite if either S is empty or, for some natural
number N, there exists a bijective function f: { 1,..., N } — S; otherwise
S is said to be infinite. And, recall also that the set S is said to be countable
if there exists a bijective function f: N — S. If the set S is neither finite
nor countable, then S is said to be uncountable. [ Refer to Sections 6 and
7 in the book Topology by James R. Munkres, 2nd edition. Or, refer to
Definitions 2.3 and 2.4 in the book Principles of Mathematical Analysis by
Walter Rudin, 3rd edition. ]

If x = Oy, the zero vector in X, then we note that, for any element y € X,

(z,y) = (0x,y) = (0y,y) = 0(y,y) = 0.

So (x,v) = 0 for all v € M also, and in this case the set M (z) in (0.25) is
empty.

So let’s suppose that x # 0.

If the vector space X is finite-dimensional, then (by definition) every
linearly independent subset of X has at most finitely many elements ( the
number of elements in any linearly independent subset of X not exceeding
the dimension of X'), and as M is orthonormal, so M is linearly independent
and thus finite, which implies that the subset M (z) of M is also finite.

So let’s assume that X is infinite-dimensional. If M is countable, then
every subset of M is either finite or countable (by Corollary 7.3 in the book
Topology by James R. Munkres, 2nd edition, or Theorem 2.8 in the book
Principles of Mathematical Analysis by Walter Rudin, 3rd edition), and
therefore M (x) is also either finite or countable (i. e. at most countable).

So we assume that X is infinite-dimensional and also that set M is un-
countable.

We know that, for any real or complex number «, the following holds:
a = 0 if and only if |a] = 0; therefore we can conclude that o # 0 if and
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only if |a] # 0. But |a| £ 0. So we can also conclude that o # 0 if and only
if |a| > 0.

For any elements u and v in X, as the inner product (u,v) of u and v is
a real or complex number, so we can rewrite the set M (x) as follows:

M(z)={veM: |[(z,0)|>0}. (0.26)

Refer to (0.25) above.
For each n € N, let M,,(x) be the subset of M defined as follows:

M, (z): = { veM: | >% } (0.27)

Let r be any given real number. If » > 0, then we can find a natural
number n such that nr > 1, by Theorem 1.20 (a) in the book Principles of
Mathematical Analysis by Walter Rudin, 3rd edition. Therefore r > 1/n.
Conversely, if there exists a natural number n such that » > 1/n, then as
n >0, so 1/n > 0 also and therefore r > 0.

Thus we have shown that, for any real number r, we have » > 0 if and
only if there exists a natural number n such that » > 1/n. Using this result,
we can now conclude that

M(z) = | ) Ma(2). (0.28)

neN

Refer to (0.26) and (0.27) above.
If each of the sets of the collection

{ M,(x) : neN}

is at most countable, then so is their union M(z). [Refer to Theorem 7.5 in
the book Topology by James R. Munkres, 2nd edition, or Theorem 2.12 in
the book Principles of Mathematical Analysis by Walter Rudin, 3rd edition. |

So we assume that there exists a natural number m such that the set
M, (z) is uncountable. We show that this assumption leads to a contradic-
tion.

We construct a sequence (e ), oy of distinct points in set My, () as follows:

As M,,(z) is uncountable by our assumption, so this set is non-empty;
thus we can choose an element from this set and call that element e;.
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Now suppose that k € N, and suppose that we have chosen some distinct
elements ey, ..., e from set M,,(x).
As set M,,(x) is uncountable, so it is infinite, and therefore the set

M, (x) —{e1,...,ex}

is non-empty; so we can choose an element from this set and call that element
ex+1. Then

err1 € {e1,- -, ex},
which implies that ey, # e; for any natural number j € { 1,...,k }.

By “induction”, we have chosen a sequence (ey), oy of points of set M,,(x)
such that, if j and k are any two natural numbers such that j < k, then we
have e; # ey.

Thus we have a sequence (ey),oy of distinct points from set M,,(x). And,
as M,,(z) C M and as M is orthonormal by our hypothesis, so is M,,(x).

Thus (ex),ey is an orthonormal sequence in X. So (by Theorem 3.4-6 in

Kreyszig), the series 3 |(z, ex)|* converges in R and we have the inequality

> Hz,en)l” <zl (0.29)

00
k=1

By the definition of the set M,,(x), we note that

1
>_
(2,0 > =,

for each v € M,,(z). Refer to (0.27) above. And, for each k& € N, as
ex € M,,(x), so we must also have

1
> —. 0.30
[, ex)] > (0.30)
As the set N of natural numbers is uncounded from above, so we can

choose a natural number greater than any given real number. Let us choose
a natural number N such that

N > (m* +1) ||lz|*. (0.31)
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Then using (0.30), we conclude that

> el

1

[e’e)
k=

note that the sequence of the partial sums of 3 [(z, e;)|” is a

monotonically increasing sequence; so

limy, oo Sopy (@, e)* =sup { Xp_, Ko e : neN}|

1

> Z po—c’ [ using (0.30) above |

k=1

N
T om?

2 1 2

> % [ using (0.31) above ]
> |||l

which contradicts (0.29).

Thus our assumption that some set M,,(x) in (0.27) is uncountable has
led to a contradiction.

Hence all the sets in (0.27) are at most countable, and so by (0.28) we
can conclude that set M (x) is also at most countable.
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P207, 4. Show that for any bounded linear operator 7" on H, the operators
1 * 1 *
TI—E(T+T) and TQ—E(T—‘T)

are self-adjoint. Show that

T=T +iTs, T =Ty — iTs.
Show uniqueness, that is T + i1 = S1 + 1.S2 implies S; = T} and So = Tb; here S; and Sy are self-adjoint by
assumption.
Proof. Let T be a bounded linear operator on H. Set Ty = $(T + T*) and Ty = 5-(T — T*). Then,
1 1 1
=4I =g HT Y =5l 5 =1
il 1 1
P = [—(TLT = =™ =~ = ST T =T
P = (T +T) =~ (T = (T)") = oo (-T* +T) =T
So, T7 and T are self-adjoint. Moreover, it is easy to check that
T=T +1iT3, T =T, — iTs.

Assume T3 + iTh» = S + 152 with Sy, Sy are self-adjoint. Then,
(T] +iT2)* = (S] + iSz)* STy —iTy =81 —1Ss.
Therefore, 77 = S; and T = Ss.
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P207, 11.(Unitary equivalence) Let S and T be linear operators on a Hilbert space H. The operator S is
said to be unitarily equivalent to T if there is a unitary operator U on H such that

S=UTU ' =UTU*.

If T is self-adjoint, show that S is self-adjoint.
Proof. Suppose T is self-adjoint and S is unitarily equivalent to T. Then, it follows from the properties of
Hilbert-adjoint operators that

S§* = (UTU*)* = (U)*(UT)* = UT*U* = UTU* = S.
Therefore, S is also self-adjoint. O

P208, 13. If T, : H — H(n = 1,2,---) are normal linear operators and T,, — T, show that T is a normal
linear operator.

Proof. Tt is clear that T is a bounded linear operator. It follows from the properties of Hilbert-adjoint
operators that

1T T, = T°T|| < | T T, — TT|| + |1 TT =TT |
S NTRlTn = TN + 1T =TT
= I TallTo = Tl + 1T = TIIT] =0, as n—+oo,

since T}, — T'. Then, since T}, is normal, i.e. T,,T; = T,;T},, it holds that

|TT* =TT < |TT" - T, T, || + | T T — T°T|
= (1T = TRT0)" || + 1T T — TT|
=2|ThT, —T"T|| = 0, as n — +oo.

Therefore, TT* = T*T, i.e. T is normal. O

P208, 14. If S and T" are normal linear operators satisfying S7* = T*S and T'S* = §*T', show that their sum
S + T and product ST are normal.
Proof.

(SHTHS+T) =(S+ TS +1T%)
=88+ ST*+TS*+T1TT*
=SS+ TS+ S T+T1T°T
= (8" +T)S+T)
=(S+T)(S+1T),
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and
(ST)(ST)* = STT*S* = ST*TS* =T*SS*T =T*S*ST = (ST)*ST.
Therefore, S + T, ST are normal. O

P208, 15.Show that a bounded linear operator T': H — H on a complex Hilbert space H is normal if and
only if ||[T*z|| = |Tz|| for all z € H. Using this, show that for a normal linear operator,

72| = 11771
Proof. By the definition of adjoint operator,
|Tz|* = (Tx, Tz) = {x, T*Tx)

and

|T*z|? = (T*z, T*z) = (z, TT*z).

Then T is normal, i.e. TT* = T*T if and ouly if | Tz|| = ||[T*z|.
Since, for any x € H,
T2z < | TIIT) < ([T,

it yields that
172 < |72

On the other hand, for any = € H, it holds that
T22)? = (122, T%z) = (Tz, T*T?z)
= Tz, TT*Tz) = (T"Ta, T"Tx)
= || 7Tz
Then,
|Tz(]* = (Tx, Tz) = (T*Ta, ) < |T*Tz|||z]| < T[] < (T?|ll|z]*,

that is,
[T < |72

Hence, | T2 = T2 O
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