\Rightarrow Introduction: -spectral Approximation: The Fourier system, Orthogonal polynomials in $(-1,1)$, Lengender polynomial, Chebyshev polynomials, Jacob, polynomials, Fundamentals of spectral methods for PDE's: spectral projection of Burger's Equation, Convolution sum, Bonny conditions, Coordinate singularities, Temporal Discretizati on The Eigen nablus of basic spectral Operators, Some standard schemes, Conservation forms, Global Approximation Results: Fourier Appoint Sturm-Liounille Expansions, Discrete Legendre Approximations, Che by sheve Approximations, Jacobi Approximations. Theory of stability and Convergence for spectral Methods: Fourier Galerken method for wave equation

Chebysheve Collocation method for heat equation, Legendre Tau methool for the Poisson equation, General Formulation of spectral Approximations to Linear study problems, Galertein, Collocation and Taw methods, Condition for stability and convergence: The parabolic case, Condition for stability and convergence: The Hyperbolic Case.
\Rightarrow Books:-
1:- Claudion Canuto, M.Y. Hussaini, Affio Quarteron and T.A, Rang, spectral Methods in Fluid Dynamics, Springer-Verlog, 1988.
2:- D. Gotllieb and S.A. Orszag, Numerical Analysis of spectral methods: Theory and Applications, SIAM-CBMS, Philadelphia, 1977.
3:- Lloyd No Trefethen, spectral Methods in MATLAB, SIAM-Philadelphia, 2000.
4. Spectral Methods for Time -dependent. Problems, by David Gotklieb, Jan S. Hesthaven, and sigal Gottlieb,2007.
5. Spectral Methods, Fundimentals in single Domains by Canute, C. Hussaini, MY. Quarteroni, A. Lang, Th. A. Springer-Verlog, 2006 .
\Rightarrow Introduction to Spectral Methods:suppose we have an equation for some vector function $u(x), x \in \Omega \subseteq \mathbb{R}^{\prime}$

$$
2 u=f \quad \longrightarrow(1)
$$

with boundry conditions

$$
B u=0 \quad \longrightarrow \quad x \in \partial \Omega
$$

whore \mathcal{L} and B are some linear operator. How can we find the best approximation for the untenown function u.

One of the possible method is based on the wild class of discretization scheme known as method of weighted residuals (MWR). The idea of the meted is to approximate the unknown function $u(x)$ by a sum of so called trial or basis function $f_{n}(x)$

$$
\begin{equation*}
\tilde{u}(x)=\sum_{n=0}^{N} a_{n} \phi_{n}(x) \tag{3}
\end{equation*}
$$

Where a_{n} are unknown coefficients and $A_{n}(x)=e^{i f x}$ (Fourier spectral Method).
(Periodic Domain)
$\phi_{n}(x)=T_{k}(x)$ (Chebysher Spectral Method)
(Bounded Domain)
$\ln (x)=\operatorname{Ln}(x)$ (Legendre spectral Method) bounded Domain

Put equ (3) in (1) we get Putting ur= ix $4 \cdot R=\alpha i=-1$ Error $\leftrightarrow R=\mathcal{L u}-f$

Due to the fact that \tilde{u}
different from the exact solution " u " the residual R does not vanish for $k \in \Omega$. The next step is to find the unknown coefficient a_{n}, so that the choosen function approximate the exact solution in the best way. To this end, test or weighted functions.
$\psi_{n}(x)$ o $X_{n}(x) ; n=0,1,2, \ldots, N$ are selected. so that the residual over the domain of interest is set to zero, i.e.

$$
\left(X_{n}, R\right)=0 \quad \Rightarrow \int_{\Omega} X_{n}(x) R d x=0
$$

The choice of test function x_{n}. distinguishes between the three most commonly used spectral methods.
bris Trial function Bound y Conditions,

1:Geferkin Method:- The test function are same as trial function and each $\phi_{n}(x)$ satisfies the boundry conditions $B A_{n}=0$, i.e.

$$
\begin{aligned}
& \int_{\Omega} \phi_{n}(x)=x_{n}(x) \\
& \Rightarrow \int_{\Omega} \phi_{\Omega} \phi_{n}\left(\mathcal{L} \sum_{k=0}^{N} a_{k} \phi_{k}\right) d x=\int_{\Omega} \phi_{n} f d x=0 \\
& \Rightarrow \sum_{k=0}^{N} L_{n k} a_{k}=\int_{\Omega} \phi_{n} f \\
& \text { where } \mathscr{L}_{n k}=\int_{\Omega} \phi_{n} \mathscr{L} \phi_{k}
\end{aligned}
$$

2:- Tau Method=- The test function are same as trial functions, but ϕ_{n} do not need to satisfy the boundry conditions, i.e. $\quad B \Phi_{n} \neq 0$

3:- Collocation Method of Speudospectral Method: - The test function are represented by a delta function at special points x_{n}, called collocation points.

$$
\begin{aligned}
& \int_{\Omega} x_{n} R=0 \Rightarrow \int \delta\left(x-x_{n}\right) R=0 \\
& \Rightarrow R\left(x_{n}\right)=0 \\
& \Rightarrow \mathcal{L} \tilde{u}\left(x_{n}\right)=f\left(x_{n}\right) \quad \because \int \delta\left(x-x_{n}\right) R d x=R\left(x_{n}\right) \\
& \Rightarrow \sum_{k=0}^{N} a_{k} \mathcal{L} \phi_{k}\left(x_{n}\right)=f\left(x_{n}\right)=R \tilde{u}\left(x_{n}\right)-f\left(x_{n}\right)
\end{aligned}
$$

Fourier Series t A Fouries series is an expression of a periodic function in term of an infinite sum of sine and cosine.

Consider a periodic function (Integrable) $f(x)$, The Fourier series of $f(x)$ is given by

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]
$$

where

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t ; \quad n \geqslant 0
$$

and

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t ; \quad n \geqslant 1
$$

If $f(x)$ is periodic on some interval $[-L, L]$, a simple change of, variables $x^{\prime}=\frac{X L}{\pi} \Rightarrow x=\frac{\pi N}{L}$ can be used to transform the interval of integration. In this case the fourier series is given by

$$
\begin{aligned}
& f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x^{\prime}}{L}\right)+b_{n} \sin \left(\frac{n \pi x^{\prime}}{L}\right)\right] \\
&
\end{aligned}
$$

where
and

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f\left(x^{\prime}\right) \sin \left(\frac{n \pi x^{\prime}}{L}\right) d x^{\prime} ; n \geqslant 1
$$

- Exponential Fourier Series the notion of Fourier series can also be extended to complex coefficients.

Consider a real valued function $f(y)$, Then using Euler formula $\left(e^{i \theta}=\cos \theta+i \sin \theta\right)$ we can write,

$$
f(x)=\sum_{n=-\infty}^{\infty} C_{n} e^{i n x} \text {, where }
$$

Fourier coefficients are given by

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x}
$$

For a function which is periodic in $\left[-\frac{L}{2}, \frac{L}{2}\right]$

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i n x \pi x}{L}}
$$

with

$$
C_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{\frac{-i n 2 \pi x}{L}} d x
$$

\Rightarrow Discrete Finite Fourier Transforms Assume that we have a set of uniformly spaced grid points in 1-D.

$$
x_{j}=j \Delta x \quad ; \quad j=1,2,3, \cdots, N
$$

where $M \Delta x=1$
We assume that the function we deal with are periodic with period. which implies that $x=0$ and $x=L=N A X$

To write the fourier series fo a function whose values are given on l on N grid points. For genera. $f(x)$ is allowed to be complex, The series is

$$
f\left(x_{j}\right)=f_{j}=\sum_{n=1}^{N} F_{n} e^{i k_{n} x_{j}},
$$

where F_{n} are the coefficients of Fourier components or spectral coefficients,

$$
\text { we choose } \begin{align*}
k_{n} & =\frac{2 \pi n}{\Delta x} ; n=1,2, \ldots, N \\
\Rightarrow f\left(x_{j}\right)=f_{j} & =\sum_{n=1}^{N} F_{n} e^{\frac{i 2 n \pi}{n \Delta x} j \Delta x} \\
& =\sum_{n=1}^{N} F_{n} e^{\frac{i 2 \pi n j}{n}} \longrightarrow \quad
\end{align*}
$$

*-

Examples solve 1-1 advection equation using Fourier spectral Method.

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

Solution

$$
\tilde{u}(x, t)=\sum_{n=1}^{N} U_{n}(t) e^{i n k x}
$$

Now doing term by term differentiation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\sum_{n=1}^{N} \frac{d U_{n}}{d t} e^{i n k x} \text { and } \\
& \frac{\partial u}{\partial x}=\sum_{n=1}^{N} U_{n}(t)(2 n k) e^{i n k x}
\end{aligned}
$$

So equ (I) be cons

$$
\sum_{n=1}^{N}\left[\frac{d U_{n}}{d t} e^{i n k x}+\operatorname{cink} U_{n} e^{i n k x}\right]=0
$$

As we know that the error be orthogonal to each basis function, we have

$$
\begin{align*}
& \frac{d U_{n}}{d t} e^{i n k x}+\operatorname{cink} U_{n} e^{i n k x}=0 \\
& \Rightarrow \frac{d U_{n}}{d t}+\operatorname{cink} U_{n}=0
\end{align*}
$$

Characteristic equation is

$$
\begin{aligned}
& D+i c n k=0 \Rightarrow D=-i c n k \\
& \Rightarrow U_{n}(t)=A_{n} e^{-i c n k t} \\
& \Rightarrow \tilde{U}(x, t)=\sum_{n=1}^{N} A_{n} e^{-i(n k t} e^{i n k x} \\
& \Rightarrow \tilde{U}(x, t)=\sum_{n=1}^{N} A_{n} e^{-i n k(c t-x)} \\
&=\sum_{n=1}^{N} A_{n} e^{i n k(x-c t)}
\end{aligned}
$$

Where An are coefficients and we find it if we have one initial condition: \Rightarrow Orthogonal Projection:- Let us consider an interval $\Omega=\left[x_{\text {min }}, x_{\text {max }}\right]$. In order to talk about basis, me need to define a scaler product on Ω. If ω is a positive function on Ω, one can define a scaler product of two functions f and g w.r.t weight function ω M

$$
(f, g)_{\omega}=\int_{\Omega} f(x) g(x) \omega(x) d x
$$

Using this scaler product, one can find a set of orthogonal polynomial P_{n}, each of degree n. In fact the spectral representation of any function U is Scanned by CamScanner
its orthogonal projection on the space of polynomials of degree $\leqslant N$.
one can hope to represent any function U on Ω by its projection on the polynomials P_{n}. Doing so, we define the orthogonal projection U simplify by

$$
P_{N} U=\sum_{n=0}^{\infty} \hat{U}_{n} P_{n}(x)
$$

Where the coefficients of the projection are given by $\hat{U}_{n}=\frac{\left(U, P_{n}\right)}{\left(P_{n}, P_{n}\right)}$
(0,0) miner product
The difference between U and its projection $P_{N} U$ is called Truncation error

$$
\Rightarrow\left|U-P_{N} U\right|=T_{n} \rightarrow 0 \text { when } N \rightarrow \infty
$$

\Rightarrow Gauss Quadrature: The solution of (1) is given by Gauss Quadrature. The theorem can be stated as follows if there exist $N+1$ the real ω_{n} and $N+1$ real x_{n} in Ω sot

$$
\begin{aligned}
& \text { a } x_{n} \text { in } \Omega \text { sit } \\
& \forall f \in P_{2 N+\varepsilon} \int_{\Omega} f(x) \omega(x) d x=\sum_{n=0}^{N} f\left(x_{n}\right) \omega_{n} \\
& \omega_{n} \text { are called weights and }
\end{aligned}
$$

Then ω_{n} are called weights and x_{n} are called collocation points.
There are three Gauss Quadrature
meth odes.
*Gauss. $\quad \delta=1$

* Gauss Raduu: $\delta=0$ and $x_{0}=x_{\min }$
* Gauss Lobate: $\delta=-1$ and $x_{0}=x_{\text {min }}$

$$
x_{n}=x_{\text {max }}
$$

\Rightarrow Interpolation:- If one applies Gauss quadrature to approximate the coff cients of the expansion, one obtain

$$
\begin{gathered}
\tilde{U}_{n}=\frac{1}{\gamma_{n}} \sum_{j=0}^{N} U\left(x_{j}\right) P_{n}\left(x_{j}\right) \omega \text {, with } \\
\gamma_{n}=\sum_{j=0}^{N} P_{n}^{2}\left(+x_{j}\right) \omega_{j}
\end{gathered}
$$

Let us precise that this is not exact in the sence that $\hat{U}_{n} \neq \tilde{U}_{n}$. The actual representation of a fund U is ${ }^{\text {then }}$ the polynomial from the discrete coefficients

$$
I_{N} U=\sum_{n=0}^{\infty} \hat{U}_{n} P_{n}(x)
$$

The difference b/w $P_{N} U$ and $I_{N} U$ is called aliasing error
\Rightarrow Aliasing Error = $\left|P_{N} \forall-I_{N} U\right|$

Muhammad Tahr Wattoo
Combats University
M.S. Math
FA15-RMT-007

* Usual Families of Polynomials.
\Rightarrow Legendre Polynomial:- The Legendre polynomial, denoted by P_{n}, constoute a family of othogonal polynomials on $[-1,1]$ with a measure $\omega=1$ The scaler product of two P_{N} is given by $\int_{-1}^{1} P_{n} P_{m} d x=\frac{2}{2 n+1} S_{m n}$
The successive polynomials can be constructed by recurrence. Indeed given $P_{0}=1$ and $P_{1}=x$

$$
(n+1) P_{n+1}(x)=(2 n+1) \times P_{n}(x)-n P_{n-1}(x)
$$

* P_{n} is polynomial of degree n.
$* P_{n}(\pm 1)=(\pm 1)^{n}$
* P_{n} has exactly n zeros on $[-1,1]$
* The value of the weight and collocation points can be written for the three usual quadrature.

1) Legendre Gauss:- x_{i} are the nodes of P_{N+1} and

$$
\omega_{i}=\frac{2}{\left(1-x_{i}\right)^{2}\left[P_{N+1}^{\prime}\left(x_{i}\right)\right]^{2}}
$$

2) Legendre Gauss Raduu:- $x_{0}=-1$ and x_{i} are the nodes of $P_{N}+P_{N+1}$, The weight are given by

$$
\omega_{0}=\frac{2}{(N+1)^{2}} \text { and } \omega_{i}=\frac{1}{(N+1)^{2}}
$$

3) Gauss - Legendre - Lobato:- $x_{0}=-1$, $x_{N}=1$ and x_{i} are the nodes of P_{N}^{\prime}. The weight are

$$
\omega_{i}=\frac{2}{N(N+1)}, \frac{1}{\left[P_{N}\left(x_{i}\right)\right]^{2}}
$$

\Rightarrow CRebysher Polynomials:- The chebysher polynomials " T_{n} " are ortogo. nat set on $[-1,1]$ for the measure

$$
\omega=\frac{1}{\sqrt{1-x^{2}}}
$$

More precisely one has

$$
\int_{-1}^{1} \frac{T_{n} T_{n}}{\sqrt{1-x^{2}}} d x=\frac{\pi}{2}\left(1+S_{o n}\right) S_{m n}
$$

Chebysher polynomial can be computed by flowing $T_{0}=1, T_{1}=x$ and by measuring the recurrence relation

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

Put $n=1$

$$
\begin{aligned}
& \Rightarrow T_{2}(x)=2 x T_{1}(x)-T_{0}(x) \\
&=2 x(x)-1 \\
& \Rightarrow T_{2}(x)=2 x^{2}-1
\end{aligned}
$$

Put $n=2$

$$
\begin{aligned}
T_{3}(x) & =2 x T_{2}(x)-T_{1}(x) \\
& =2 x\left(2 x^{2}-1\right)-x \\
& =4 x^{3}-2 x-x \\
\Rightarrow T_{3}(x) & =4 x^{3}-3 x
\end{aligned}
$$

$n=3$

$$
\begin{aligned}
& T_{1}(x)=2 x T_{3}(x)-T_{2}(x) \\
&=2 x\left(4 x^{3}-3 x\right)-\left(2 x^{2}-1\right) \\
&=8 x^{4}-6 x^{2}-2 x^{2}+1 \\
& \Rightarrow T_{4}(x)=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

and so on

* T_{n} is of degree ' n :

$$
\star T_{n}(\pm 1)=(\pm 1)^{n}
$$

* In has exactly ' n ' zeros on $[-1,1]$

The weight and collocation paints associated with chebysher polynomial can be computed

1) Chebysheve - Gauss:-

$$
x_{i}=\cos \left(\frac{2 i+1}{2 N+2}\right) \text { and } \omega_{i}=\frac{\pi}{N+1}
$$

2) Chebyshev Gauss Raduu:-

$$
\begin{aligned}
& \text { Chebyshev Gauss Kagu:- } \\
& x_{i}=\frac{2 \pi i}{2 N+1}, \quad \omega_{0}=\frac{\pi}{2 N+1}, \omega_{L}=\frac{2 \pi}{2 N+1}
\end{aligned}
$$

3) Chebyshev Gauss-Lobato:-

$$
\begin{gathered}
x_{i}=\frac{\cos \pi_{i}}{N}, \omega_{0}=\omega N=\frac{\pi}{2 N} \text { and } \\
\omega_{i}=\frac{\pi}{N}
\end{gathered}
$$

Eract sobution $\Rightarrow U(x)=e=\frac{\sin h(1)}{\sin h(2)} \exp (2)+\frac{c}{4}$
soention

$$
\widetilde{u}=\sum_{i=1}^{n} \hat{u}_{i} T_{i}(x)
$$

for $n=4$

$$
\tilde{u}=\sum_{i=1}^{4} \hat{u}_{i} T_{i}(x)
$$

Now

$$
\begin{aligned}
& \mathcal{L u}=\sum_{i=0}^{4} \sum_{j=0}^{4} L_{i j} \hat{u}_{j} \cdot T_{i}(x)=f\left(x_{n}\right) \\
\therefore & \mathcal{L}=\frac{d^{2}}{d x^{2}}-4 \frac{d}{d x}+4 I d \\
& \varepsilon \quad f(x)=e^{x}-\frac{4 e}{1+e^{2}}
\end{aligned}
$$

Collocation points $\quad x_{i}=-\cos \left(\frac{i \pi}{4}\right) ;$ osicy

$$
\begin{array}{r}
\Rightarrow x_{0}=, \quad x_{1}=-1 / \sqrt{2}, \quad x_{2}=0 \\
x_{3}=1 / \sqrt{2} \quad \frac{x_{4}=1}{}
\end{array}
$$

So matuix of $\frac{d}{d x}\left(T_{i}(x)\right)$

$$
\frac{d}{d x}=\left[\begin{array}{cccc}
T_{0}^{\prime}\left(x_{0}\right) & T_{1}^{\prime}\left(x_{0}\right) & \cdots & T_{4}^{\prime}\left(x_{0}\right) \\
T_{0}^{\prime}\left(x_{1}\right) & T_{1}^{\prime}\left(x_{1}\right) & \cdots & T_{4}^{\prime}\left(x_{1}\right) \\
\vdots & & & \\
T_{0}^{\prime}\left(x_{4}\right) & T_{1}^{\prime}\left(x_{4}\right) & \cdots & T_{4}^{\prime}\left(x_{4}\right)
\end{array}\right]
$$

Exampler-Solve wave equation via spectral method.

$$
\left.\begin{array}{l}
u_{t t}(x, t)=u_{x x}(x, t)+f(\hat{x}, t) \\
u(0, t)=u(1, t)=0 \tag{1}\\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{0}(x)
\end{array}\right\}
$$

Solution Replace

$$
u_{t t}=-L u
$$

where L is symmetric linear operator with eigen values and eigen functions λ_{j} and ψ_{j} respectively with

$$
\begin{aligned}
L \psi_{j} & =\lambda_{j} \psi_{j} \longrightarrow \text { (2) } \\
\Rightarrow U(x, t) & =\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)
\end{aligned}
$$

Putting in (4 implies

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)=-L \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x) \\
\Rightarrow & \sum_{j=1}^{\infty} a_{j}^{\prime \prime}(t) \psi_{j}(x)=\sum_{j=1}^{\infty} a_{j}(t)\left(-\lambda_{j}\right) \psi_{j}(x)
\end{aligned}
$$

Now taking imnerproduct of both sides with $\psi_{k}(x)$

$$
\begin{aligned}
& \text { sides with } \psi_{k}(x) \\
& \Rightarrow \sum_{j=1}^{\infty} a_{j}^{\prime \prime}(t)\left(\psi_{j}(x), \psi_{k}(x)\right)=\sum_{j=1}^{\infty} a_{j}(t)\left(-\lambda_{j}\right)\left(\psi_{j}(x), \psi_{k}(x)\right) \\
&
\end{aligned}
$$

where $\psi_{j}(x), \psi_{k}(x)= \begin{cases}0 & \text { of } j \neq k_{k} \\ 1 & f_{j} j=k\end{cases}$

$$
\begin{align*}
& \Rightarrow a_{j}^{\prime \prime}(t)=-\lambda_{j} a_{j}(t) \\
\Rightarrow & a_{j}(t)=A \sin \left(\sqrt{\lambda_{j}} t\right)+B \cos \left(\sqrt{\lambda_{j}} t\right) \tag{3}
\end{align*}
$$

Now

$$
\begin{aligned}
& a_{j}(0)=A \sin (0)+B \cos (0)=U_{0}(x) \\
& \Rightarrow a_{j}(0)=B=U_{0}(x) \\
& a_{j}^{\prime}(t)=\sqrt{\lambda_{j}}\left(+A \cos \left(\lambda_{j} t\right)-B \sin \left(\sqrt{\lambda_{j}} t\right)\right) \\
& \Rightarrow a_{j}^{\prime}(0)=A \sqrt{\lambda_{j}}=u_{0}(x) \\
& \Rightarrow A=U_{0}(x) / \sqrt{\lambda_{j}}
\end{aligned}
$$

Now

$$
\begin{aligned}
U(x, t) & =\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x) \\
\Rightarrow U(x, 0) & =\sum_{j=1}^{\infty} a_{j}(0) \psi_{j}(x)=U_{0}(x)
\end{aligned}
$$

Now taking the inner product with $\psi_{f}(x)$

$$
\begin{aligned}
& \Rightarrow\left(U_{0}(x), \Psi_{k}(x)\right)=\sum_{j=1}^{\infty} a_{j}(0)\left(\psi_{j}(x), \psi_{k}(x)\right) \\
& \quad \Rightarrow a_{k}(0)=\frac{U_{0}(x), \Psi_{k}(x)}{\left(\Psi_{k}, \Psi_{k}(x)\right)}=B \quad \text { for } k=1,2,3, x
\end{aligned}
$$

Now $\frac{\partial}{\partial t} u(x, t)=\sum_{j=1}^{\infty} \frac{\partial}{\partial t} a_{j}(-t) \psi_{j}(x)$

$$
\Rightarrow \quad u_{t}\left(u_{g}, 0\right)=\sum_{j=1}^{\infty} \frac{\partial}{\partial t} a_{j}(0) \psi_{j}(x)
$$

Now taking innerproduct with $\psi_{f}(x)$

$$
\begin{aligned}
& \Rightarrow\left(U_{0}(x), \psi_{k}(x)\right)=\sum_{j=1}^{\infty} \frac{\partial}{\partial t} a_{j}(0)\left(\psi_{j}(x), \psi_{t}(x)\right) \\
& \Rightarrow \frac{\partial}{\partial t} a_{j}(0)=\frac{U_{0}(x), \psi_{k}(x)}{\psi_{f}(x), \psi_{k}(x)}=\sqrt{\lambda_{j}} A \\
& \Rightarrow A=\frac{1}{\sqrt{\lambda_{j}}} \frac{U_{0}(x), \psi_{k}(x)}{\psi_{k}(x), \psi_{k}(x)}
\end{aligned}
$$

\Rightarrow General Spectral Method for Reaction Diffusion Equation:An equation of the form

$$
\begin{equation*}
u_{t}=d \Delta u+f(u) \tag{1}
\end{equation*}
$$

is called reaction diffusion equation, where d is diffusion coefficient and is constant (real number)
Δ is laplacian operate or and $f(u)$ is non-linear function.
Equation for $1-D_{1}=$

$$
u_{t}=d u_{x x}+f(u)
$$

Boundary Conditions $u(0, t)=u(1, t)=0$ and Initial condition $U(x, 0)=g(x)$
UtepIr choose basis function $\phi_{n}(x)$, Then the solution is of the form

$$
\begin{equation*}
\tilde{U}(t, x)=\sum_{n=1}^{N} a_{n}(t) d_{n}(x) \tag{t}
\end{equation*}
$$

Let $\phi_{n}(x)=\sin (n \pi x)$
Step-
Substitute step-I into differential operator and obtain a set of ODE's in time
Our differential equation in this case

$$
\begin{align*}
L(u) & =u_{t}-d u_{x x}-f^{\prime}(u) \longrightarrow \text { (3) } \\
L(\tilde{u})= & \sum_{n=1}^{N} a_{n}^{\prime}(t) \sin (n \pi x)+d\left[\sum_{n=1}^{N} n^{2} \pi^{2} a_{n}(t) \sin (n \pi x)\right] \\
& -f\left[\sum_{n=1}^{N} a_{n}(t) \sin (n \pi x)\right] \longrightarrow \text { (4) } \tag{4}
\end{align*}
$$

In order to obtain $a_{n}(t)$, we tate inner product of $\phi_{n}(x)$ with (u) and using $\left(\phi_{i}(x)\right.$, $\left.L(u)\right)=0$, we get

$$
\begin{gathered}
\left.\sum_{n=1}^{N} a_{n}^{\prime}(t)(\sin (m \pi x)) \sin (n \pi x)\right)+\pi^{2} d \sum_{n=1}^{N} a_{n}(t) n^{2}(\sin (m \pi x), \sin (m n n)) \\
-\left(\sin (m \pi x), f\left(\sum_{n=1}^{N} a_{n}(t) \sin (n \pi x)\right)\right)=0 \\
; m=\Gamma 1,2, \ldots, N)
\end{gathered}
$$

Note that the inner product operation and the summation operation commute, because integration is linear operation.
$\frac{\text { When } m=n}{(\sin (m \pi n)}$

$$
(\sin (m \pi x), \sin (n \pi x))=\frac{1}{2}
$$

otherwise $\quad=0$

$$
\text { (S) } \Rightarrow \frac{a_{n}^{\prime}(t)}{2}=\frac{-\pi^{2} m^{2} d}{2} a_{m}(t)-\int \phi_{m}(x),+\left(\sum_{m=1}^{N} a_{n}(t) \phi_{n}(t)\right)^{\prime}
$$

StefII- Find the initial condition for the ODE

$$
\begin{aligned}
a_{m}(0) & =\frac{\sin (m \pi x), g(x)}{\sin (m \pi x), \sin (m \pi x)}=2(\sin (m \pi x), g(x)) \\
m & =1,2, \ldots, N
\end{aligned}
$$

Stele IT
Solve the initial value problem for time.

Example:-solue Heat equation using spectral method.

$$
\frac{\partial}{\partial t} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)+f(x, t)
$$

Fr a homogeneous Bar, with Drichled boundry conditions $u(0, t)=u(1, t)=0$ And initial condition, $U(x, 0)=U_{0}(x)$
Solution.
More generally we think of problem of the form

$$
\frac{\partial}{\partial t} U(x, t)=-L U(x, t)+f(x, t)
$$

Where L is a symmetric linear operator with eigen values and eigen functions λ_{j} and ψ_{j} :

$$
L \phi_{j}=\lambda_{j} \psi_{j}
$$

for which we can expand the Solution $u(x, t)$ as

$$
u(k, t)=\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)
$$

Mbstitute this form into (N), we - btain

$$
\frac{\partial}{\partial t} \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)=-L \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)+f(x, t)
$$

Take the time derivative and tinea operator L under the sums to get

$$
\begin{aligned}
& \sum_{j=1}^{\infty} a_{j}^{\prime}(t) \psi_{j}(x)=-\sum_{j=1}^{\infty} a_{j}(t) \underbrace{L \psi_{j}(x)}+f(x, t) \\
&=\lambda_{j} \psi_{j}(x) \\
& \Rightarrow \sum_{j=1}^{\infty} a_{j}^{\prime}(t) \psi_{j}(x)=\sum_{j=1}^{\infty}-\lambda_{j} a_{j}(t) \psi_{j}(x)+f(x, t)
\end{aligned}
$$

Take the inner product with ψ_{k} to - Detain

$$
\left[\sum_{j=1}^{\infty} a_{j}^{\prime}(t)\left(\psi_{j}(x), \psi_{k}(x)\right)\right]=\left[\sum_{j=1}^{\infty}-\lambda_{j} a_{j}(t) \psi_{j}(x), \psi_{k}(x)\right]+\left(\neq, \psi_{k}\right)
$$

Use linearity of the inner product

$$
\Rightarrow \sum_{j=1}^{\infty} a_{j}^{\prime}(t)\left(\psi_{j}, \psi_{k}\right)=\sum_{j=1}^{\infty}-\lambda_{j} a_{j}\left(\psi_{k}, \psi_{j}\right)+\left(f, \psi_{k}\right)
$$

use orthogonality of the eigen functions

$$
\left(\psi_{j}, \psi_{k}\right)= \begin{cases}0, & j \neq k \\ \left(\psi_{i}, \psi_{i}\right), & j=k\end{cases}
$$

To simility to an equation fo $a_{k}^{\prime}(t)$

$$
a_{k}^{\prime}(t)=-\lambda_{k} a_{k}(t)+\frac{\left(f, \Psi_{k}\right)}{\left(\Psi_{k}, \Psi_{k}\right)}
$$

Note That,

$$
\left(f, \psi_{k}\right)=\int_{0}^{1} f(x, t) \psi_{k}(x) d x ; f_{0} \text { fined }
$$

So $\frac{\left(f_{,}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)}=C_{k}(t)$ is a function of t.

We this have

$$
a_{k}^{\prime}(t)=-\lambda_{k} a_{k}(t)+c_{k}(t)
$$

For similicity take $f(x, t)=0$,

$$
\Rightarrow \quad a_{k}^{\prime}(t)=-\lambda_{k} a_{k}(t)
$$

Whose solution is

$$
a_{k}(t)=e^{-\lambda_{k} t} a_{k}(0)
$$

To find $a_{k}(0)$,
We have $u(x, t)$ satisfying the initial condition $U(x, 0)=U_{0}(x)$
At $t=0$ we thus wont

$$
u(x, t)=\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)=u_{0}(x): \text { at } t=0
$$

Take the inner product with ψ_{k} to get

$$
\sum_{j=1}^{\infty} a_{j}(0)\left(\psi_{j}, \psi_{k}\right)=\left(u_{0}, \psi_{k}\right)
$$

And using orthoganality of the eigenfunctions to get

$$
a_{k}(0)=\frac{\left(u_{0}, \phi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)}
$$

Thus $a_{k}(t)=e^{-\lambda_{k} t} a_{k}(0)$

$$
=e^{-\lambda_{k} t\left(u_{0}, \psi_{k}\right)} \frac{\left(\psi_{k}, \psi_{k}\right)}{}
$$

Putting the pieces together we have

$$
u(x, t)=\sum_{i=1}^{\infty} e^{-\lambda_{j} t} \frac{\left(U_{0}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)} \psi_{j}(x)
$$

Scanned by CamScanner

Motivating Problem-

$$
u_{t}=u_{k u}, x \in[0,1], \quad u(0, t)=u(1, t)=0
$$

with $L u=-u_{x x}, x \in C_{D}^{2}[0,1]$
So $\quad \lambda_{j}=j^{2} \pi^{2}, \quad \Psi_{j}(x)=\sqrt{2} \sin (j \pi x)$,
we have $u(x, t)=\sum_{j=1}^{\infty} e^{-\pi^{2} \pi^{2} t} \frac{\left(u_{0}, \psi_{j}\right)}{\left(\psi_{j}, \psi_{j}\right)}\left(\sqrt{2} \sin \left(m_{n}\right)\right.$.
As $t \rightarrow \infty$, we note $e^{-j^{2} \pi^{2} t} \longrightarrow 0$, so

$$
\star u(x, t) \rightarrow 0 \text { as } t \underset{-\pi^{2} t}{\rightarrow}
$$

* As t increases, $e^{-\pi^{2} t}(j=1)$ decays to 0 quite a bit more slowly than $e^{-4 \pi^{2} t}(j=2), e^{-9 \pi^{2}}(j=3)$, et, So as $u(x, t) \rightarrow 0$, it mill assume the shape of $\psi_{1}(x)$ (Assuming that $\left(u_{0}, Y_{1}\right) \neq 0$.
Exampler-Heat Equation with Inhomogeneous Forcing

$$
\left.u_{t}=u_{x x}+f ; u(0, t)=u_{(1, t)}=0, u(x, 0)=u, 0\right)
$$

Solon Begin with the general operator setting

$$
u_{t}=-L u+f,
$$

where $L: C_{D}^{2}[0,1] \longrightarrow C[0,1], L u=-u_{1 N}$ with eigen values and eigen function

$$
\lambda_{j}=j^{2} \pi^{2}, \psi_{j}(x)=\sqrt{2} \sin (j \pi x) .
$$

At every fixed t, we can write the solution as

$$
u(x, t)=\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)
$$

where $a_{1}(t), a_{2}(t), \ldots$ give the best approximation/projection coefficient for $u(0, t)$ onto the subspace span $\left\{\psi_{j}\right\}$
play the expansion into $u_{t}=-L u+f$

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{\partial}{\partial t}\left(\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}^{\prime}(x)\right) & =-L \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}^{\prime}(x)+f(x, t) \\
\Rightarrow \sum_{j=1}^{\infty} a_{j}^{\prime}(t) \psi_{j}(x) & =-\sum_{j=1}^{\infty} a_{j}(t) L \psi_{j}(x)+f(x, t) \\
& =-\sum_{j=1}^{\infty} a_{j}(t) \lambda_{j} \psi_{j}(x)+f(x, t)
\end{aligned}
\end{aligned}
$$

since $L \psi_{j}=\lambda_{j} \psi_{j}$
Take inner product with ψ_{k}

$$
\begin{aligned}
& {\left[\sum_{j=1}^{\infty} a_{j}^{\prime}(t) \psi_{j}, \psi_{k}\right]=-\left[\sum_{j=1}^{\infty} a_{j}(t) \lambda_{j} \psi_{j}, \psi_{k}\right]+\left(f, \psi_{k}\right) } \\
& \Rightarrow \sum_{j=1}^{\infty} a_{j}^{\prime}(t)\left(\psi_{j}, \psi_{k}\right)=-\sum_{j=1}^{\infty} \lambda_{j} a_{j}(t)\left(\psi_{j}, \psi_{k}\right)+\left(f, \psi_{k}\right)
\end{aligned}
$$

Use orthogonality of Eigen functions to simplify

$$
a_{k}^{\prime}(t)\left(\psi_{k}, \psi_{k}\right)=-\lambda_{k} a_{k}(t)\left(\psi_{k}, \psi_{k}\right)+\left(f, \psi_{k}\right)
$$

Giving the ODE for $a_{k}(t)$

$$
a_{k}^{\prime}(t)=-\lambda_{k} a_{k}(t)+\frac{\left(f, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)}
$$

Note that

$$
\frac{\left(f, \Psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)}=\frac{\int_{0}^{1} f\left(x_{t}\right) \psi_{k}(x) d x}{\int_{0}^{1} \psi_{k}(x) \psi_{k}(u) d x}=c_{k}(t)
$$

gives the best approximation coefficient for $f(0, t)$, the function f with t ta um:

$$
f(\cdot, t)=\sum_{j=1}^{\infty} \frac{\left(f(0, t), \psi_{j}\right)}{\left(\psi_{j}, \psi_{j}\right)} \psi_{j}(x)=\sum_{j=1}^{\infty} g_{j}(t) \psi_{j}(x)
$$

So we must now solve

$$
a_{k}^{\prime}(t)=-\lambda_{k} a_{k}(t)+c_{k}(t)
$$

This first order imhomogenous linear equation is a staple of first cannes in the solution of $O D E s$.

We shall quickly recapi the soltith
Multiply both sides $e^{\lambda k t}$, and

$$
e^{\lambda_{k} t} a_{k}^{\prime}(t)+\lambda_{k} e^{\lambda_{k} t} a_{k}(t)=e^{\lambda_{k} t} c_{k}(t)
$$

Integrate both sides

$$
\begin{aligned}
& \text { Integrate both sides } \\
& \int_{0}^{t}\left[e^{\lambda_{k} s} a_{k}(s)+\lambda_{k} e^{\lambda_{k} s} a_{k}(s)\right] d s=\int_{0}^{t} e^{\lambda k s} u_{k}(s) d s
\end{aligned}
$$

The integrand on the left is a derivative (product orle)

$$
\begin{aligned}
& \text { derivative (product rule) } \\
& \Rightarrow \int_{0}^{t} \frac{d}{d s}\left(e^{\lambda_{k} s} a_{k}(s)\right) d s=\int_{0}^{t} e^{\lambda_{k} s} G_{k}(s) d s
\end{aligned}
$$

So by the fundamental theorem of culculas

$$
\left[e^{\lambda_{k} s} a_{k}(s)\right]_{s=0}^{s=t}=\int_{0}^{t} e^{\lambda_{k} s} a_{k}(s) d s
$$

$$
\begin{aligned}
& \Rightarrow e^{\lambda_{k} t} a_{k}(t)-a_{k}(0)=\int_{0}^{t} e^{\lambda_{k} s} c_{k}(s) d s \\
& \Rightarrow a_{k}(t)=a_{k}(0) e^{-\lambda_{k} t}+\int_{0}^{t} e^{\lambda_{k}(s-t)} c_{k}(s) d s
\end{aligned}
$$

Hence the solution of the in homogeneous PDE is

$$
\begin{aligned}
u(x, t) & =\sum_{i=1}^{\infty} a_{j}(t) \psi_{j}(x) \\
& =\sum_{j=1}^{\infty}\left[a_{j}(0) e^{-\lambda_{j} t}+\int_{0}^{t} e^{\lambda_{j}(s-t)} G_{j}(s) d s\right) \psi_{j}(x)
\end{aligned}
$$

Recall that the wefficients $a_{k}(0)$ come from the best approximation expansion of the initial condition

$$
u(x, 0)=()=\sum_{j=1}^{\infty} a_{j}(0) \psi_{j}(x)
$$

given by

$$
a_{j}(0)=\frac{\left(u_{0}, \psi_{j}\right)}{\left(\psi_{j}, \psi_{j}\right)}
$$

Special Cases- Time independent f If $f(x, t)=f(x)$ has no dependence on t, then the coefficients $g(t)$ are constant, $c_{j}(t)=c_{j}$.
Then we can significantly simplify the formulas for $a_{j}(t)$

$$
\begin{aligned}
& a_{j}(t)=a_{j}(0) e^{-\lambda_{j} t}+\int_{0}^{t} e^{\lambda_{j}(s-t)} c_{j} d s \\
& =a_{j}(0) e^{-\lambda_{j} t}+c_{j} e^{-\lambda_{j} t} \int_{0}^{t} e^{\lambda ; j} d s \text { (Assuming } \lambda_{j=0} \\
& =a_{j}(0) e^{-\lambda_{j} t}+c_{j} e^{-\lambda_{j} t}\left[\frac{e^{\lambda_{j} s}}{\lambda_{j}}\right]_{0}^{t} \\
& \sum_{i=e d}^{n i=0} \text { to handle } \\
& \text { is the proslen } \\
& \text { that a zero } \\
& \text { eigen nabue }
\end{aligned}
$$

$$
\Rightarrow a_{j}(t)=a_{j}(0) e^{-\lambda_{j} t}+c_{j}\left(\frac{1-e^{-\lambda_{j} t}}{\lambda_{j}}\right)
$$

For the operator $L u=-u$ on $C_{0}^{2}[0,1]-$

$$
\begin{aligned}
& c[0,1], \lambda_{j}=j^{2} \pi^{2} ; j=1,2, \cdots, \text { so } \\
& a_{j}(t) e^{-\lambda_{j} t} \longrightarrow 0, \frac{1-e^{-\lambda_{j} t}}{\lambda_{j}} \longrightarrow \frac{1}{\lambda_{j}}
\end{aligned}
$$

Hence $a_{j}(t) \rightarrow c_{j} / \lambda_{j}$ as $t \rightarrow \infty$
And the solution

$$
\begin{aligned}
& \text { And the solution } \\
& U(x, t)=\sum_{j=1}^{\infty}\left(a_{j}(0) e^{-\lambda_{j} t}+c_{j}\left\lceil\frac{1-e^{-\lambda_{j} t}}{\lambda_{j}}\right\rceil\right) \psi_{j}(x)
\end{aligned}
$$

tends to $\sum_{j=1}^{\infty} \frac{C_{j}}{\lambda_{j}} \psi_{j}=\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}} \frac{\left(f, \psi_{j}\right)}{\left(\psi_{j}, \psi_{j}\right)} \psi_{j}$
Note:- This is exactly the solution to
$L U=f$ we obtain from the spectra. method! We have just confirmed that the best equation with Drichlet boundry conditions and time-indepor f tends to a steady state, justifying as earlier study of $L u=f$.

Question- How general was this Andy: Will this apply to other bound Conditions?
What do you need to require of the eigen values.
sucampler- Hanoling In homogeneous Boundary condition.
3) Consider the heat equation

$$
u_{t}=u_{x x}+f \quad, u(x, 0)=u_{0}(x)
$$

with in homogeneous boundary conditions

$$
u(0, t)=g(t), \quad u(1, t)=h^{\prime}(t)
$$

For function $g(t)$ and $h(t)$. Thus the boundary conditions can vary in time) How can we in corporate these boundary conditions?
As usual L is defined on a domain with Homogeneous Boundry condiling of the same kind.

$$
L V=-V_{x x} \text { for } V \in C_{D}^{2}[0,1]
$$

We seep to build a solution

$$
u(x, t)=v(x, t)+\omega(x, t)
$$

with $\omega(x, t)$ engineered to satisfy the Inhomogeneous boundary conditions, and $V(x, t)$ the solution of a related differential equation with Homogeneas bound ar conditions.

Following the lead of the approach we took for $-u_{x x}=0$

$$
\begin{aligned}
& \text { Took for } \omega(x, t)=f(t)+x(g(t)-f(t))
\end{aligned}
$$

Po that $\omega(0, t)=f(t)$ and $\omega(1, t)=g(t)$.
Now consider $U(x, t)=V(x, t)+\omega(x, t)$. log this int the Cider $U(x, t)=v(x, t)+$ what v must Satisfy:

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t)+f(x, t) \\
\Rightarrow & v_{t}(x, t)+w_{t}(x, t)=v_{x x}(x, t)+w_{x x}(x, t)+f(x, t)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V_{t}(x, t)+\omega_{t}(x, t)=V_{x x} \\
& \text { Now } \omega_{t}(x, t)=f^{\prime}(t)+x\left(g^{\prime}(t)-f^{\prime}(t)\right)
\end{aligned}
$$

And $\omega_{x x}(x, t)=0$
Thus $V_{t}(x, t)=V_{x, x}(x, t)+f(x, t)-\omega_{t}(x, t)$
De fine $f(x, t)=f(x, t)-\omega_{t}(x, t)$
Then find $V(x, t)$ to solve

$$
\begin{array}{r}
V_{t}(x, t)=V_{x x}(x, t)+\tilde{f}(x, t) \\
V_{t}(x, t)=-L v(x, t)+\tilde{f}(x, t)
\end{array}
$$

Doit forget above initial condition

$$
\begin{aligned}
& U_{0}(x)=U(x, 0)=V(x, 0)+w(x, 0) \\
&=V(x, 0)+f(0)+x(g(0)-f(0)) \\
& \Rightarrow V_{0}(x)=V(x, 0)=U_{0}(x)-[f(0)+x(g(0)-f(0))]
\end{aligned}
$$

Solve for V, Build

$$
u(x, t)=v(x, t)+w(x, t)
$$

Heat Equation With Periodic Boundry Conditions:- (The Fourier series) Consider the heat equation posed on a bar, where the ends me bent around so that they join together and form a ring. At the points where the ends meet, we will require that $u(x, t)$ and $u_{x}(x, t)$ be continuous. For convenience, we shall use the physical domain $x \in[-1,1]$.

$$
\left.\begin{array}{l}
u_{t}(x, t)=u_{x x}(x, t) \\
u(x, 0)=u_{0}(x) \\
u(-1, t)=u(1, t) \\
u_{x}(-1, t)=u_{x}(1, t)
\end{array}\right\} \text { periodic boundary condition } \quad \text {. }
$$

As usual, we pose this problem as a linear operator equation

$$
\begin{gathered}
u_{t}=-L u, u(x, 0)=u_{0}(x), \text { where } \\
L: c[0,1] \\
C_{p}^{2}[-1,1] \\
L u=-u_{x x} \\
\text { for } \quad G_{p}^{2}[-1,1]=\left\{u \in c[-1,1]: u(-1)=u(1), u_{x}(-1)=u_{x}(1)\right\}
\end{gathered}
$$

One can show, using the usual techniques, that L is symmetric.
What are the eigenvalues and eigen functions of L ?
Eigen Values \& Li gen Functions of L. we see $\psi \neq 0$ such that

$$
\begin{aligned}
& \cdot \psi \in C_{P}^{2}[-1,1] \\
& \cdot L \psi=\lambda \psi
\end{aligned}
$$

The second requirment implies

$$
\begin{aligned}
& \text { second requirment mp res } \\
& -\psi^{\prime \prime}=\lambda \psi \text { giving the general salian }
\end{aligned}
$$

$$
\psi(x)=A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x)
$$

where A, B, λ give non-zero ψ in $C_{p}^{2}[-1,1]$?

$$
\begin{aligned}
& {[-1,1] ? } \\
& \psi(-1)=\psi(1), \psi^{\prime}(-1)=\psi^{\prime}(1) \\
& \psi(-1)=A \sin (-\sqrt{\lambda})+B \cos (-\sqrt{\lambda})\left\{\begin{array}{l}
\sin (-\theta)=-\sin \theta \\
\\
\end{array}=-A \sin (\sqrt{\lambda})+B \cos (\sqrt{\lambda})\right. \\
& \psi(1)=A \sin (\sqrt{\lambda})+B \cos (\sqrt{\lambda})
\end{aligned}
$$

Equating $\psi(-1)$ and $\psi(1)$ gives

$$
\begin{aligned}
& -A \sin (\sqrt{\lambda})+B \cos (\sqrt{\lambda})=A \sin (\sqrt{\lambda})+B \cos (\sqrt{\lambda}) \\
& \Rightarrow 2 A \sin (\sqrt{\lambda})=0 \\
& \Rightarrow\left\{\begin{array}{l}
A=0 \Rightarrow \psi(x)=B \cos (\sqrt{\lambda} x) \\
o g \quad \sin (\sqrt{\lambda})=0 \Rightarrow \sqrt{\lambda}=0, \pi, 2 \pi
\end{array}\right.
\end{aligned}
$$

Now compute, in general

$$
\psi^{\prime}(x)=\sqrt{\lambda}(A \cos (\sqrt{\lambda} x)-B \sin (\sqrt{\lambda} x))
$$

Hence $\psi^{\prime}(-1)=\sqrt{\lambda}(A \cos (-\sqrt{\lambda})-B \sin (-\lambda))$

$$
\begin{aligned}
& =\sqrt{\lambda}[A \cos (\sqrt{\lambda})+B \sin (\sqrt{\lambda})] \\
\psi^{\prime}(1) & =\sqrt{\lambda}[A \cos (\sqrt{\lambda})-B \sin (\sqrt{\lambda})]
\end{aligned}
$$

Equating $\psi^{\prime}(-1)$ and $\psi^{\prime}(1)$ gives

$$
\begin{aligned}
& \text { Equating } \psi^{\prime}(-1) \text { and } \psi^{\prime}(1) \text { gives } \\
& \sqrt{\lambda}[A \cos (\sqrt{\lambda})+B \sin (\sqrt{\lambda})]=\sqrt{\lambda}[A \cos \sqrt{\lambda}-B \sin \sqrt{\lambda}]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 B \sqrt{\lambda} \sin (\sqrt{\lambda})=0 \\
& \Rightarrow\left\{\begin{array}{l}
B=0 \Rightarrow \psi(x)=A \sin (\sqrt{\lambda} x) \\
o r \\
\sqrt{\lambda} \sin (\sqrt{\lambda})=0 \Rightarrow \sqrt{\lambda}=0, \pi, 2 \pi, \cdots
\end{array}\right.
\end{aligned}
$$

So $\psi(-1)=\psi(1)$ and $\psi^{\prime}(-1)=\psi^{\prime}(1)$ each gives 2 series. We must thus analyze $2 \times 2=4$ possibilities

0

$$
\begin{array}{l|c|c}
A=0 & (3) & \sqrt{\lambda}=0, \pi, 2 \pi, \cdots \\
B=0 & \sqrt{\lambda}=0, \pi, 2 \pi, \cdots & B=0
\end{array}
$$

(4)

$$
\begin{aligned}
& \sqrt{\lambda}=0, \pi, 2 \pi, \cdots \\
& \sqrt{\lambda}=0, \pi, 2 \pi, \cdots
\end{aligned}
$$

(1) $A=0, B=0 \Rightarrow \psi(x)=0$: Not an eigen function.
(QA $A=0, \sqrt{A}=0, \pi, 2 \pi, \cdots \Rightarrow \psi(x)=B \cos (\mathbb{N} x), \sqrt{\lambda}=0, \pi, 2, \pi$,

$$
\begin{aligned}
& \text { If } \sqrt{\lambda}=0 \text {, pick } B=\frac{1}{2}, \text { so } \psi_{0}(x)=\frac{1}{2} \cos (0)=1,\left\|\psi_{0}\right\|=1 \\
& \text { If } \sqrt{\lambda}=\pi, 2 \pi, \ldots \text {, Pick } B=1, \\
& \text { so } \psi_{n}(x)=\cos (n \pi x),\left\|\psi_{n}\right\|=1,
\end{aligned}
$$

for $n=1,2,3, \ldots$
(3)

$$
\begin{aligned}
& \sqrt{\lambda}=0, \pi, 2 \pi, \cdots, B=0 \\
& \Rightarrow \Psi(x)=A \sin (\sqrt{\lambda} x)
\end{aligned}
$$

If $\sqrt{\lambda}=0, \psi(x)=0 \Rightarrow$ Not an eigen function If $\lambda=\pi, 2 \pi, \ldots$ Pick $A=1$, so $\quad \psi_{-n}(x)=\sin (n \pi x),\left\|\psi_{n}\right\|=1$ for $n=1,2,3, \cdots$
Noter-Indexing here - the negative index
is used to distinguish these eigenfunding from the eigenfunction $\psi_{n}(x)=\cos (n \pi x)$ found earlier.
Note that both eigen functions have the same eigen values

$$
\begin{aligned}
& \lambda_{-n}=\lambda_{n}=n^{2} \pi^{2} \\
& y_{\text {et }}\left(\psi_{n}, \psi_{-n}\right)=\int_{-1}^{1} \cos (n \pi x) \sin (n \pi x) d x=0
\end{aligned}
$$

So these eigen functions are orthogonal

$$
\text { (4) } \begin{aligned}
\sqrt{\lambda} & =0, \pi, 2 \pi, \cdots \\
\sqrt{\lambda} & =0, \pi, 2 \pi, \cdots \\
\Rightarrow \Psi(x) & =A \sin (n \pi x)+B \cos (n \pi x)
\end{aligned}
$$

Note that this function is a linear combination of $\psi_{n}(x), \psi_{n}(x)$:

$$
\psi(x)=A \psi_{-n}(x)+B \psi_{n}(x)
$$

So this solution does not lead to any new eigen functions.
In summary
The eigen values and eigen functions of L are

$$
\begin{array}{ll}
\lambda_{0}=0, & \psi_{0}(x)=1 / 2 \\
\lambda_{-n}=n^{2} \pi^{2}, & \psi_{-n}(x)=\sin (n \pi x), n=1,2,3, \\
\lambda_{n}=n^{2} \pi^{2}, & \psi_{n}(x)=\cos (n \pi x), n=1,2,3,
\end{array}
$$

using the techniques described eartiry we can easily write down
solution. to the heat equation

$$
\begin{aligned}
U(x, t)= & e^{-\lambda_{0} t} a_{0}(0) \psi_{0}(x)+\sum_{n=1}^{\infty} e^{-\lambda_{n} t} a_{n}(0) \psi_{n}(x) \\
& +\sum_{n=1}^{\infty} e^{-\lambda_{n} t} a_{-n}(0) \psi_{-n}(x) \\
= & \frac{1}{2} a_{0}(0)+\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} t} a_{n}(0) \cos (n \pi x) \\
& +\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} t} a_{-n}(0) \sin (n \pi x)
\end{aligned}
$$

where $a_{k}(0)=\frac{\left(U_{0}, \Psi_{k}\right)}{\left(\Psi_{k}, \Psi_{k}\right)}$ for $k=0, \pm 1, \pm 2, \ldots$
But there is another interesting point. We can expand a generic 2-periodic function $f \in \varphi^{2}[-1,1]$ in this basis of eigen functions using the usual best approximation technique:

$$
f=\sum_{n=-\infty}^{\infty} C_{n} \psi_{n}(x), \quad c_{n}=\frac{\left(f, \psi_{n}^{\prime}\right)}{\left(\psi_{n}, \psi_{n}^{\prime}\right)}
$$

This gives

$$
\begin{aligned}
& \text { This gives } \\
& f(x)=\frac{1}{2} \int_{-1}^{1} f(x) d x+\sum_{n=1}^{\infty}\left(\int_{-1}^{1} f(x) \cos (n \pi x) d x\right) \cos (n \pi x) \\
& \quad+\sum_{n=1}^{\infty}\left(\int_{-1}^{1} f(x) \cos (n \pi x) d x\right) \sin (n \pi x)
\end{aligned}
$$

"The expansion is often simply called The Fourier series" for a function on $x \in[-1,1]$.
" the content of our class, it is simply
i u : eigenfunction expansion associated with $u=-u_{x x}$ imposing periodicity in $U \& U_{x}$.
\Rightarrow Wave Equation Exact Solution Via Spectral Method:-

We seek to model the transverse vibration of a taut string.

Drichlet Boundary
condition
Drichlet Bound ar condition
$u(x, t)$ describes the distance of the string from its equilibrium position (u(x,t)=0) at the point $x \in[0,1]$ at time $t>0$. We shall not derive the wave equation from first principle (See the boo "Non linear problems in Elasticity" by "Stuznt Ant.mm" for a masterful derivation), but marely state the simplest version

$$
\begin{align*}
u_{t t}(x, t) & =u_{k x}(x, t)+f(x, t) \tag{1}\\
u(0, t) & =u(1, t)=0
\end{align*}
$$

Since the equation is of 2 nd order in time, we need mitral condition for both position and velocity.
$u(x, 0)=u_{0}(x)=$ Initial displacement of s tox

$$
U_{t}(x, 0)=v_{0}(x)=11 \quad \text { velocity of stung }
$$

More generally, we shall reply equ (1) by

$$
\begin{equation*}
u_{t t}=-L u+f \tag{2}
\end{equation*}
$$

where L is a symmetric linear operator whose eigenfunction Ψ_{1}, Ψ_{2}, ... allows us to write

$$
\begin{equation*}
u(x, t)=\sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x) \tag{3}
\end{equation*}
$$

for any fixed time, we write

$$
f(x, t)=\sum_{j=1}^{\infty} C_{j}(t) \Psi_{j}(x)
$$

But in this lecture forces on time case of $f(x, t)=0$.
We follow the same strategy we used for the React equation.
Use the PDE (2) to derive the ordinary differential equation that govern the coefficients $a_{j}(t)$.
Substitute equ (3) in eau (2) to obtain

$$
\begin{aligned}
& \quad \frac{\partial^{2}}{\partial t^{2}} \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x)=-L \sum_{j=1}^{\infty} a_{j}(t) \psi_{j}(x) \\
& \Rightarrow \sum_{j=1}^{\infty} a_{j}^{\prime \prime}(t) \psi_{j}(x)=\sum_{j=1}^{\infty} a_{j}(t)\left(-L \psi_{j}(x)\right)
\end{aligned}
$$

use $L \psi_{j}=\lambda_{j} \psi_{j}$ to obtain

$$
\sum_{j=1}^{\infty} a_{j}^{\prime}(t) \psi_{j}(t)=\sum_{j=1}^{\infty} a_{j}(t)\left(-\lambda_{j} \psi_{j}(n)\right)
$$

Take the inner product of both sides. with ψ_{k} to get

$$
\left[\sum_{j=1}^{\infty} a_{j}^{\prime}(t) \psi_{j}, \psi_{k}\right]=\left[\sum_{j=1}^{\infty} a_{j}(t)\left(-\lambda_{j}\right) \psi_{j}, \psi_{k}\right]
$$

$$
\Rightarrow \sum_{j=1}^{\infty} g_{j}^{\prime \prime}(t)\left(\psi_{j}, \psi_{k}\right)=\sum_{j=1}^{\infty} o_{j}(t)\left(-\lambda_{j}\right)\left(\psi_{j}, \psi_{k}\right)
$$

use orthogonality of the eigen functions

$$
\left(\psi_{j}, \psi_{k}\right)= \begin{cases}0 & \text { if } j \neq k \\ \neq 0 & \text { if } j=k\end{cases}
$$

to obtain

$$
q_{k}^{\prime \prime}(t)=-\lambda_{k} a_{k}(t)
$$

(Compare this to the equation $\left(a_{k}^{\prime}(t)=-\lambda_{k} a_{k}(t)\right.$) obtained for the heat equation) This ODE for $a_{c}(t)$ has the same form as the ODE we have been using all semesters to find eigen. functions (in-space, x). It has the general solution.

$$
a_{k}(t)=A \sin \left(\sqrt{\lambda_{k}} t\right)+B \cos (\sqrt{\sqrt{n}} t)
$$

But Now we use initial conditions to determine A and B. use

$$
\begin{aligned}
& a_{k}(0)=A \sin (0)+B \cos (0)=B \\
& a_{k}^{\prime}(t)=\sqrt{\lambda_{k}}\left[A \cos \sqrt{\lambda_{k}} t-B \sin (\sqrt{\lambda} t)\right] \\
& \Rightarrow a_{k}^{\prime}(0)=\sqrt{\lambda_{k}}[A \cos (0)-B \sin (0)]=A \sqrt{\lambda_{k}}
\end{aligned}
$$

If we expand the initial condign as

$$
u(x, 0)=\sum_{j=1}^{\infty} a_{j}(0) \psi_{j}(x)=u_{0}(x)
$$

Take an inner product with ψ_{18}
to find

$$
a_{k}(0)=\frac{\left(U_{0}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)} ; K=1,2,3, \ldots
$$

Similarly expand the initial condition

$$
U_{t}(x, 0)=\sum_{j=1}^{\infty} a_{j}^{\prime}(0) \psi_{j}(x)=V_{0}(x)
$$

and take the miner product with Ψ_{k} to obtain

$$
a_{k}^{\prime}(0)=\frac{\left(V_{0}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)}
$$

These formulas for $a_{k}(0)$ and $q_{k}^{\prime}(0)$ are of course, just the best approximation for U_{0} and V_{0}.

Now we can identify the A and B in the formulas for $a_{k}(t)$

$$
\begin{aligned}
& a_{k}(0)=B \Rightarrow B=\frac{\left(U_{0}, \psi_{k}\right)}{\left(\Psi_{k}, \Psi_{k}\right)} \\
& \left.a_{k}^{\prime}(0)=\sqrt{\lambda_{k}} A \Rightarrow A=\frac{1}{\sqrt{\lambda_{k}}} \frac{\left(\psi_{0}, \Psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)} \text { (Provide }{\lambda_{k}}_{k} \neq 0\right)
\end{aligned}
$$

Thus, presuming L has no zero eigen values we can express

$$
\begin{aligned}
& a_{k}(t)=\frac{\left(U_{0}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}^{\prime}\right)} \cos \left(\sqrt{\lambda_{k} t}\right)+\frac{1}{\sqrt{\lambda_{k}}} \frac{\left(v_{0}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)} \sin \left(\bar{\lambda}_{k} t\right) \\
& \left.\psi_{(k, t)}=\sum_{k=1}^{\infty}\left[\frac{\left(U_{0}, \psi_{k}\right)}{\left(\psi_{k}, \psi_{k}\right)} \cos \left(\sqrt{\lambda_{k}} t\right)+\frac{1}{\sqrt{\lambda_{k}}\left(\psi_{0}, \psi_{k}\right)} \sin \left(\psi_{k}\right) \sin t\right)\right] \psi_{k}(x)
\end{aligned}
$$

Note that this term oscillates in t, Fundamentally different be haviour than for the heat equation.

In particular, note that these oscillations occur as a result of the $\delta^{2} / \delta t^{2}$ term, independent of the eigenfunction $U_{k}(x)$.

For a vibrating string, This suggests that an initial pluck mill Cause the string to vibrate form. To get around this apparently unrealistic behaviour, we can add damping to the model

$$
u_{t t}(x, t)=u_{k x}(x, t)-\underbrace{\gamma u_{t}(x, t)}_{\text {viscous Damping" }}
$$

In proportional to the string velocity-

Instead of persuing this direction here, we shall instead consider in the next lecture what happens when we drive the string with a for ing function.

Muhammad Tahr Tattoo
COMSATS UNIVERSITY
\Rightarrow Chebysher Differentiation
Matrices:-

1) Liscretize the interval $[-1,1]$ using chebycher points

$$
\begin{gathered}
x_{j}=\cos \left(\frac{j \pi}{n}\right) ; j=0,1, \ldots, N \quad \begin{array}{l}
\text { Guars Lobate } \\
P_{0} \lambda_{5}, \\
x_{j}=\cos \left(\frac{\pi}{n}\right) \\
j=0,1, \cdots, N
\end{array} \\
y=\left[y\left(x_{0}\right), y\left(x_{1}\right), \ldots, y\left(x_{N}\right)\right]
\end{gathered}
$$

2) Find the algebraic polynomials P of degree at most N that interpolate the data, which that $-P\left(x_{i}\right)=y_{i}$
3) Obtain spectral derivative vector y^{\prime} by differentiating p and evaluating at the grid points.

$$
y_{i}^{\prime}=P^{\prime}\left(x_{i}\right), i=0,1, \ldots, N
$$

This procedure will give us D_{n} and $\sqrt{y^{\prime}=D_{r} d}$

For $N=1$ We have two points

$$
\begin{aligned}
& x_{0}=1, x_{1}=-1 \\
& P(x)=\frac{x-x_{1}}{x_{0}-x_{1}} y_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{1} \\
& \Rightarrow P(x)=\frac{x+1}{1+1} y_{0}+\frac{x-1}{-1-1} y_{1} \\
&=\frac{x+1}{2} y_{0}+\frac{1-x}{2} y_{1} \\
& P^{\prime}(x)=\frac{1}{2} y_{0}-\frac{1}{2} y_{1} \\
& \Rightarrow y^{\prime}=\left[\begin{array}{ll}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=D_{1} y
\end{aligned}
$$

For Chebgshev Polynomials $D^{2}=(D)(D)$

$$
\frac{d^{2}}{d x^{2}}=\left(\frac{d}{d x}\right)\left(\frac{d}{d x}\right)
$$

First row at x_{0} 4 and row ad x_{1}

For $n=21, x_{0}=1, x_{1}=0, x_{2}=-1$

$$
\begin{aligned}
& P(x)= \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1} \\
&+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2} \\
& \Rightarrow P(x)=\frac{(x-0)(x+1)}{(1-0)(1+1)} y_{0}+\frac{(x-1)(x+1)}{(1-1)(0+1)} y_{1}+\frac{(x-1)(x-0)}{(1-1)(-1-0)} y_{2} \\
&=\frac{x(x+1)}{2} y_{0}-(x-1)(x+1) y_{1}+\frac{(x-1)(x)}{2} y_{2} \\
& \Rightarrow P^{\prime}(x)=\left(x+\frac{1}{2}\right) y_{0}-2 x y_{1}+\left(x-\frac{1}{2}\right) y_{2} \\
& \Rightarrow P^{\prime}\left(x_{1}\right)=\left(x_{1}+\frac{1}{2}\right) y_{0}-2 x_{1} y_{1}+\left(x_{1}-\frac{1}{2}\right) y_{2} \\
&=\left(0+\frac{1}{2}\right) y_{0}-2(0) y_{1}+\left(0-\frac{1}{2}\right) y_{2} \\
&=\frac{1}{2} y_{0}-0-\frac{1}{2} y_{2} \\
&=\left(x_{0}+\frac{1}{2}\right) y_{0}-2 x_{0} y_{1}+\left(x_{0}-\frac{1}{2}\right) y_{2} \\
&=\left(1+\frac{1}{2}\right) y_{0}-2(1) y_{1}+\left(1-\frac{1}{2}\right) y_{2} \\
&=\frac{3}{2} y_{0}-2 y_{1}+\frac{1}{2} y_{2} \\
& P^{\prime}\left(x_{0}\right) \\
&=\left(x_{2}+\frac{1}{2}\right) y_{0}-2 x_{2} y_{2}+\left(x_{2}-\frac{1}{2}\right) y_{2} \\
&=\left(-1+\frac{1}{2}\right) y_{0}-2(-1) y_{1}+\left(-\frac{1}{2}\right) y_{2} \\
&=-\frac{1}{2} y_{0}+2 y_{1}-\frac{3}{2} y_{2} \\
& P^{\prime}\left(x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y^{\prime}= & {\left[\begin{array}{ccc}
\frac{3}{2} & -2 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{-1}{2} \\
\frac{-1}{2} & 2 & \frac{-3}{2}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right] \Rightarrow D_{2}=\left[\begin{array}{ccc}
\frac{3}{2} & -2 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{-1}{2} \\
\frac{-1}{2} & 2 & \frac{-3}{2}
\end{array}\right] } \\
& \Rightarrow y^{\prime}=D_{2} y
\end{aligned}
$$

* For $N \geqslant 1$, set the lows and collimins of $(N+1) \times(N+1)$
* Chebysher spectral differentiation matrix D_{N} be the indexed from 0 to N, The entries of this matrix

$$
\begin{aligned}
& \text { are } \\
& \left(D_{N}\right)_{00}=\frac{2 N^{2}+1}{6},\left(D_{N}\right)_{N N}=\frac{\left(2 N^{2}+1\right)}{6} \\
& \left(D_{N}\right)_{j j}=\frac{-x_{j}}{2\left(1-x_{j}^{2}\right)} ; j=1,2, \cdots, N-1
\end{aligned}
$$

$$
\left(D_{N}\right)_{i j}=\frac{C_{i}(-1)^{i+j}}{C_{j}\left(x_{i}-x_{j}\right)}, i \neq j\{\text { Non-Diagonal }
$$

where $C_{i}= \begin{cases}2 ; & i=0, N \\ 1 ; & \text { otherwise }\end{cases}$
Example From above relation find matrix for $N=2$
Solution

$$
\begin{aligned}
& \text { matrix } \\
& D_{2}=\left[\begin{array}{lll}
D_{00} & D_{01} & N=2 \\
D_{10} & D_{11} & D_{12} \\
D_{20} & D_{21} & D_{22}
\end{array}\right]\left\{\begin{array}{l}
x_{0}=1 \\
x_{1}=0 \\
x_{2}=-1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(D_{2}\right)_{00}=\frac{2(2)^{2}+1}{6}=\frac{9}{6}=\frac{3}{2} \\
& \left(D_{2}\right)_{22}=\frac{-\left[2(2)^{2}+1\right]}{6}=\frac{-9}{6}=\frac{-3}{2} \\
& \left(D_{2}\right)_{11}=\frac{-x_{1}}{2\left(1-x_{1}^{2}\right.}=\frac{0}{2(1-0)}=0 \\
& \left(D_{2}\right)_{01}=\frac{C_{0}(-1)^{0+1}}{C_{1}\left(x_{0}-x_{1}\right)}=\frac{2(-1)}{1(1-0)}=-2 \\
& \left(D_{2}\right)_{02}=\frac{C_{0}(-1)^{0+2}}{C_{2}\left(x_{0}-x_{2}\right)}=\frac{2(+1)}{2(1+1)}=\frac{1}{2} \\
& \left(D_{2}\right)_{10}=\frac{C_{1}(-1)^{1+0}}{C_{0}\left(x_{1}-x_{0}\right)}=\frac{1(-1)}{2(0-1)}=\frac{1}{2} \\
& \left(D_{2}\right)_{12}=\frac{C_{1}(-1)^{1+2}}{C_{2}\left(x_{1}-x_{2}\right)}=\frac{1(-1)}{2(0+1)}=\frac{-1}{2} \\
& \left(D_{2}\right)_{20}=\frac{C_{2}(-1)^{2+0}}{C_{0}\left(x_{2}-x_{0}\right)}=\frac{2(1)}{2(-1-1)}=\frac{-1}{2} \\
& \left(D_{2}\right)_{21}=\frac{C_{2}(-1)^{2+1}}{C_{1}\left(x_{2}-x_{1}\right)}=\frac{2(-1)}{1(-1-0)}=2 \\
& \Rightarrow\left[\begin{array}{l}
\frac{3}{2}-\frac{1}{2} \\
\frac{1}{2} \\
D_{2}
\end{array}\right]=\frac{-1}{2}=2
\end{aligned}
$$

Exercise:- Solve $y^{\prime \prime}=e^{4 x} \quad ; \quad N=4$

$$
y(-1)=y(1)=0
$$

Solution

$$
\because y^{\prime \prime}=D^{2} y
$$

first of all we have to find D. For this we can have Gauss Lobato points

$$
x_{i}=\cos \left(\frac{\pi i}{N}\right)
$$

Here we have $N=4$ i.e $0 \leqslant i \leqslant 4$ So the grid points will be given as (Galertein Lobito points)

$$
\begin{gathered}
x_{0}=\cos (0)=1, \quad x_{1}=\cos \left(\frac{\pi}{4}\right)=0.7071 \\
x_{2}=\cos \left(\frac{\pi}{2}\right)=0, \quad x_{3}=\cos \left(\frac{3 \pi}{4}\right)=-0.7071 \\
x_{4}=\cos (\pi)=-1
\end{gathered}
$$

Now we find D_{4} (Chybesher spectral differential matrix)

$$
\begin{aligned}
& \text { differential matux) } \\
& D_{4}=\left[\begin{array} { l l l l }
{ (D _ { 4 }) _ { 0 0 } } & { (D _ { 4 }) _ { 0 1 } } & { (D _ { 4 }) _ { 0 2 } } & { (D _ { 4 }) _ { 3 3 } }
\end{array} \left(\begin{array}{lll}
\left(D_{4}\right)_{04} \\
\left(D_{4}\right)_{10} & \left(D_{4}\right)_{11} & \left(D_{4}\right)_{12}
\end{array}\left(D_{4}\right)_{13}\right.\right.
\end{aligned}\left(\begin{array}{lll}
\left(D_{4}\right)_{14} \\
\left(D_{4}\right)_{20} & \left(D_{4}\right)_{21} & \left(D_{4}\right)_{22}
\end{array}\left(\begin{array}{lll}
\left.D_{4}\right)_{23} & \left(D_{4}\right)_{24} \\
\left(D_{4}\right)_{30} & \left(D_{4}\right)_{31} & \left(D_{4}\right)_{32} \\
\left(D_{4}\right)_{33} & \left(D_{4}\right)_{34} \\
\left(D_{44}\right)_{40} & \left(D_{4}\right)_{41} & \left(D_{4}\right)_{42}
\end{array}\left(D_{44}\right)_{43}\left(D_{4}\right)_{44}\right)\right] .
$$

$$
\left(l_{4}\right)_{00}=\frac{2(4)^{2}+1}{6}=\frac{33}{6}=5.5
$$

$$
\begin{aligned}
&\left(D_{4}\right)_{44}=-\frac{2 N^{2}+1}{6}=\frac{-11}{6}=-5.5 \\
&\left(D_{4}\right)_{11}=\frac{-x_{1}}{2\left(1-x_{1}^{2}\right)}=\frac{-0.7071}{2\left(1-(00.7071)^{2}\right)}=-0.7071 \\
&\left(D_{4}\right)_{22}=\frac{-x_{2}}{2\left(1-x_{2}^{2}\right)}=\frac{0}{2\left(1-0^{2}\right)}=0 \\
&=\frac{-x_{3}}{2\left(1-x_{3}^{2}\right)}=\frac{0.7071}{\left.2(1-0.7071)^{2}\right)}=0.7071 \\
&\left(D_{4}\right)_{33} \\
&\left(D_{4}\right)_{10}=\frac{C_{1}(-1)^{1+0}}{C_{0}\left(x_{1}-x_{0}\right)}=\frac{1(-1)}{2(0.7071-1)}=1-7071 \\
&\left(D_{4}\right)_{01}=\frac{C_{0}(-1)^{0+1}}{C_{1}\left(x_{0}-x_{1}\right)}=\frac{2(-1)}{1(1-0.7071)}=-6.8283 \\
&\left(D_{4}\right)_{02}=\frac{C_{0}(-1)^{0+2}}{C_{2}\left(x_{0}-x_{2}\right)}=\frac{2(1)}{1(1-0)}=2 \\
&\left(D_{4}\right)_{03}=\frac{C_{0}(-1)^{0+3}}{C_{3}\left(x_{0}-x_{3}\right)}=\frac{2(-1)}{1(1+0.7071)}=-1.1716 \\
&\left(D_{4}\right)_{04}=\frac{C_{0}(-1)^{0+4}}{C_{4}\left(x_{0}-x_{4}\right)}=\frac{2(1)}{2(1+1)}=0.5 \\
&\left(D_{14}\right)_{12}=\frac{C_{1}(-1)^{12}}{C_{2}\left(x_{1}-x_{2}\right)}=\frac{1(-1)}{1(0.7071-0)}=-1.4142 \\
&\left(D_{4}\right)_{13}=\frac{C_{1}(-1)^{1+3}}{C_{3}\left(x_{1}-x_{3}\right)}=\frac{1(1)}{1(0.7071+0.7071)}=0.7071 \\
&\left(D_{4}\right)_{14}=\frac{C_{1}(-1)^{1+4}}{C_{4}\left(x_{1}-x_{4}\right)}=\frac{1(-1)}{2(0.7071+1)}=-0.2929
\end{aligned}
$$

$$
\begin{aligned}
\left.D_{4}\right)_{20} & =\frac{C_{2}(-1)^{2+0}}{C_{0}\left(x_{2}-x_{0}\right)}=\frac{1(1)}{2(0-1)}=-0.5 \\
\left.D_{4}\right)_{21} & =\frac{C_{2}(-1)^{2+1}}{C_{1}\left(x_{2}-x_{1}\right)}=\frac{1(-1)}{1(0-0.7071)}=1.4142
\end{aligned}
$$

$$
\begin{aligned}
& \left(D_{4}\right)_{23}=\frac{C_{2}(-1)^{2+3}}{C_{3}\left(x_{2}-x_{3}\right)}=\frac{1(-1)}{1(0+0.7071)}=-1.1 \\
& \left(D_{4}\right)_{24}=\frac{C_{2}(-1)^{2+4}}{C_{4}\left(x_{2}-x_{4}\right)}=\frac{1(1)}{2(0+1)}=0.5
\end{aligned}
$$

similarly

As we know $y^{\prime \prime}=D^{2} y$
So

$$
\begin{aligned}
& \left(D_{4}\right)_{30}=0.2929 \quad, \quad\left(D_{4}\right)_{31}=-0.7071 \\
& \left(D_{4}\right)_{32}=1.4142 \quad,\left(D_{4}\right)_{34}=-1.7071 \\
& \left(D_{4}\right)_{40}=-0.5 \quad,\left(D_{4}\right)_{41}=1.1716 \\
& \left(D_{4}\right)_{42}=-2{ }_{4}\left(D_{4}\right)_{43}=6.8283 \\
& \Rightarrow D=\left[\begin{array}{ccccc}
5.5 & -6.8283 & 2 & -1.1716 & 0.5 \\
1.7071 & -0.7071 & -1.4142 & 0.7071 & -0.2929 \\
-0.5 & 1.4142 & 0 & -1.4142 & 0.5 \\
0.2929 & -0.7071 & 1.4142 & 0.7071 & -1.7071 \\
-0.5 & 1.1716 & -2 & 6.8283 & -5.5
\end{array}\right]
\end{aligned}
$$

$$
y^{\prime \prime}=\left[\begin{array}{ccccc}
17 & -28.4845 & 18 & -11.5147 & 5 \\
9.2426 & -14 & 6 & -2 & 0.7574 \\
-1 & 4 & -6 & 4 & -1 \\
0.7574 & -2 & 6 & -14 & 9.2426 \\
5 & -11 & 18 & -28.4853 & 17
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{1} \\
y_{1} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

Now from the boundary conditions

$$
y(-1)=f(1)=0
$$

So that we have

$$
y^{\prime \prime}=\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

We have $f(x)=e^{9 x}$

$$
\begin{aligned}
\Rightarrow & f\left(x_{1}\right)=e^{4 x_{1}}=e^{4(0.7071)}=16.9198 \\
& f\left(x_{2}\right)=e^{4(0)}=e^{4 x_{3}}=1 \\
& f\left(x_{3}\right)=e^{4(-0.7071)}=e=0.591
\end{aligned}
$$

So that

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
16.9198 \\
1 \\
0.591
\end{array}\right]} \\
& A Y=f(x) \text { where } A=D^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow Y=A^{-1} f(x) \\
& \Rightarrow Y=\left[\begin{array}{lll}
-0.1042 & -0.125 & -0.0208 \\
-0.0833 & -0.333 & -0.0833 \\
-0.208 & -0.1250 & -0.1042
\end{array}\right]\left[\begin{array}{c}
16.9198 \\
1 \\
0.591
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
-1.8836 \\
-1.7482 \\
-0.4836
\end{array}\right]
\end{aligned}
$$

Enact Solution :-

$$
\left.\begin{array}{rl}
y(x) & =\frac{e^{4 x}-x \sinh (4)-\cos h(4)}{16} \\
\Rightarrow & {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=[-1.8554} \\
-1.6443 \\
-0.4970
\end{array}\right] \quad\left[\begin{array}{l}
-\left[\begin{array}{l}
1 / 2
\end{array}\right]
\end{array}\right.
$$

Assignment No. 2 .
Question 1:- Solve $u^{\prime \prime}=e^{u x}, u(\pm 1)>0$ by chebysheve differential matrix D_{N} method fr $N=4$. Exact solution $u(x)=\frac{e^{4 x}-x \sinh (4)-\cos h(4)}{16}$ (Already solved)

Question 2: -Consider the Non-Linear $O D_{E}$ $u_{k x}=e^{u}$ with $u(-1)=u(1)=0$ Solve it by chebyshev differentiation matrix D_{N} method for $N=4$.
Solos
Fr discretization of interval, we will use chebysher Gauss-Lobato formula $\quad x_{j}=\cos \left(\frac{\pi j}{N}\right) ; j=0,1, \ldots, N$
for $N=4 \quad x_{j}=\cos \left(\frac{\pi j}{4}\right) ; j=0,1,2, \ldots, 4$
So we have $x_{0}=1, x_{1}=0.707, x_{2}=0$

$$
x_{3}=-0.707 \quad \& \quad x_{4}=-1
$$

As in previous problem we have already calculated chebysher differentiate $\operatorname{matrix} D_{N}$ and consequently found
i.e $D_{4}^{2} \quad D_{4}^{2}=\left[\begin{array}{ccccc}17 & -28.4853 & 18 & -11.5147 & 5 \\ 9.2426 & -14 & 6 & -2 & 0.7574 \\ -1 & 4 & -6 & 4 & -1 \\ 0.7574 & -2 & 6 & -14 & 9.2426 \\ 5 & -11.5147 & 18 & -28.4853 & 17\end{array}\right]$

Now we discard boundaries because of given boundary conditions $u(\pm 1)=0$. So we have $D_{4}^{2}=\left[\begin{array}{ccc}-14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14\end{array}\right]$
k we have $D_{4}^{2} u^{\prime}=u_{x x}$ or $D_{4}^{2} u=u^{\prime \prime}$
so ODE becomes

$$
\begin{gathered}
D_{4}^{2} u=e^{u} \\
\text { ie }\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e^{u_{3}}
\end{array}\right] \\
a\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]^{-1}\left[\begin{array}{l}
e^{u_{1}} \\
u_{2} \\
e^{u_{3}}
\end{array}\right]
\end{gathered}
$$

As in previous problem we have calculated the inverse of above 3×3 matrix. so we have

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-0.1042 & -0.125 & -0.208 \\
-0.0833 & -0.333 & -0.0833 \\
-0.0208 & -0.125 & -0.1042
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
u_{2} \\
u_{3} \\
e^{3}
\end{array}\right]
$$

Now we will solve it by iterative method

$$
\left.\Rightarrow\left[\begin{array}{l}
u_{1}^{k+1} \\
u_{2}^{k+1} \\
u_{3}^{k+1}
\end{array}\right]=\left[\begin{array}{ccc}
-0.1042 & -0.125 & -0.208 \\
-0.0833 & -0.333 & -0.0833 \\
-0.0208 & -0.125 & -0.1042
\end{array}\right]\left[\begin{array}{l}
e_{1}^{u_{1}^{k}} \\
e_{2}^{k} \\
e^{k}
\end{array}\right] \xrightarrow{e_{3}^{k}}\right]
$$

For $k=0 \quad$ taking initial guess $u=(0,0,0)$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{l}
u_{1}^{1} \\
u_{2}^{1} \\
u_{3}^{1}
\end{array}\right]=\left[\begin{array}{l}
-0.25 \\
-0.4996 \\
-0.25
\end{array}\right] \\
& f_{0} k=1\left[\begin{array}{l}
u_{1}^{2} \\
u_{2}^{2} \\
u_{3}^{2}
\end{array}\right]=\left[\begin{array}{l}
0.0937 \\
0.2081 \\
0.0937
\end{array}\right] \text { for } k=2\left[\begin{array}{l}
u_{1}^{3} \\
u_{2}^{3} \\
u_{3}^{3}
\end{array}\right]=\left[\begin{array}{l}
-0.0377 \\
-0.0771 \\
-0.0377
\end{array}\right]
\end{aligned}
$$

And by using MATLAB program we get the result upto certain accuracy

$$
\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{l}
-0.1899 \\
-0.3684 \\
-0.1899
\end{array}\right]
$$

Question $3 r$ Consider the ODE

$$
u^{\prime \prime}=e^{4 x} \quad \text { with } \quad u^{\prime}(-1)=0 \quad \& u(1)=0
$$

Solve it by chebyshev differentiation matrix D_{N} method for $N=4$.

So like previous truro questions we can calculate D_{4} and A_{4}^{2}. so from previous problem we have

$$
D_{4}=\left[\begin{array}{ccccc}
5.5 & -6.8284 & 2 & -1.1716 & 0.5 \\
17071 & -0.7071 & -1.4142 & 0.7071 & -0.2929 \\
-0.5 & 1.4142 & 0 & -1.4142 & 0.5 \\
0.2929 & -0.7071 & 1.4142 & 0.7071 & -1.707 \\
-0.5 & 1.1716 & -2 & 6.8284 & -5.5
\end{array}\right]
$$

And

$$
D_{4}=\left[\begin{array}{ccccc}
17 & -28.4853 & 18 & -11.5147 & 5 \\
9.2426 & -14 & 6 & -2 & 0.7574 \\
-1 & 4 & -6 & 4 & -1 \\
0.7574 & -2 & 6 & -14 & 9.2426 \\
5 & -11.5147 & 18 & -28.4853 & 17
\end{array}\right]
$$

Now we discard Hst now and Hst colarmn of D_{4} and D_{4}^{2}. also we we replace 5th row of D_{4}^{2} with 5 th row of D_{4} Because of B.Cs $U^{\prime}(-1)=0$ and $U(1)=0$. So we have

$$
D_{4}^{2}=\left[\begin{array}{cccc}
-14 & 6 & -2 & 0.7574 \\
4 & -6 & 4 & -1 \\
-2 & 6 & -14 & 9.2426 \\
1.1716 & -2 & 6.8284 & -5.5
\end{array}\right] \xrightarrow{\longrightarrow}(1)
$$

Now as $u^{\prime \prime}=\perp_{4}^{2} u$ so we have

$$
\begin{aligned}
D_{4}^{2} u & =e^{4 x} \quad, f(x)=e^{4 x} \\
& \Rightarrow D_{4}^{2} u=f(x)
\end{aligned}
$$

$$
\text { ie }\left[\begin{array}{cccc}
-14 & 6 & -2 & 0.7574 \\
4 & -6 & 4 & -1 \\
-2 & 6 & -14 & 9.2426 \\
1.1716 & -2 & 6.8254 & -5.5
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
f\left(x_{4}\right)
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-0.1328 & -0.2226 & -0.1875 & -0.2929 \\
-0.1810 & -0.6667 & -0.6524 & -1 \\
-0.1575 & -0.6940 & -1.7056 & -1.7071 \\
-0.1953 & -0.667 & -1.1381 & -2
\end{array}\right]\left[\begin{array}{c}
16.9188 \\
1 \\
0.0591 \\
0.01831
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
-2.4853 \\
-3.7852 \\
-3.9611 \\
-4.0741
\end{array}\right] .
$$

Question 4- Consider the ODE

$$
u^{\prime \prime}=e^{4 x} \text { with } u(-1)=0 \quad q u(1)=1
$$

Solve it by chebyshev differentiation matrix D_{4} method for $N=4$.
So Like previous problems, we will calculate A_{4} and D_{4}^{2}. Then we mill discard st row and st column of D_{4}^{2} because of B. Cs $u(-1)=0$ and $u(1)=1$, so we will have a 4×4 matrix D_{4}^{2} as

Now as $D_{4}^{2} u=U^{\prime \prime}$, so we have

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{ll}
0 & \\
\text { same as Above }
\end{array}\right]^{-1}\left[\begin{array}{c}
16.9188 \\
1 \\
0.0591 \\
0.01831
\end{array}\right]
$$

\Rightarrow Spectral Methods in MultiDimentional Domain:-Consider a poisson equation

$$
u_{x x}+u_{y y}=f(x, y) \text { with }
$$

appropriate boundary conditions

* The solution is written in terms of product of two functions

$$
u(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} a_{m n} d_{m}(x) \phi_{n}(y)
$$

In periodic function problem:-

$$
\begin{aligned}
& \text { ic function problem :- } \\
& d_{m}(x)=e^{-i n x}, \quad \phi_{n}(x)=e^{-i n y}
\end{aligned}
$$

Non periodic

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\phi_{m}(x)=T_{m}(x) \\
\phi_{n}(y)=T_{n}(y)
\end{array}\right\} \rightarrow \text { Cheb } \\
\phi_{m}(x)=L_{n}(x) \\
\phi_{n}(y)=\operatorname{Ln}(y)
\end{array}\right\} \rightarrow \text { Legender }
$$

* Multidimentional problem require a larger computational effect.
* Here we have to compute the sum $u\left(x_{i}, y_{i}\right)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} a_{m n} \phi_{m}\left(x_{i}\right) \phi_{n}\left(y_{i}\right)$ on a grid wilt $N \times M$ collocation points. $(i=0,1, \ldots, M-1),(j=0,1, \cdots, N-1)$
* The easiest way to solve a pol on a tensor product spectrod
grid is to use tensor product in linear algebra, also known as kronecker product.

Definition:- The kronecker product of two matrix. A and B is denoted by $A \otimes B$. If A and B are of dimension $p \times q$ and $2 \times s$ respectively then $A \otimes B$ is the matrix of dimension $p r \times q s$ with $p \times q$ block forms.

$$
\begin{aligned}
& \text { Example 1 } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& \Rightarrow A \otimes B=\left[\begin{array}{ll|ll}
a & b & 2 a & 2 b \\
c & d & 2 c & 2 d \\
\hline 3 a & 3 b & 4 a & 4 b \\
3 c & 3 d & 4 c & 4 d
\end{array}\right]
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \text { Example 2 } \\
& A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right] \\
& \Rightarrow A \otimes B=\left[\begin{array}{ll|ll}
0 & 5 & 0 & 10 \\
6 & 7 & 12 & 14 \\
\hline 0 & 15 & 0 & 20 \\
18 & 21 & 24 & 28
\end{array}\right]
\end{aligned}
$$

Our Laplacian will be the kronecker
sum $L_{N}=I \otimes \bar{D}_{N}^{2}+D_{N}^{2} \otimes I$,
where I is identity matrix of same order as \hat{D}_{N}^{2}.

* Now the 3×3 differentiation matrix with $N=4$ in one dimension is given by $D=\operatorname{cheb}(4) ; D_{2}=D^{\wedge} 2$;

$$
\begin{aligned}
& D_{2}=D_{2}(2: 4,2: 4) ; \\
& A_{1}^{2}=\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]
\end{aligned}
$$

If I denotes the 3×3 identity, then the 2 nd derivative with respect to x mill accadingly by computed by the matin tron (I, D2);

The and derivative w.r.t y will be computed by pron $\left(D_{1}, I\right)$;

Question, Solve the following 21 ODE by Chebyshev differentiation matrix for $N=3$

$$
u_{x x}+u_{y y}=10 \sin (8 x(y-1))
$$

$-1<x, y<1 ; u=0$ on boundaries
Sobating
will For discretization of interval we mill use Chebyshev Gauss Lobato formula.

$$
x_{j}=\cos \left(\frac{\pi j}{N}\right) ; \quad j=0,1,2, \ldots, N
$$

For $N=4$

$$
x_{j}=\cos \left(\frac{\pi j}{4}\right) ; j=0,1, \cdots, 4
$$

So we have
$x_{1}=1, \quad x_{1}=0.707, \quad x_{2}=0, \quad x_{3}=-0.707$

$$
\begin{aligned}
& x_{4}=-1, \quad x_{1}=0.707, \quad \text { and } \quad y_{0}=1, \quad y_{1}=0.707 \\
& y=y_{4}=-
\end{aligned}
$$

$y_{2}=0, \quad$ and $\quad y_{3}=-0.707, \quad$ \& $y_{4}=-1$
$W_{0_{w}}$ we find D_{4} (Chebysher diffirentiation
matrix.
And

$$
D_{4}=\left[\begin{array}{ccccc}
5.5 & -6.8283 & 2 & -1-1716 & 0.5 \\
1.7071 & -0.7071 & -1.4142 & 0.7071 & -0.2929 \\
-0.5 & 1-4142 & 0 & -1.4142 & 0.5 \\
0.2929 & -0.7071 & 1.4142 & 0.7071 & -1.7071 \\
-0.5 & 1.1716 & -2 & 6.8283 & -5.5
\end{array}\right]
$$

And

$$
D_{4}^{2}=\left[\begin{array}{ccccc}
17 & -28.4845 & 18 & -11.5147 & 5 \\
9.2426 & -14 & 6 & -2 & 0.7574 \\
-1 & 4 & -6 & 4 & -1 \\
0.7574 & -2 & 6 & -14 & 9.2426 \\
5 & -11.5147 & 18 & -28.4845 & -17
\end{array}\right]
$$

Now from boundary conditions.. since $u=0$ on boundaries. So we have

$$
D_{4}^{2}=\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]
$$

As in 2D our Laplacian will be

$$
\begin{equation*}
L_{N}=I \otimes \tilde{D}_{4}^{2}+\tilde{D}_{4}^{2} \otimes I \tag{1}
\end{equation*}
$$

Where $I \otimes \tilde{D}_{4}^{2}$ is and derivative mitt respect to x and $\bar{D}_{4}^{2} \otimes I$ is $2 n d$ derivative with respect to y.
And \otimes denotes the kronecker prod ed
Now

$$
I \otimes \tilde{D}_{4}^{2}=\left[\begin{array}{ccc|ccc|ccc}
-14 & 6 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & -6 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 6 & -14 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & -14 & 6 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & -6 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 6 & -14 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & -14 & 6 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 & -6 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 6 & -14
\end{array}\right]
$$

And

$$
\tilde{D}_{4}^{2} \otimes I=\left[\begin{array}{ccc|ccc|ccc}
-14 & 0 & 0 & 6 & 0 & 0 & -2 & 0 & 0 \\
0 & -14 & 0 & 0 & 6 & 0 & 0 & -2 & 0 \\
0 & 0 & -14 & 0 & 0 & 6 & 0 & 0 & -2 \\
\hline 4 & 0 & 0 & -6 & 0 & 0 & 4 & 0 & 0 \\
0 & 4 & 0 & 0 & -6 & 0 & 0 & 4 & 0 \\
0 & 0 & 4 & 0 & 0 & -6 & 0 & 0 & 4 \\
\hline-2 & 0 & 0 & 6 & 0 & 0 & -14 & 0 & 0 \\
0 & -2 & 0 & 0 & 6 & 0 & 0 & -14 & 0 \\
0 & 0 & -2 & 0 & 0 & 6 & 0 & 0 & -14
\end{array}\right]
$$

$$
\Rightarrow L_{4}=\left[\begin{array}{ccccccccc}
-28 & 6 & -2 & 6 & 0 & 0 & -2 & 0 & 0 \\
4 & -20 & 4 & 0 & 6 & 0 & 0 & -2 & 0 \\
-2 & 6 & -28 & 0 & 0 & 6 & 0 & 0 & -2 \\
4 & 0 & 0 & -20 & 6 & -2 & 4 & 0 & 0 \\
0 & 4 & 0 & 4 & -12 & 4 & 0 & 4 & 0 \\
0 & 0 & 4 & -2 & 6 & -20 & 0 & 0 & 4 \\
-2 & 0 & 0 & 6 & 0 & 0 & -28 & 6 & -2 \\
0 & -2 & 0 & 0 & 6 & 0 & 4 & -20 & 4 \\
0 & 0 & -2 & 0 & 0 & 6 & -2 & 6 & -28
\end{array}\right]
$$

As we know that

$$
L_{4} u=f(x, y)
$$

where $f(x, y)=10 \sin [8 x(y-1)]$

Now $f\left(x_{1}, y_{1}\right)=10 \sin [8(0.707)(0.707-1)]$

$$
\begin{aligned}
f\left(x_{1}, y_{2}\right) & =-9.9627 \\
& =5.8687 \\
f\left(x_{1}, y_{3}\right) & =10 \sin [8(0.707)(0-1)] \\
& =2.2799 \\
f\left(x_{2}, y_{1}\right) & =10 \sin [8(0)(0.707-1)] \\
& =0 \\
f\left(x_{2}, y_{2}\right) & =10 \sin [8(0)(0-1)] \\
& =0 \\
f\left(x_{2}, y_{3}\right) & =10 \sin [8(0)(-0.707-1)] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \left.f\left(x_{3}, \delta_{1}\right)=10 \sin [-0.707)(0.707-1)\right] \\
& =9.9627 \\
& f\left(x_{3}, y_{2}\right)=10 \sin [8(-0.707)(0-1)] \\
& =-5.8687 \\
& f\left(x_{3}, g_{3}\right)=10 \sin [8(-0.707)(-0.707-1)] \\
& =-2.2799 \\
& \Rightarrow\left[\begin{array}{ccccccccc}
-28 & 6 & -2 & 6 & 0 & 0 & -2 & 0 & 0 \\
4 & -20 & 4 & 0 & 6 & 0 & 0 & -2 & 0 \\
-2 & 6 & -28 & 0 & 0 & 6 & 0 & 0 & -2 \\
4 & 0 & 0 & -20 & 6 & 2 & 4 & 0 & 0 \\
0 & 4 & 0 & 4 & -12 & 4 & 0 & 4 & 0 \\
0 & 0 & 4 & -2 & 6 & -20 & 0 & 0 & 4 \\
-2 & 0 & 0 & 6 & 0 & 0 & -28 & 6 & -2 \\
0 & -2 & 0 & 0 & 6 & 0 & 4 & -20 & 4 \\
0 & 0 & -2 & 0 & 0 & 6 & -2 & 6 & -28
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{12} \\
u_{13} \\
u_{21} \\
u_{22} \\
u_{23} \\
u_{31} \\
u_{32} \\
u_{33}
\end{array}\right]=\left[\begin{array}{c}
-9.9627 \\
5.8687 \\
2-2799 \\
0 \\
0 \\
0 \\
9.9627 \\
-5.8687 \\
-2.2799
\end{array}\right] \\
& A U=B \quad \Rightarrow \quad U=A^{-1} B \\
& *\left[\begin{array}{l}
U_{11} \\
u_{12} \\
u_{13} \\
u_{21} \\
u_{22} \\
U_{23} \\
u_{31} \\
u_{32} \\
U_{33}
\end{array}\right]=\left[\begin{array}{ccccc}
-0.401 & -0.0151 & 0.0005 & -0.0151 & -0.0170 \\
-0.0101 & -0.0648 & -0.0401 & -0.0114 & -0.0455 \\
-0.0005 & -0.0151 & -0.0401 & -0.0019 & -0.0170 \\
-0.0101 & -0.0114 & -0.0013 & -0.0448 & -0.0455 \\
-0.0076 & -0.0303 & -0.0076 & -0.0303 & -0.1439 \\
-0.0013 & -0.0114 & -0.0101 & -0.0034 & -0.0455 \\
0.0005 & -0.0019 & -0.006 & -0.051 & -0.0170 \\
-0.0013 & -0.0034 & -0.0013 & -0.0114 & -0.0455 \\
-0.0006 & -0.019 & 0.0005 & -0.0019 & -0.0170
\end{array}\right.
\end{aligned}
$$

$\left.\begin{array}{ccc}-0.0019 & 0.0005 & -0.0019\end{array}-0.0006\right][-9.9627]$ $\left.\begin{array}{lllll}-0.0114 & -0.0013 & -0.0034 & -0.0013\end{array} \right\rvert\, 5.8687$ $\left.\begin{array}{llll}-0.0151 & -0.006 & -0.0019 & 0.0005\end{array} \right\rvert\, \begin{array}{ll}2.2799\end{array}$
$\begin{array}{llll}-0.0034 & -0.010 & -0.0114 & -0.0013\end{array}$
$-0.0303 \quad-0.0076 \quad-0.0303 \quad-0.0076$
$-0.0648 \quad-0.0013 \quad-0.0114 \quad-0.0101$
$\begin{array}{lllll}-0.019 & -0.0401 & -0.0151 & 0.0005\end{array}$
$\left.\begin{array}{cccc}-0.0114 & -0.0101 & -0.0648 & -0.0101 \\ -0.0151 & 0-005 & -0.0151 & -0.0401\end{array}\right]\left[\begin{array}{l}-5.8687 \\ -2.2799\end{array}\right]$
$\Rightarrow\left[\begin{array}{c}u_{11} \\ u_{12} \\ u_{13} \\ u_{21} \\ u_{22} \\ u_{23} \\ u_{31} \\ u_{32} \\ u_{33}\end{array}\right]=\left[\begin{array}{c}0.3295 \\ -0.2930 \\ -0.1806 \\ 0 \\ 0 \\ 0 \\ -0.3295 \\ 0.2930 \\ 0.1806\end{array}\right]$

Sturm Liouville Expansion (S.L Expansion

$$
y^{\prime \prime}-\omega^{2} y=0
$$

Solution will be in 'sin' and cos

* Legendre Polynomial:-

$$
P_{e}(x)=\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+e(e+1) y=0
$$

* Hermite Polynomial

$$
H_{n}(x)=y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

* Bessel Function:-

$$
J_{p}(x)=x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0
$$

These all are spacial cases of SLL Theory
\Rightarrow S.L. Theory: -Let $y(x)$ be the solution to the differential equation

$$
\frac{d}{d x}\left\{P(x) \frac{d y}{d x}\right\}+w(x) y^{\prime}(x)+\lambda R(x) y(x)=0
$$

$a \leqslant x \leqslant b$ subject to boundary conditions

$$
\begin{aligned}
& c_{1} y(a)+c_{2} y^{\prime}(a)=0 \\
& c_{3} y(b)+c_{4} y^{\prime}(b)=0
\end{aligned}
$$

Then by S.L Theorem, there is a set of $y_{\lambda}(x)$ s.L Theorem, there aiken functions, which $\lambda(x)$ called eigends on λ called eigen values. This solution is complete ad This Sogonal i.e

$$
f(x)=\sum_{n}^{\infty} y_{\lambda}(x)
$$

and $\int_{a}^{b} r(x) y_{n}(x) y_{m}(x) d x=0 \quad$ if $n \neq m$
Put $P(x)=1=2(x), \omega(x)=0$
Then becomes

$$
\frac{d^{2} y}{d x^{2}}+\lambda y(x)=0 \quad y \leqslant x \leqslant L
$$

$\Rightarrow y_{n}=\sin \left(\frac{n \pi x}{L}\right) \quad$ eigen function
\& $\left.\lambda_{n}=\frac{n \pi}{L}\right)^{2} \quad$ eigen Values.
Norm:- A norm is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ -that satisfies following

* Vector Norm.

1) $\|x\| \geqslant 0$, and $\|x\|=0$ only if $x=0$
2) $\|x+y\| \leqslant\|x\|+\|y\|$
3) $\|\alpha x\|=\mid \alpha\| \| x \|$, where α is scaler

* P-Norms:-
l_{1} Norm:- $\|x\|_{1}=\sum_{i=1}^{m}\left|x_{i}\right|$
l_{2} Norms $\|x\|_{2}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2}$
loo Norms- $\max _{1 \leqslant i \leqslant m}\left|X_{i}\right|$
* Matrix Norm-

1) $\|A\| \geqslant 0$
2) $\|A+B\| \leqslant\|A\|+\|B\|$
3) $\|\alpha A\|=|\alpha|\|A\|$

P-Norms:-
l_{1} Normr $\|A\|_{1}=\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{m}\left|a_{i j}\right|$
I2 $\operatorname{Norm}($ Spectral $N o r m) s-\left\|A_{2}\right\|=\sqrt{\text { maximum eigen nalue of } A^{\top} A}$
l_{w} Norm1- $\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right| \quad A$
Foxample:-

$$
\begin{aligned}
\|x\|_{1}=\sum_{i=1}^{3}\left|x_{i}\right| & =|2|+|5|+|-3| \\
& =2+5+3 \\
& =10
\end{aligned}
$$

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{3}\left|x_{i}\right|^{2}}=\sqrt{|2|^{2}+|5|^{2}+|-3|^{2}}
$$

$$
=\sqrt{4+25+9}=\sqrt{38}
$$

$$
=6.1644
$$

$$
\begin{aligned}
\|x\|_{\infty} & =\max (124,151,|-3|) \\
& =\max (2,5,3) \\
& =5
\end{aligned}
$$

Example:-

$$
\left.\left.\begin{array}{l}
\text { Plei- } A=\left[\begin{array}{lll}
3 & 9 & 5 \\
7 & 2 & 4 \\
6 & 8 & 1
\end{array}\right] \quad \operatorname{motix} \\
\max \\
1 \leqslant j \leqslant 3
\end{array}\right]|3|+|7|+|6|,|9|+|2|+|8|,|5|+|4|+|1|\right] \quad .
$$

$$
\begin{aligned}
\|A\|_{1} & =\max [16,19,10] \\
& =19
\end{aligned}
$$

$$
\begin{aligned}
&\|A\|_{\infty}=\max _{1 \leqslant i \leqslant m}[|3|+|9|+|5|,|7|+|2|+\mid 41, \\
&|6|+|8|+|1|] \\
&=\max [17,13,15] \\
&=17
\end{aligned}
$$

* Convolution Sum: - Suppose we have two functions f and g, the complex fourier series for the two functions is given by

$$
\begin{aligned}
& f(x)=\sum_{j=-\infty}^{\infty} a_{j} e^{2 \pi i j k / L} \\
& g(x)=\sum_{k=-\infty}^{\infty} a_{k} e^{2 \pi i k x / L}
\end{aligned}
$$

To find the fourier series of the sum of two functions we simply calculate

$$
f(x)+g(x)=\sum_{k=-\infty}^{\infty}\left(a_{k}+b_{k}\right) e^{2 \pi i k x / L}
$$

And the product of the fun actions

$$
f(x) \times g(x)=\sum_{j, k=-\infty}^{\infty} a_{j} b_{k} e^{2 \pi i(j+k) x / L}
$$

if we pit $j+k=\rho$

$$
\begin{aligned}
& \text { of we pit } j+k_{k}=l \\
\Rightarrow & f(x) \times g(x)=\sum_{l=-\infty}^{\infty}\left(\sum_{j=-\infty}^{\infty} a_{j} b_{p-j}\right)^{2 \pi i} e^{e} /
\end{aligned}
$$

Convortation sum of $\mathrm{O}\left(N^{2}\right)$

Algorithm:-* Choose the chebyshev Gauss lobato points given by $x_{j}=\cos \theta_{j}$, where $\theta_{j}=\frac{j \pi}{N}, j=0,1, \ldots N$

$$
\Rightarrow x_{j}=\cos \frac{j \pi}{N} ; j=0,1,2, \ldots, N
$$

* Given data $v_{0}, v_{1}, \ldots, v_{N}$ at Chebysher points $x_{0}=1, \ldots, x_{N}=-1$, extend this data to a vector V of length $2 N$ with $V_{2 N-j}=V_{j}, j=1,2, \cdots, N-1$
* Using FFT, Calculate

$$
\begin{equation*}
\hat{V}_{k}=\frac{\pi}{N} \sum_{j=1}^{2 N} e^{-i k \theta_{j}} V_{j} ; \quad K=-N+1, \ldots, N \tag{N}
\end{equation*}
$$

* Define $\hat{W}_{k}=i k \hat{V}_{k}$, except $\hat{W}_{N}=0$
* Compute the derivative of the trignometris interpolant Q on the equispaced gid by the inverse FFT

$$
W_{j}=\frac{1}{2 \pi} \sum_{k=-N+1}^{N} e^{i k \theta_{j}} \hat{W}_{k}, j=1,2, \ldots, 2 N
$$

* Calculate the derivative of the algebraic polynomial interpolant q on the interior grid points by

$$
\omega_{j}=-\frac{W_{j}}{\sqrt{1-x_{j}^{2}}}, j=1,2, \cdots, N-1
$$

With the special formulas at the end points
$\omega_{0}=\frac{1}{2 \pi} \cdot \sum_{n=0}^{N} n^{2} \hat{v}_{n}, \omega_{N}=\frac{1}{2 \pi} \sum_{n=0}^{N,}(-1)^{n+1} n^{2} \hat{v}_{n}$

$$
\omega_{0}=\frac{1}{2 \pi} \cdot \sum_{n=0}^{N} n^{2} \hat{v}_{n}, \omega_{N}=\frac{1}{2 \pi} \sum_{n=0}^{N}(-1)^{N} n^{2} v_{n}
$$

Scanned by CamScanner

Solution of Non-Homogeneous BVP2

$$
\begin{align*}
& \begin{array}{l}
u_{x x}+x u_{x}-u= \\
=\left(24+5 x^{2}\right) e^{5 x}+\left(2+2 x^{2}\right) \cos x^{2} \\
\\
-\left(4 x^{2}+1\right) \sin x^{2} \\
u(-1)=e^{-5}+\sin (1)=g- \\
u(1)=e^{5}+\sin (1)=g+\quad u(x)=?
\end{array}
\end{align*}
$$

Let $x=\left(x_{0}, x_{1}, \ldots, x_{N}\right)^{\top}$,
where $x_{j}=\cos \left(\frac{\pi j}{N}\right) ; j=0,1, \ldots, N$
Let $f=f\left(x_{j}\right)=\left(f\left(x_{0}\right), f\left(x_{1}\right), \cdots, f\left(x_{N}\right)\right)^{\top}$
Let $u=\left(g+, u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{N-1}\right), g-\right)^{\top}$

$$
u_{m}=\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{N-1}\right)\right)^{\top}
$$

be the vector of unknowns to be determined
$D_{i j}=$ Chebysher differentiation matrix

$$
D^{2}=D D
$$

(1) implies

$$
\begin{aligned}
& \text { (implies } \begin{aligned}
& D_{m} U_{m}+X_{m} \otimes D_{m} U_{m}-U_{m}=F ; \\
& X_{m}= X(1: N-1) \\
& \begin{aligned}
D_{m}= & (1: N-1,1: N-1) \\
D_{m}^{2}= & D^{2}(1: N-1,1: N-1) \\
F= & f(1: N-1)-\left[D^{2}(1: N-1,0)+X_{m} \otimes D(1: N-1,0)\right] g+ \\
& -\left[D^{2}(1: N-1, N)+X_{m} \otimes D(1: N-1, N)\right] g-
\end{aligned}
\end{aligned} \quad \begin{aligned}
\end{aligned} \quad A-N^{2}+N D-T
\end{aligned}
$$

$w_{h} \Rightarrow A u_{m}=F$, where $A=D^{2}+N D-I$ die Λ is the matrix whose values at "tonal are X_{m}.

Example:- Solve for $N=4$

$$
\begin{aligned}
& \text { Example: Solve for } N=4 \\
& u_{x x}+x u_{x}-u=\left(24+5 x^{2}\right) e^{5 x}+\left(2+2 x^{2}\right) \cos x^{2} \\
& \\
& \left.u(-1)=e^{-5}+\sin (1)=g-1\right) \sin x^{2} \longrightarrow 1 \\
& u(+1)=e^{5}+\sin (1)=g+
\end{aligned}
$$

woven First of all we calculate the Shebysher Gauss lobato points by the formula $x_{j}=\cos \left(\frac{\pi j}{N}\right), j=0,1 \cdots, 4$

$$
\begin{gathered}
\Rightarrow x_{0}=1, x_{1}=0.707, x_{2}=0, x_{3}=-0.707 \\
x_{4}=-1 \\
f(x)=\left(24+5 x^{2}\right) e^{5 x}+\left(2+2 x^{2}\right) \cos x^{2}-\left(4 x^{2}+1\right) \sin x^{2} \\
\Rightarrow f\left(x_{0}\right)=4301.9355, f\left(x_{2}\right)=26 \\
f\left(x_{1}\right)=909.987, f\left(x_{3}\right)=1.9678 \\
f\left(x_{4}\right)=-1.8507
\end{gathered}
$$

$$
\begin{aligned}
& \text { Now } \\
& D_{4}=\left[\begin{array}{ccccc}
5.5 & -6.8284 & 2 & -1.1716 & 0.5 \\
1.7071 & -0.7071 & -1.4142 & 0.7071 & -0.2929 \\
-0.5 & 1.4142 & 0 & -1.4142 & 0.5 \\
0.2929 & -0.7071 & 1.4142 & 0.7071 & -1.70711 \\
-0.5 & 1.1716 & -2 & 68284 & -5.5
\end{array}\right] \\
& D_{4}^{2}=\left[\begin{array}{ccccc}
77 & -28.8445 & 18 & -11.5147 & 5 \\
9.2426 & -14 & 6 & -2 & 07574 \\
-1 & 4 & -6 & 4 & -1 \\
0.7574 & -2 & 6 & -14 & 9.2426 \\
5 & -11.5147 & 18 & -28.4845 & 17
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \tilde{D}^{4}=\left[\begin{array}{ccc}
-0.7071 & -1.4142 & 0.7071 \\
1.4142 & 0 & -1.4142 \\
-0.7071 & 1.4142 & 0.7071
\end{array}\right] \\
& \hat{D}_{4}^{2}=\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]
\end{aligned}
$$

so our Laplacian will be of the form

$$
\tilde{D}_{4}^{2} U_{m}+X_{m} \otimes \mathbb{D}_{4} U_{m}-U_{m}=F
$$

where $F=f(1: N-1)-\left[D^{2}(1: N-1,0)+x_{m} \otimes D(1: N-1,0)\right] g_{ \pm}$

$$
-\left[D^{2}(1: N-1, N)+x_{m} \otimes D(1: N-1, N)\right] g-
$$

a we have non homogenous boundary conditions, SO me adjust our right hand side according to the boundary condition and name it as F

$$
\begin{aligned}
& \Rightarrow F= {\left[\begin{array}{l}
909.987 \\
26 \\
1.9678
\end{array}\right]-\left\{\left[\begin{array}{l}
9.2426 \\
-1 \\
0.7574
\end{array}\right]+\left[\begin{array}{c}
1.2069 \\
0 \\
-0.2071
\end{array}\right]\right\} 149.25 } \\
&\left\{\left[\begin{array}{l}
0.7574 \\
-1 \\
9.2426
\end{array}\right]+\left[\begin{array}{c}
-0.2071 \\
0 \\
1.2069
\end{array}\right]\right\} \\
& 0.8482 \\
&=\left[\begin{array}{l}
909.987 \\
26 \\
1.9678
\end{array}\right]-\left[\begin{array}{l}
1556.8506 \\
-149.25 \\
82.1323
\end{array}\right]-\left[\begin{array}{c}
0.4668 \\
-0.8482 \\
8.8633
\end{array}\right] \\
& \Rightarrow F=\left[\begin{array}{l}
-647.3304 \\
176.0982
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { So © becomes } \\
& \left\{\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]+\left[\begin{array}{ccc}
0.707 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -0.707
\end{array}\right]\left[\begin{array}{ccc}
-0.7071 & -1.442 & 0.70 \\
1.4142 & 0 & -4446 \\
-0.7071 & 1.4142 & 0.7001
\end{array}\right] \\
& \left.-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=[F]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left\{\left[\begin{array}{ccc}
-14 & 6 & -2 \\
4 & -6 & 4 \\
-2 & 6 & -14
\end{array}\right]+\left[\begin{array}{ccc}
-0.5 & -1 & 0.5 \\
0 & 0 & 0 \\
0.5 & -1 & -0.5
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& {\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
-647.3304 \\
176.0 .982 \\
-89.0278
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{ccc}
-15.5 & 5 & -1.5 \\
4 & -7 & 4 \\
-1.5 & 5 & -15.5
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
-647.3304 \\
176.0982 \\
-89.0278
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right]^{-1}[\downarrow \\
& \Rightarrow\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-0.08 & -0.0633 & -0.0086 \\
-0.0506 & -0.216 & -0.056 \\
-0.0086 & -0.0633 & -0.08
\end{array}\right]\left[\begin{array}{c}
-647.3304 \\
176.0982 \\
-89.0278
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
41.4051 \\
-0.6366 \\
1.5422
\end{array}\right]
\end{aligned}
$$

\Rightarrow Solution of Biharmonic Problem:(Fourth Order Problem)
suppose we wish to solve a Biharmonic equation of the form

$$
\begin{gathered}
u_{x \times x x}=f(x) ;-1 \leq x \leq 1 \\
u(\pm 1)=u_{x}(\pm 1)=0
\end{gathered}
$$

To compute the spectral approximation to $u_{x \times \times x}$, Let v_{j} be the $(N-1)$ vector of values u sampled at $x_{1}, x_{2}, \ldots, x_{N-1}$. Then imposing the boundary conditions suggest the follows Let P be the unique polynomial of degree $\leqslant N+2$ with $P(\pm 1)=0$ and $P\left(x_{j}\right)=V_{j}$

$$
\text { Set } w_{j}=P_{x \times x x}\left(x_{j}\right) \quad W=D_{N} V
$$ find Y_{j} at the end

For chebyshev differentiation matrix D_{N}

$$
\begin{aligned}
& \text { Let } P(x)=\left(1-x^{2}\right) q(x) \longrightarrow \\
& \begin{aligned}
\Rightarrow p^{\prime}(x)= & (-2 x) q^{\prime}(x)+\left(1-x^{2}\right) q^{\prime}(x) \\
p^{\prime \prime}(x)= & \left(1-x^{2}\right) q^{\prime \prime}(x)-2 x q^{\prime}(x)-2 x q^{\prime}(x)-2 q(x) \\
= & \left(1-x^{2}\right) q^{\prime \prime}(x)-4 x q^{\prime}(x)-2 q(x) \\
= & \left(1-x^{2}\right) q^{\prime \prime \prime}(x)-2 x q^{\prime \prime}(x)-4 x q^{\prime \prime}(x)-4 q^{\prime}(x) \\
& -2 q^{\prime}(x) \\
P^{\prime \prime \prime}(x) & \left(1-x^{2}\right) q^{\prime \prime \prime}(x)-6 x q^{\prime \prime}(x)-6 q^{\prime}(x) \\
= & \left(1-x^{2}\right) q^{(4 \prime}(x)-2 x q^{\prime \prime}(x)-6 x q^{\prime \prime \prime}(x)-6 q^{\prime \prime}(x) \\
& -6 q^{\prime \prime}(x)
\end{aligned}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow f_{x x k x}(x)=\left(1-x^{2}\right) q_{k x k x}(x)-8 x q_{x x x}(x)-12 q_{k x}(x) \tag{A}
\end{equation*}
$$

A polynomial q of degree $\leqslant N$ with $q(\pm 1)=0$ corresponds to a polynomial P of degree $\leqslant N+2$ with

$$
P(\pm 1)=P_{x}(\pm 1)=0
$$

Carry the required spectral differentiation like this,

Leet q be the unique polynomial of degree $\leqslant N$ with $q(\pm 1)=0$ and

$$
\begin{aligned}
& q\left(x_{j}\right)=\frac{v_{j}}{1-x_{j}^{2}} \quad \because \text { from \& \& } p\left(x_{j}\right)=V_{j} \\
& \Rightarrow \omega_{j}=\left(1-x_{j}^{2}\right) \underbrace{q_{x \times x}\left(x_{j}\right)}_{p_{N}^{4}}-8 x_{j} q_{x_{1 x x}}\left(x_{j}\right)-12 \underbrace{q_{x x}\left(x_{j}\right)}_{\Delta_{N}^{3}}
\end{aligned}
$$

our spectral biharmonic operator in this case

$$
\begin{align*}
L & =\left[\operatorname{diag}\left(1-x_{j}^{2}\right) \tilde{D}_{N}^{4}-8 \operatorname{diag} x_{j} \tilde{A}_{N}^{3}-12 \tilde{D}_{N}^{2}\right] \times \operatorname{diag} \frac{1}{1-x_{j}^{2}} \\
& \Rightarrow L V=f \tag{B}
\end{align*}
$$

$$
\begin{aligned}
\therefore \omega_{j} & =P_{x x x x}\left(x_{j}\right) \\
\Rightarrow P_{x x_{x} x}\left(x_{j}\right) & =\left(1-x_{j}^{2}\right) q_{x x x_{x}}\left(x_{j}\right)-8 x_{j} q_{x x_{x}}\left(x_{j}\right)-12 q_{x x}\left(x_{j}\right) \\
& =\left[\operatorname{diag}\left(1-x_{j}^{2}\right) \tilde{D}_{N}^{4}-8 \operatorname{diag}\left(x_{j}\right) \tilde{D}_{N}^{3}-12 \tilde{D}_{N}^{2}\right] q\left(x_{j}\right) \\
& =\left[\frac{\downarrow}{1-x_{j}^{2}}\right.
\end{aligned}
$$

$=L V$, where L given in equ (B)
$\Rightarrow P_{x_{x x_{x}}}\left(x_{j}\right)=L V$
So solution is $L V=f$
spectral
\Rightarrow Shebysher "Differentiation via DFT:
Solve $f(x)=e^{x} \sin 5 x$
Consider $N=2, x_{j}=\cos \frac{j \pi}{N}, j=0,1, \ldots N$

$$
\begin{aligned}
\Rightarrow & x_{0}=1, \quad x_{1}=0, x_{2}=-1 \\
\Rightarrow & f\left(x_{0}\right)=-2.6066=v_{0} \\
& f\left(x_{1}\right)=0=v_{1} \\
& f\left(x_{2}\right)=0.3528=v_{2}
\end{aligned}
$$

Extend above data -lo a vector $V V_{0}$ of length $2 N(=4)$ with

$$
\begin{aligned}
& V_{2 N-j}=V_{j} ; j=1,2, \cdots, N-1 \\
& \text { i.e } \quad V_{3}=V_{1} \quad\left(\text { Here } N=2, V_{3}=V_{1}\right)
\end{aligned}
$$

Now we have

$$
\begin{gathered}
V=-2.6066 \\
0 \\
0.3528 \\
0
\end{gathered}
$$

* DFT of vector V

$$
\begin{aligned}
\hat{V}_{k} & =\sum_{j=1}^{2 N} e^{-2 \pi i(j-1)(k-1) / N} \\
2 x^{k=1} F \hat{V}_{1} & =\sum_{j=1}^{4} e^{-2 \pi i(j-1)(0) / 4} \\
& =-2.2538
\end{aligned}
$$

x^{2}

$$
\begin{aligned}
\hat{v}_{2} & =\sum_{j=1}^{4} e^{-2 \pi i(j-1)(1) / 4} \\
& =-2.9594
\end{aligned}
$$

$x k^{2}=3$

$$
\begin{aligned}
\hat{V}_{3} & =\sum_{j=1}^{4} e^{-2 \pi i(j-1)(2) / 4} \\
& =-2.2538
\end{aligned}
$$

$h_{0} x=y$

$$
\begin{aligned}
\hat{V}_{4} & =\sum_{j=1}^{4} e^{-2 \pi i(j-1)(3) / 4} \\
& =-2.9594
\end{aligned}
$$

so $\quad u=$

$$
\begin{aligned}
-2.2539 & =\hat{V}_{0} \\
-2.9 .594 & =\hat{V}_{1} \\
-2.2539 & =\hat{V}_{2} \\
-2.9594 & =\hat{V}_{3}
\end{aligned}
$$

* Define $\hat{W}_{k}=i k \hat{V}_{k}$, except $\hat{W}_{N}=0$ since matlab sires then numbers in the order

$$
\begin{array}{rlrl}
k=0,1, \ldots, N, & -N+1,-N+2, \cdots & \\
\text { Here } \hat{W} & =0 & & k=0 \\
& =-2.9594 i & & k=1 \\
& =0 & & k=2 \\
& =2.9594 i & & k=2-1
\end{array}
$$

Now we find the IFFT/IDFT
Since $\quad V(j)=\frac{1}{N} \sum_{K=1}^{2 N} \hat{V}(K) e^{2 \pi i(j-1)(k-1) / 2 N}$

$$
1<j \leq 2 N \Rightarrow
$$

IDF of $\hat{W}=\left[\begin{array}{llll}0 & -2.9594 i & 0 & 2.9591 i\end{array}\right]$
for $j=0,1,2,3$
$W=0=W_{0}$

$$
1.4794=w_{1}
$$

* Calculate the Derivative

For end points we have

$$
\begin{align*}
& \omega_{0}=\frac{1}{N} \sum_{n=0}^{N-1} n^{2} \hat{V}_{n}+\frac{1}{2} \times N^{2} \times \hat{V}_{N} \longrightarrow Q \\
& \omega_{N}=\frac{1}{N} \sum_{n=0}^{N-1}(-1)^{n+1} \hat{V}_{n}+\frac{1}{2}(-1)^{N+1} \times N^{2} \times \hat{V}_{N} \tag{b}
\end{align*}
$$

For interior points

$$
\omega_{j}=\frac{-W_{j}}{\sqrt{1-x_{j}^{2}}} \quad \quad \quad \begin{aligned}
& =1,2, \cdots N-1 \\
& C
\end{aligned}
$$

By using@

$$
\begin{aligned}
\omega_{0} & =\frac{1}{N}\left[0+\hat{V}_{1}\right]+0.5 \times N \times \hat{V}_{2} \\
& =-3.7336
\end{aligned}
$$

$$
\begin{aligned}
(b) \Rightarrow \omega_{2} & =\frac{1}{2}\left[0+(1)(1)^{2} \hat{V}_{1}\right]+(0.5)(-1)(2) \times \hat{V}_{2} \\
& =0.7742 \\
\text { (c) } \Rightarrow \omega_{1} & =\frac{-W_{1}}{\sqrt{1-x_{1}^{2}}}=\frac{-1.4797}{\sqrt{1-0}} \\
& =-1.4797
\end{aligned}
$$

Hence

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=-3.7336 \\
& f^{\prime}\left(x_{1}\right)=-1.4797 \\
& f^{\prime}\left(x_{2}\right)=0.7742
\end{aligned}
$$

Chebysher Differentiation matrix

$$
\begin{aligned}
& N=2 \quad x_{j}=\cos \left(\frac{\pi}{N}\right) \\
& x_{0}=1, \quad x_{1}=0 \quad, \quad x_{2}=-1 \\
& D_{2}=\left[\begin{array}{ccc}
3 / 2 & -2 & 1 / 2 \\
1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 2 & -3 / 2
\end{array}\right]
\end{aligned}
$$

Given $\quad f(x)=e^{x} \sin 5 x$
As we know that $f^{\prime}\left(x_{j}\right)=D_{N} f(x)$
So

$$
\begin{aligned}
& {\left[\begin{array}{l}
f^{\prime}\left(x_{0}\right) \\
f^{\prime}\left(x_{1}\right) \\
f^{\prime}\left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{ccc}
3 / 2 & -2 & 1 / 2 \\
1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 2 & -3 / 2
\end{array}\right]\left[\begin{array}{l}
-2.6066 \\
0 \\
0.3528
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{l}
f^{\prime}\left(x_{0}\right) \\
f^{\prime}\left(x_{1}\right) \\
f^{\prime}\left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
-3.7336 \\
-1.4797 \\
0.7742
\end{array}\right]
\end{aligned}
$$

Question:- Find the derivative of $f(x)=e^{x} \sin 5 x$ at the Gauss-lobato points $x_{j}=\cos \left(\frac{\pi \pi}{N}\right)$ via FFT
50.0%
Let us take $N=3$

$$
\begin{aligned}
& x_{j}=\cos \left(\frac{j \pi}{N}\right) \\
& \Rightarrow x_{0}=1, x_{1}=0.5, x_{2}=-0.5 \\
& x_{3}=-1
\end{aligned}
$$

Now as

$$
\begin{aligned}
& \text { as } f(x)=e^{x} \sin 5 x, \text { so } \\
& f\left(x_{0}\right)=-2.6066=v_{0} \\
& f\left(x_{1}\right)=0.9867=v_{1} \\
& f\left(x_{2}\right)=-0.3630=v_{2} \\
& f\left(x_{3}\right)=0.3528=v_{3}
\end{aligned}
$$

* Now given data $v_{0}, v_{1}, v_{2}, v_{3}$ d the chebyshev points $x_{0}, x_{1}, x_{2}, x_{3}$ We extend this data to a vector V of length 2 N with

$$
V_{2 N-j}=V_{j} \quad, j=1, \ldots N-1
$$

Here $N=3$, so by extending data we have

$$
\begin{aligned}
& V_{0}=-2.6066 \\
& V_{1}=0.9867 \\
& V_{2}=-0.3630 \\
& V_{3}=0.3528 \\
& V_{4}=-0.3630=V_{2} \\
& V_{5}=0.9867=V_{1}
\end{aligned}
$$

$$
\Rightarrow \quad V=\left\{v_{0}, v_{1}, \ldots, v_{5}\right\}
$$

ie we have a vector of length 2 N

* Now, we find FFT of V

$$
\begin{aligned}
\Rightarrow U= & -1.0064 \\
& -1.6097 \\
& -2.8774 \\
& -5.6588 \\
& -2.8774 \\
& -1.6097
\end{aligned}
$$

* Define $\hat{W}_{k}=i k \hat{U}_{k}, k=-N+1, \ldots, N$

Since $N=3$ so, $K=-2,-1,3$
except $\quad \hat{W}_{N}=0$
So, we have

$$
\begin{array}{cl}
\hat{\omega}_{0}=0+0 i & \\
\hat{\omega}_{1}=0-1.6067 i & \hat{\omega}_{2}=0-5.7552 i \\
\hat{\omega}_{3}=0+0 i & \hat{\omega}_{-2}=0+5.7552 i \\
\hat{\omega}_{-1}=0+1.6097 i
\end{array}
$$

* Now we find inverse FFT of \hat{W}_{k}

$$
\begin{aligned}
W= & 0 \\
& 2.1260 \\
& -1.1967 \\
& 0 \\
& -1.1967
\end{aligned}
$$

How we calculate the derivative of the algebraic polynomial impolant by the interior grid points

$$
\omega_{j}=-\frac{W_{j}}{\sqrt{1-x_{j}^{2}}}, j=1,2, \ldots, N-1
$$

with special formulas at the end porn

$$
\begin{aligned}
& \text { th special formux as } \\
& W_{0}=\frac{1}{2 \pi} \sum_{n=0}^{N_{1}} n^{2} \hat{V}_{n}, W_{N}=\frac{1}{2 \pi} \sum_{n=0}^{N}(-1)^{n+1} n^{2} v_{n}
\end{aligned}
$$

where the prime indicates that the terms $n=0, N$ are multiplies by $1 / 2$
Firstly we calculate ω_{0}, ω_{N}

$$
\begin{aligned}
\omega_{0}= & \frac{1}{N}\left[0+\hat{V}_{1}+4 \hat{V}_{2}\right]+1 / 2 N \hat{V}_{3} \\
& \Rightarrow \omega_{0}=-12.8615 \\
\omega_{N}= & \frac{1}{N}\left[(-1)^{0}+1 * 0 * \hat{V}_{0}+(-1)^{+1} * 1^{2} * \hat{V}_{1}+\right. \\
& \left.(-1)^{2+1} * 2^{2} * \hat{V}_{2}\right]+\frac{1}{2} *(-1)^{3+1} * N * \hat{V}_{3} \\
& \Rightarrow \omega_{3}=-5.1879
\end{aligned}
$$

Now we cal culate $\omega_{1} \& \omega_{2}$

$$
\begin{aligned}
\Rightarrow \omega_{1} & =\frac{-w_{j}}{\sqrt{1-x_{1}^{2}}}=-2.4548 \\
w_{2} & =\frac{w_{2}}{\sqrt{1-x_{2}^{2}}}=1.3818
\end{aligned}
$$

Hence we have Exact Solution

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=-12.8615 \left\lvert\, \begin{array}{l}
f^{\prime}\left(x_{0}\right)=1.2487 \\
f^{\prime}\left(x_{1}\right)=-2.4549 \\
f^{\prime}\left(x_{2}\right)=1.3818 \\
f^{\prime}\left(x_{1}\right)=-5.6176 \\
f^{\prime}\left(x_{3}\right)=5.1880 \quad f^{\prime}\left(x_{2}\right)=-2.7926 \\
f^{\prime}\left(x_{3}\right)=0.8745
\end{array}\right. \text {, }
\end{aligned}
$$

question:- Solve the following Berger Equation using Galerteinspectral Method.

$$
\begin{array}{ll}
u_{t}-\varepsilon u_{x x}+u u_{x}=0, x \in[0,1] \tag{1}\\
\text { B.(s.- } & u(0, t)=u(1, t)=0 \\
\text { I.C } & u(x, 0)=g(x)
\end{array}
$$

50, Step Ir Choose basis functions $\phi_{n}(x)$, Then the solution is of the form

$$
\begin{equation*}
\tilde{U}(x, t)=\sum_{n=1}^{N} a_{n}(t) d_{n}(x) \tag{2}
\end{equation*}
$$

where $\phi_{n}(x)=\sin (n \pi x)$
Atp II.
Substitute step I into differential operator and obtain a set of ODE's in time, our differential operator in this case

$$
\begin{aligned}
& \text { Whator in this case } \\
& L(\tilde{u})=\sum_{n=1}^{N} a_{n}^{\prime}(t) \sin (n \pi x)+\varepsilon \sum_{n=1}^{N} n^{2} \pi^{2} a_{n}(t) \sin (n \pi x) \\
&+\left[\sum_{n=1}^{N} a_{n}(t) \sin (n \pi x)\right]\left[\sum_{k=1}^{N} a_{k}(t) n \pi \cos (k \pi x)\right]
\end{aligned}
$$

Taking inner product with $\phi_{m}(x)$ of equation (4) and using $\left(\phi_{i}(x), L(u)\right)=0$, w get

$$
\begin{aligned}
& \sum_{n=1}^{N} a_{n}^{\prime}(t)[\sin (m \pi x) \cdot \sin (n \pi x)]+\varepsilon \sum_{n=1}^{N} n^{2} \pi^{2} a_{n}(t) \\
& \left.[\operatorname{lin}(m \pi x), \sin (n \pi x)]+\sum_{n=1}^{N} \sum_{k=1}^{N} a_{n}(t) a_{k}^{\prime}(t)[\sin (m \pi x) \sin (n n x)] \cdot\right]
\end{aligned}
$$

suppose

$$
a P_{m} a^{\prime}=\sum_{n=1}^{N} \sum_{k=1}^{N} a_{n}(t) a_{k}^{\prime}(t)[\sin (m \pi x), \sin (n \pi x) \cdot \cos k \pi
$$

where we have denoted as a, al for programming purpose and a is $1 \times N$ row vector whose entries are $a_{i}, i=1, \ldots, N$ and P is a matrix defined by

$$
\begin{aligned}
& P_{m}(i, k)=\left(\phi_{m}(x), \phi_{i}^{\prime}(x) \cdot \phi_{j}(x)\right) \\
& \text { i.e } \int_{0}^{1}\left[\int_{0}^{1} \sin (m \pi x), \sin (n \pi x) \cdot(\cos k \pi x) d x\right.
\end{aligned}
$$

It is easy to show that

$$
P_{m}(i, j)= \begin{cases}-i \pi / 4 & , k+m=i \\ i \pi / 4 & ,|k-m|=i \\ 0 & , j+m \neq i \&|j-m| \neq i\end{cases}
$$

Therefore the Galertein method reduces. to N differential equations in N unknowns of the form

$$
a_{m}^{\prime}(t)=-\pi^{2} m^{2} \varepsilon a_{n}(t)-2\left(a p_{m} a^{\prime}\right)
$$

The mitial condition for the above system is

$$
a_{m}(0)=\frac{\sin (m \pi x), g(x)}{(\sin (m \pi x), \sin (m \pi x))}
$$

Program 11:-
Given function is

$$
u(x)=e^{x} \sin (5 x)
$$

where

$$
x_{i}=\cos \left(\frac{\pi i}{N}\right)
$$

We have to solve for $N=2$
so

$$
\begin{aligned}
x_{0}=1, x_{1} & =0, x_{2}=-1 \\
\text { As } V_{j} & =f\left(x_{j}\right) \\
\Rightarrow V_{0}=f\left(x_{0}\right) & =-2.6066 \\
V_{1} & =f\left(x_{1}\right)=0 \\
V_{2} & =f\left(x_{2}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
& V_{2 N-j}=V_{j}, j=1, \cdots N-1 \\
\Rightarrow & V_{4-1}=V_{3}=V_{1} \quad \& \quad V_{4}=V_{0}
\end{aligned}
$$

using FFT to calculate

$$
V_{k}=\pi / N \sum_{j=1}^{2 N} e^{-i k \theta_{j}} V_{j}, K=-N+1, \cdots, N
$$

is

$$
\begin{aligned}
\hat{V}_{-1} & =\frac{\pi}{2}\left(e^{i \theta_{1}} V_{1}^{0}+e^{i \theta_{2}} V_{2}+e^{i \theta_{3} V_{3}^{0}}+e^{i \theta_{1}} V_{4}\right) \\
& =\pi / 2\left(e^{i \theta_{2}} V_{2}+e^{i \theta_{4}} V_{4}\right) \\
\hat{V}_{0} & =\frac{\pi}{2}\left(e e_{1}^{i}+e^{0} V_{2}+e^{0} V_{3}^{0}+e^{i} V_{4}\right) \\
& =\frac{\pi}{2}\left(V_{2}+V_{4}\right)
\end{aligned}
$$

$$
\begin{align*}
\hat{V}_{1} & \left.=\frac{\pi}{2}\left(e^{-2 \theta_{1}} \nabla_{1}^{0}+e^{-i \theta_{2}} V_{2}+e^{-i \theta}\right\rangle_{3}^{0}+e^{-i \theta_{4}} V_{4}\right) \tag{u}\\
& =\frac{\pi}{2}\left(e^{-i \theta_{2}} V_{2}+e^{-i \theta_{4}} V_{4}\right) \\
\hat{V}_{2} & =\frac{\pi}{2}\left(e^{-2 i \theta_{1}} V_{1}^{0}+e^{-2 i \theta_{2}} V_{2}+e^{-2 i \theta_{3}} V_{3}+e^{-2 i \theta_{4}} V_{4}\right) \\
& =\frac{\pi}{2}\left(e^{-2 i \theta_{2}} V_{2}+e^{-2 i \theta_{4}} V_{4}\right)
\end{align*}
$$

Define $\hat{N}_{K}=i K \hat{V}_{K}$ except, $\hat{W}_{N}=0$ implies

$$
\begin{aligned}
& \hat{W}_{-1}=-i \hat{V}_{-1} \\
& \hat{W}_{0}=0 \\
& \hat{W}_{1}=i \hat{V}_{1} \\
& \hat{W}_{2}=0
\end{aligned}
$$

Next to compute the derivative of the trignometric interpolant Q in the equispaced grid by the inverse FFT

$$
\begin{aligned}
W_{j} & =\frac{1}{2 \pi} \sum_{k=-N+1}^{N} e^{i k \theta_{j}} \hat{W}_{k} ; j=1, \ldots, 2 N \\
\Rightarrow W_{1} & =\frac{1}{2 \pi}\left\{e^{i \theta_{1}} \hat{W}_{-1}+e^{i(0)} \hat{W}_{0}+e^{i \theta_{1}} \hat{W}_{1}+e^{i \theta_{2}} \hat{W}_{2}\right\} \\
& =\frac{1}{2 \pi}\left\{e^{-i \theta_{1}}(-i) \hat{V}_{-1}+0+e^{i \theta_{1}} i \hat{V}_{1}+0\right\} \\
& =\frac{1 i}{2 \pi}\left\{e^{i \theta_{1}} \hat{V}_{1}-e^{-i \theta_{1} \hat{V}_{-1}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow W_{1} & =\frac{i}{2 \pi}\left\{e^{i \theta_{1}} \frac{\pi}{2}\left(e^{-i V_{2}} V_{2}+e^{-i \sigma_{4}} V_{4}\right)-e^{-i \theta_{1}} \frac{\pi}{2}\left(e^{i \theta_{2}} V_{2}+\right.\right. \\
& \left.\left.e^{i \theta_{4}} V_{4}\right)\right\}
\end{aligned}
$$

Calculate the derivative of the algebraic polynomial interpolant q on the interior grid points by

$$
\begin{aligned}
\omega_{j} & =\frac{-W_{j}}{\sqrt{1-x_{j}^{2}}} ; j=1,-, N-1 \\
\Rightarrow \quad w_{1} & =\frac{-W_{1}}{\sqrt{1-0}}=-W_{1}
\end{aligned}
$$

with special formulas at the end points

$$
\omega_{0}=\frac{1}{2 \pi} \sum_{n=0}^{N} n^{2} \hat{V}_{n} \quad \xi \quad \omega_{N}=\sum_{n=0}^{N}(-1)^{n+1} n^{2} \hat{V}_{n}
$$

where the prime indicates that the term $n=0, N$ are multiplied by $1 / 2$ ho

$$
\begin{gathered}
\left.\omega_{0}=\frac{1}{2 \pi}\left(0+1 \hat{V}_{1}+\frac{1}{2}\right)^{2}-\hat{V}_{2}\right) \\
\Rightarrow \omega_{0}=\frac{1}{2 \pi}\left(\hat{V}_{1}+2 \hat{V}_{2}\right)
\end{gathered}
$$

$$
\omega_{2}=\frac{1}{2 \pi}\left(-\pi 0+1 \hat{V}_{1}+\frac{(-1)^{3}}{2}(2)^{2} \hat{V}_{2}\right)
$$

$$
\Rightarrow \omega_{2}=\frac{1}{2 \pi}\left(\hat{V}_{1}-2 \hat{V}_{2}\right)
$$

Now by putting the values in ω_{0} and ω_{2}, we have

$$
\frac{1}{2 \pi}\left\{\frac{\pi}{2}\left(e^{-i \theta_{2}} V_{2}+e^{-i \theta_{4}} V_{4}\right)+\frac{2 \pi}{2}\left(e^{-2 i \theta_{2}} V_{2}+e^{-i i \theta_{4}} V_{4}\right)\right\}
$$

As $\theta_{j}=\pi j / N ; \theta_{1}=\frac{\pi}{2}, \theta_{2}=\pi, \quad \theta_{4}=2 \pi$

$$
\begin{aligned}
\Rightarrow \omega_{0}= & \frac{1}{2 \pi}\left\{\frac{\pi}{2}\left(e^{-2 \pi}(0.3528)+e^{-22 \pi}(-2.6066)\right)+\right. \\
& \pi\left(e^{-2 \pi}(0.3528)+e^{-24 \pi}(-2.6066)\right) \\
= & \frac{1}{4}\left\{0.3528^{\prime} \cos (\pi)+(-2.6066) \cos (2 \pi)\right\} \\
& +\frac{1}{2}\{0.3528 \cos (4)-2.6066 \cos (4 \pi)\} \\
= & \frac{1}{4}\{-0.3528-2.6066\}+\frac{1}{2}\{0.3528-2.6066\} \\
& \Rightarrow \omega_{0}=-1.8653
\end{aligned}
$$

And

$$
\begin{aligned}
\omega_{2}= & \frac{1}{2 \pi}\left\{\frac{\pi}{2}\left(e^{-i \theta_{2}} V_{2}+e^{-i \theta_{u}} v_{u}\right)-2 \frac{\pi}{2}\left(e^{-2 i_{2}} V_{2}+e^{-2 i \theta_{u}} v_{u}\right)\right\} \\
= & \frac{1}{4}\left\{e^{-i \pi}(0.3528)+e^{-12 \pi}(-2.6066)\right\}-\frac{1}{2}\left\{e^{-2 \pi \pi}\right. \\
& \left.(0.3528)+e^{-4 i \pi}(-2.6066)\right\} \\
= & \left.\frac{1}{4}\{\cos (\pi)(0.3528)+\cos)(2 \pi)(-2.6066)\right\}-\frac{1}{2}\{ \\
& \cos (2 \pi)(0.3528)-2.6066 . \cos (4 \pi)\} \\
= & \frac{1}{4}\{-0.3528-2.60 .66\}-\frac{1}{2}\{-0.3528-2.6066\} \\
\Rightarrow & \omega_{2}=0.3869 \\
& \left.\omega_{1}=0\right]
\end{aligned}
$$

Since the exact solution

$$
\begin{aligned}
u(x) & =e^{x} \sin 5 x \\
\Rightarrow u^{\prime}(x) & =e^{x} \sin (5 x)+e^{x} \cos (5 x) \cdot 5 \\
& =e^{x} \sin 5 x+5 e^{x} \cos 5 x \\
u^{\prime}\left(x_{0}\right) & =1.2486 \\
u^{\prime}\left(x_{1}\right) & =5 \\
A u^{\prime}\left(x_{2}\right) & =0.8745 *
\end{aligned}
$$

