Lines and planes in spaces

Suppose that L is a line in a space passing through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to vector $v=v_{1} i+v_{2} j+v_{3} k$ the L is set q all points $P(x, y, z)$ for which $\overrightarrow{P o P}$ is parallel to v. Thus
$P_{0} p=t v$ for some scalar parameter
t

$$
\begin{aligned}
& \left(x-x_{0}\right) i+\left(y-y_{0}\right) j+\left(z-z_{0}\right) k=t\left(v_{1} i+v_{2} j+k_{3} k\right) \\
& x_{1}-x_{0}+y_{1}+y_{0} j+z k-z_{0} k=t\left(v_{1} i+v_{2} j+v_{3} k\right) \\
& x_{1}+y_{j}+z u=x_{0} i+y_{0} j+z_{0} k+t\left(v_{1} i+v_{2} j+v_{3} k\right)
\end{aligned}
$$

Vector Equation for a line:-
A vector Equation for the line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to v is

$$
r(t)=r_{0}+t v \quad-\infty<t<\infty
$$

Where r is the position recter of a point $P(x, y, z)$ on L and roo is the position vector of $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
x=x_{0}+t v_{1}, y=y_{0}+t v_{2}, z=z_{0}+t v_{3}
$$

Thes Equations give as the standard parametrization of the line for the parameter interval $-\infty<t<\infty$
Prarimetric Equations for a line
The standard parametrization of the line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to

$$
\begin{aligned}
& v=v_{11}+v_{2} j+v_{3} k \\
& x=x_{0}+t v_{1}, y_{9}=y_{0}+t v_{2}, \quad z=z_{0}+t v_{3}-\infty<t<\infty
\end{aligned}
$$

Examples:-
(1) Find parametric Equations for the line through $(-2,0,4)$ parallel to $v=21+4 j-2 k$.

$$
\begin{aligned}
& 0 \quad v=21+4-2 k, \\
& P_{0}\left(x_{0}, y_{0}, z_{0}\right)=(-2,0,4) \quad u_{1} 1+v_{2} j+v_{3} \hat{u}=21+4 j-2 u \\
& \begin{array}{l}
x=x_{0}+t v_{1} \quad y=y_{0}+t v_{2}, 2 \\
=-2+2 t, y=2+t v_{3} \\
=
\end{array}, 4-2 t
\end{aligned}
$$

Find the parametric Equations ${ }^{(2)}$ for he line through $P(-3,2,-3)$ and

$$
\begin{aligned}
& Q(1,-1,4) \\
& P Q=41-3 j+7 k \\
& r(t)=x_{0}+1 v \\
& \left(x_{0}, y_{0}, z_{0}\right)=(-3,2,-3) \\
& x=x_{0}+t v_{1}, y=y_{0}+t v_{2}, z=20+t v_{3} \\
& =-3+4 t=2-3 t=-3+7 t \\
& =20+1 / v \frac{V}{|v|}
\end{aligned}
$$

we can choose $Q(1,-1,4)$ as base point

$$
\begin{aligned}
x & =x_{0}+t v_{1}, y=-1-3 t, 2=4+7 t \\
& =1+4 t
\end{aligned}
$$

Distance from a point to a line:-

$$
d=\frac{|P S \times v|}{|v|}
$$

Example: Find the distance from the point $s(1,1,5)$ to the line

$$
L: x=1+t, y=3-t, 2=2 t
$$

Sol. $P(1,3,0)$ parallel to $v=2-j+2 k$

$$
\begin{aligned}
P S & =(1-1) i+(1-3) j+(5-0) i \\
& =-2 j+54
\end{aligned}
$$

$$
\begin{aligned}
P S \times V & =\left|\begin{array}{ccc}
1 & j & k \\
0 & -2 & 5 \\
1 & -1 & 2
\end{array}\right| \\
& =i(-4+5)-j(0-5)+k(0+2) \\
& =i+5 j+2 k \\
d & =\frac{|P S \times v|}{|v|}=\frac{\sqrt{1+25+4}}{\sqrt{1+1+1}}=\frac{\sqrt{30}}{\sqrt{6}}=\sqrt{5} .
\end{aligned}
$$

An Equation for a plane in space..

Po $\left.x_{0}, y_{0}, z_{0}\right)$ normal to the non zero

$$
\begin{gathered}
\text { vecteron }=A_{i}+B_{j}+C k \\
n \cdot P_{0} P=0 \\
\left(A_{1}+B_{j}+C_{k}\right) \cdot\left[\left(x-x_{0}\right)_{i}+\left(y-y_{0}\right) u+\left(z-z_{0}\right) k\right]=0 \\
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+\left(\left(z-z_{0}\right)=0\right.
\end{gathered}
$$

Equation for a plane

Vector Equation n. $\overrightarrow{P o p}=0$
component Equation $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+\left(\left(z-z_{0}\right)=0\right.$
Component Equation simplified

$$
\begin{aligned}
& A x+B y+C z=D, \text { where } \\
& D=A x_{0}+B y_{0}+C z 0
\end{aligned}
$$

Examples:~
(1) Find an Equation for the plane through $P_{0}(-3,0,7)$. perpencucular to

$$
n=51+2 j-k
$$

80

$$
\begin{aligned}
& f(x-(-3)+2(y-0)+(-1)(z-7)=0 \\
& 5(x+3)+2 y-z+7=0 \\
& 5 x+15+2 y-z+7=0 \\
& 5 x+2 y-2=-22
\end{aligned}
$$

(2) Find the Equation for the plane through $A(0,0,1), B(2,0,0)$ ad $C(0,3,0)$

$$
\overrightarrow{A B}=((2-0), 0,-1)
$$

$$
=(2,0,-1)
$$

$$
\begin{gathered}
\overrightarrow{A C}=(0,3,-1) \\
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
1 & j & k \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right| \\
=31+2 j+6 k \\
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+c(2-20)=0 \\
3(x-0)+2(y-0)+6(z-1)=0 \\
3 x+2 y+6 z-6=0 \\
3 x+2 y+6 z=6
\end{gathered}
$$

Line of Intersection:-
Find a vector parallel to the
line of intersection of the plane $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

$$
\begin{aligned}
n_{1} \times n_{1} & =\left|\begin{array}{ccc}
1 & j & k \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right| \\
& =141+2 j+15 k
\end{aligned}
$$

x Find the point where the line

$$
x=8 / 3+2 t, y=-2 t, z=1+t
$$

intersects the plane $3 n+2 y+6 z=6$
Sol The point

$$
\begin{gathered}
(8 / 3+2 t,-2 t, 1+t) \\
3(8 / 3+2 t)+2(-2 t)+6(1+t)=6 \\
8+6 t-4 t+6+6 t=6 \\
8 t=-8 \\
(t=-1
\end{gathered}
$$

The point of intersection

$$
\left.(x, y, z)\right|_{t=-1}=(8 / 3-2,2,1-1)=(2 / 3,2,0)
$$

The Distance from a point to plane

$$
d=\left|P S \cdot \frac{n}{\ln \mid}\right|, n=A_{1}+B_{1}+C k
$$

Ex. Find the distance from $S(1,1,3)$ to the plane $3 x+2 y+6 z=6$

$$
n=3 i+21+6 k
$$

$$
\begin{aligned}
P s & =1-2 j+3 u \\
|n| & =\sqrt{9+4+36}=7 \\
d & =\left|P s \frac{n}{|n|}\right| \\
& =(1-2 j+3 k) \cdot\left(\frac{3}{7} i+\frac{2}{2} j+\frac{6}{7} u\right) \\
& =\frac{3}{7}-\frac{21}{7}+\frac{18}{7}=\frac{3-4+18}{7}=\frac{17}{7}
\end{aligned}
$$

Angles Between planes:-

- Find the angle betivien the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

Sol The vectors

$$
\begin{aligned}
& \text { She vector } \\
& \begin{aligned}
& n_{1}=31-6 j-2 k, n_{2}=21+j-2 k \\
& \theta=\cos ^{-1}\left(\frac{n_{1} n_{2}}{\left|n_{1}\right|\left|n_{2}\right|}\right), \\
& n_{1} n_{2}=6-6+4=4 \\
&\left|n_{1}\right|=\sqrt{9+36+4} \\
&=\cos ^{-1}\left|\frac{4}{3 \times 7}\right| \quad\left|n_{2}\right|=\sqrt{4+1+4}=3 \\
&=138 \text { radios. }
\end{aligned}
\end{aligned}
$$

Mo Calculus.
Lecture of:
Functions if several variables:-

$$
\pi=f(x, y) .
$$

dependent
variable - variables

Domain and Range?
Examples:- Find domain and sketch

$$
\begin{aligned}
& \text { Examples:- }(a) f(x, y)=\frac{\sqrt{x+y+1}}{x-1} \\
& D=\{x, y) x+y+1 \geqslant 0, x \neq 1\}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(x, y)=x \cdot \ln \left(y^{2}-x\right) \\
& y^{2}-x>0 \quad y^{2}>x \text { or } x<y^{2} \\
& D=\left\{(x, y) \mid x<y^{\prime}\right\}
\end{aligned}
$$

$$
x+y+1 \geqslant 0
$$

(a)

$$
y \geqslant-x-1
$$

(b)

$$
\begin{aligned}
& y^{2}-x>0 \\
& y^{2}>x
\end{aligned}
$$

$$
y^{2}>x
$$

(c) Find the demain and Range

$$
f(x, y)=\sqrt{9-x^{2}-y^{2}}
$$

$$
\begin{gathered}
f(x, y, z)=\sqrt{9-x^{2}-y^{\prime}-z^{2}} \\
9-x^{2}-y^{2}-z^{2} \geqslant 0 \\
x^{2}+y^{2}+z^{2} \leq 3^{2} \\
D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 9\right\} \\
R=[0,3] .
\end{gathered}
$$

(e)

$$
\begin{gathered}
f(x, y)=-\frac{x-y}{x+y} . \\
x+y \neq 0 \\
y \neq-x .
\end{gathered}
$$

avoid the line $y=-x$,

$$
\begin{aligned}
& D=\{(x, y) y \neq-x\} \\
& R=-\infty<z<\infty
\end{aligned}
$$

Sketch the graph of function

$$
\begin{gathered}
f(x, y)=6-3 x-2 y \\
z=6-3 x-2 y \\
3 x+2 y+z=6 .
\end{gathered}
$$

open, closed, bounded and unbounded regions:-

enclosed in a circle bounded domain
 otherwise unbounded points

Definitions:-
The interior points of a region as set.make up the intents of region. A region is open if it consists entirely of intencr points. A region is closed if it contains all its boundary.
Bounded/unboundedi-
A region in the plane is bounded if it lies inside a disk of finite radius. A region is unbounded if it is not bounded.

Examples:-

$$
y-x \geqslant 0, \quad y \geqslant x
$$

unbounded closed domain

$$
f(x, y)=\frac{1}{\sqrt{y-x}}
$$

unbounded open
(iii)

$$
f(x, y)=\sqrt{16-x^{2}-y^{2}}
$$

$$
16-x^{2}-y^{2} \geqslant 0
$$

$$
16 \geqslant x^{2}+y^{2}
$$

(iv)

$$
f(x, y)=\frac{x}{y}
$$

$<$
unbounded open
(v) $\quad f(x, y, z)=\sqrt{16-x^{2}-y^{2}-2^{2}}$
closed \& bounded
(vi) Describe the domain of
the function $f(x, y)=\sqrt{y-x^{2}}$

closed lunboundod.

Graphs, Level curves, and contours If functions of two variables:-
Definitions:-
The set qu points in the plane where a function $f(x, y)$ has a constant value $f(x, y)=c$ is called level curve: of f.
The set of points (x, y, z) in space where a function of three ${ }^{(m d)}$ variables has a constant value $f(x, y, z)=c$ is culled a level surface.

Examples:-
(a) Sketch the curves of function $f(x, y)=6-3 x-2 y$ fer the values $K=-6,0,6,12$.
$\int 66$

$$
\begin{aligned}
& f(x, y)=k \\
& 6-3 x-2 y=-6 \\
& -3 x-2 y+12=0 \\
& 3 x+2 y-12=0 \\
& x=0 \\
& y=6, \quad(0,6) \\
& 3 y=0 \\
& x=4
\end{aligned}
$$

$(4,8)$
for $k=0$.

$$
\begin{aligned}
& 6-3 x-2 y=0 \\
& 3 x+2 y-6=0 \\
& (0,3) \\
& 6-3 x-2 y=12 . \\
& 3 x+2 y+6=c \\
& k=6 \\
& 6-3 x-2 y=6: \\
& 3 x+2 y=0 . \\
& x=0 \\
& (0,0) \\
& (0,0) \\
& (0,-3) \\
& (-2,0) \quad z
\end{aligned}
$$

(b) sketch the level curves of
the function $g(x, y)=\sqrt{9-x^{2}-y^{2}}$ for $k=0,1,2,3$.
Sol:-

$$
\begin{aligned}
& \text { Sol: } g(x, y)=k x: \\
& \sqrt{9-x^{2}-y^{2}}=0 \\
& 9-x^{2}-y^{2}=0 . \\
& x^{2}+y^{2}=3^{2} \\
& \sqrt{9-x^{2}-y^{2}}=1 \\
& 9-x^{2}-y^{2}=1 \\
& x^{2}+y^{2}=8 \\
& x^{2}+y^{2}=2^{2.82} \\
& k=2 \\
& 19-x^{2}-y^{2}=2 . \\
& 9-x^{2}-y^{2}=4 . \\
& x^{2}+y^{2}=5 \\
& x^{2}+y^{2}=(2.23)
\end{aligned}
$$

$$
k=3
$$

(c) Find the level surface of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ for $k=0,1,2$.
Sol:

$$
\left.\begin{aligned}
& \quad f(x, y, z)=0 \\
& x^{2}+y^{2}+2^{2}=0 \\
& x \\
& \hline y \\
& \hline y \\
& \hline z
\end{aligned} 0.0 \right\rvert\, \begin{array}{c|c|}
0 & 0 \\
0 & 0
\end{array}
$$

$$
x^{2}+y^{2}+z^{2}=1
$$

x	0	10	0
y	0	0	0
z	1	0	0

$$
x^{2}+y^{2}+z^{2}=2
$$

Portial Dernatives:-

$$
\begin{gathered}
\left.\quad \frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\operatorname{Lu}_{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{1}\right)}{h} \\
\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\left.\frac{d}{d y}\left(x_{0}, y\right)\right|_{y=y_{0}}=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x, y_{0}\right)}{h}
\end{gathered}
$$

Examples:- (1)

$$
\begin{aligned}
& f(x, y)=7 x^{2}-x^{3} y^{4}+5 x^{4} y^{3} \\
& f_{x}=14 x-3 x^{4} y^{4}+20 x^{3} y^{3} \\
& f y=0-4 y^{3} x^{3}+5 x^{4} 3 y^{2} \\
& 7=4 x^{3} y^{3}+15 x^{4} y^{2}
\end{aligned}
$$

(2) Find $f x$ and $f y$, as function if

$$
\begin{gathered}
f(x ; y)=\frac{2 y}{y+\cos x} \\
f_{x}=\frac{\partial}{\partial x}\left(\frac{2 y}{y+\cos x}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{(y+\cos x) \frac{\partial}{\gamma x}(2 y)-2 y \frac{\partial}{\partial x}(y+\cos x)}{(y+\cos x)^{2}} \\
& =\frac{(y+\cos x)(0)-2 y(0-\sin x)}{(y+\cos x)^{2}} \\
& =\frac{2 y \sin x}{(y+\cos x)^{2}}
\end{aligned}
$$

with x held censtent, we get

$$
\begin{aligned}
f y & =\frac{\partial}{\partial y}\left(\frac{2 y}{y+\cos x}\right) \\
& =\frac{(y+\cos x) \frac{\partial}{\partial y}(2 y)-2 y \frac{\partial}{\partial y}(y+\cos }{(y+\cos x)^{2}} \\
& =\frac{(y+\cos x)(2)-2 y(1+x)}{(y+\cos x)^{2}} \\
f_{y} & =\frac{2 y+2 \cos x-2 y}{(y+\cos x)^{2}}=\frac{2 \cos x}{(y+\cos x)^{2}}
\end{aligned}
$$

\pm
Find $\frac{\partial z}{\partial x}$ if the Equation

$$
\begin{gathered}
y z-\ln z=x+y \\
\frac{\partial}{\partial x}(y z)-\frac{\partial}{\partial x}(\ln z)=\frac{\partial}{\partial x}(x+y) \\
y \frac{\partial z}{\partial x}-\frac{1}{z} \frac{\partial z}{\partial x}=1+0 \\
\left(y-\frac{1}{z}\right) \frac{\partial z}{\partial x}=1 \\
\left(\frac{y z-1}{z}\right) \frac{\partial z}{\partial x}=1 \\
\frac{\partial z}{\partial x}=\frac{\partial z}{y z-1}
\end{gathered}
$$

Second-order Partial Derivatives:-

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}} \text { or } f x x, \frac{\partial^{2} f}{\partial y^{2}} \text { or } f y y \\
& \frac{\partial^{2} f}{\partial x \partial y} \text { or } f y x \text { and } \frac{\partial^{2} f}{\partial y \partial x} \text { cr } f_{x y} \\
& \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
\end{aligned}
$$

Examples.
If $f(x, y)=x \cos y+y_{e} x$, find the

$$
\begin{gathered}
\text { Ind - order denuatives } \\
\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial y}, \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x \cos y+y e^{x}\right) \\
\frac{\partial f}{\partial x}=\cos y+y e^{x} \\
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\cos y+y e^{x}\right) \\
\frac{\partial^{2} f}{\partial x^{2}}= \\
\frac{\partial^{2} f}{\partial y^{2} \partial x}=?=\frac{\partial^{2} f}{\partial y}=\frac{\partial x}{\partial y}\left(\frac{\partial f}{\partial x}\right) \\
=\frac{\partial}{\partial y}\left(\cos y+y e^{x}\right) \\
=-\sin y+e^{x} \\
\frac{\partial^{2} f}{\partial x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \\
=\frac{\partial}{\partial x}\left(-x \sin y+e^{x}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =-\sin y+e^{x} \\
\frac{\partial f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) \\
& =\frac{\partial}{\partial y}\left\{\frac{\partial}{\partial y}\left(x \cos x y+y e^{x}\right)\right. \\
& =\frac{\partial}{\partial y}\left(x(-\sin y)+e^{x}\right) \\
& =-\cos y x+i \\
& =-x \cos y
\end{aligned}
$$

Theorem:-

$$
f_{x} y(a, b)=f_{y x}(a, b) .
$$

claraut's thecrem.
Partial Denvatives of Jtigher croder:

$$
\begin{aligned}
& \frac{\partial^{3} f}{\partial x \partial y^{2}}=f y y x \\
& \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}=f y y x x
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y, z)=1-2 x y^{2} z+x^{2} y \\
& f y x y z=? \\
& f y=-4 x y z+x^{2} \\
& f y x=-4 y z+2 x \\
& f_{y} x y=-4 z+0 \\
& f y x y z=-4
\end{aligned}
$$

Max -Min Tests:-
The extreme value of $f(x, y)$ can occure only at
(i) boundary points of domain of f.
(ii) Critical points (Intenor points where. $f_{x}=f_{y}=0$ or points where f_{x} or fy fails to exist

If the first and second order partial derivatives of f are continuous throughout a disk centred at a point (a, b) and $f_{x}(a, b)=f_{y}(a, b)=0$, the nature of $f(a, b)$ can be test with the and derivative test
(i) $f x x<0$ and $f x x f y y-f x y^{2}>0$ at (a, b) local maximum.
(ii) $f_{x x}>0$ fud $f_{x x} f_{y y}-f_{x} y^{2}>0$ at (a, b) local minimum
(iii) $f_{x x} f_{y y}-f_{x} y^{2}<0$ at (apb) saddle point
(iv) $f_{x x} f y y-f_{x y}{ }^{2}=0(a, b) \Rightarrow$ test is inconclusive.

Saddle punt:-
has domain points (x, y) inhere $f(x, y)>f(a, b)$ ad derain Points $(x, y) \quad f(x, y)<f(a, b)$ the Corresponding point $((a, b),(f(a, b)))$ on the surface $x=f(x, y)$ is called a saddle point.

Examples.
Given $f(x, y)=10-3 x^{2}-2 y^{2}+12 x$, tdentisly
any critical point, saddle points and local extrema

1. $\left((a, b), \quad f_{x}=0, \quad f_{y}=0\right.$
2. $D=f_{x x}\left(y y-f x^{2} y\right.$
3. (a) $D>0, f_{x x}>0, f(a, b) \rightarrow$ local min
(b) $D>0, f_{x x}<0, f(a b) \rightarrow$ local max
(c) $0<0 \quad f(a, b) \rightarrow$ Neither
$P(a, b) \rightarrow$ Saddle point.

$$
\begin{aligned}
& f_{x}=-6 x+12 \\
& -6 x+12=0, \quad x=2 \\
& f_{y}=-\frac{4 y}{}+8 \\
& \frac{y=2}{P(2,2)} \\
& f_{x x}=-6, \quad f_{y y} y=-4, f_{x y}=0 \\
& D=f_{x x} \cdot f_{y y} y-f_{x y}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(-6)(-4)-0^{2}=24 \\
D & >0 \\
f_{x x} & <0 \\
f(2,2) & =30
\end{aligned}
$$

(2)

$$
\begin{align*}
& f(x, y)=2 x^{4}+2 y^{4}-8 x y+12 \\
& f_{x}=8 x^{3}-8 y, \quad f_{y}=8 y^{3}-8 x \\
& f_{x}=8\left(x^{3}-y\right) \quad f_{y}=8\left(y^{3}-x\right) \tag{0,0}\\
& f_{x x}=24 x^{2}, f_{y y}=24 y^{2} \tag{1,1}\\
& f_{x y}=-8 \\
& D=f_{x n \cdot} \text { fry } \quad f_{x y} \\
& D(0,0)=0-(-8)^{2}=64 . \quad D<0
\end{align*}
$$

$$
(-1,-1)
$$

$(0,0)$ Saddle point

$$
\begin{aligned}
& D(1,1)=24 \cdot 24-(-8)^{2}=512 D 70 \\
& f(1,1)=2+2-8+12=8^{\text {local min }(1,1)} \\
& D(-1,-1)=24 \cdot 24-(-8)^{2}=+512 \text { D } 70 \text { fin } 70 \\
& \text { local min } \\
& f(-1,-1)=\frac{2(-1)^{4}+2(-1)^{4}-8(-1)(-1)+12}{8}
\end{aligned}
$$

146 Tangent planes and Normal lines:-

Definition:-
Assume that $f(x, y, z)$ has continuous first order partial derivatives and that point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the level surface $s: f(x, y, z)=c$.
. If $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \neq 0$, then $n=\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is a normal vector vector to s oat P_{0} and the tangent plane to S at. P_{0} is the plane with equation

$$
f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, 2\right)\left(z-z_{0}\right)=0
$$

and normal to the surface $f(x, y, t)=c$ at P_{0} is given by

$$
\begin{aligned}
& x=x_{0}+f_{x}\left(x_{0}, y_{0}, z_{0}\right) t \\
& y=y_{0}+f_{y}\left(x_{0}, y_{0}, z_{0}\right) t \\
& z=z_{0}+f_{z}\left(x_{0}, y_{0}, z_{0}\right)+
\end{aligned}
$$

Examples:-
unsider the ellipsoid

$$
x^{2}+4 y^{2}+z^{2}=18
$$

(a) Find an equation of the tangent plane to the ellipsoid at the point $(1,2,1)$ (b) Find the parametric equations of the line that is normal to the ellipsind at the point $(1,2,1)$
Solo-

$$
\begin{array}{ll}
f_{x}=2 x \\
f_{y}=81 \\
f_{z}=2 z & n=\operatorname{\nabla F}(1,2,1) \\
& =\langle 2,16,2\rangle
\end{array}
$$

$$
\begin{gathered}
f x\left(x-x_{0}\right)+f y\left(y-y_{0}\right)+f z\left(z-z_{0}\right)=0 \\
2(x-1)+16(y-2)+2(z-1)=0 \\
2 x-2+16 y-32+2 z-2=0 \\
2 x+16 y+2 z=36 \\
x+8 y+z=18
\end{gathered}
$$

(b)

$$
\begin{aligned}
& x=x_{0}+f x \cdot t \\
& x=1+2 t \\
& y=2+16 t \\
& y=1+2 t
\end{aligned}
$$

2 plane Tangent to surface
(b)

$$
\begin{gathered}
1(x-0)-1(y-0)-(2-0)=0 \\
x-y-2=0
\end{gathered}
$$

Example:-
The surfaces

$$
f(x, y, z)=x^{2}+y^{2}-2=0
$$

$g(x, y, z)=x+z-4$. Find parametric
equations for the line tangent to
point $P_{0}(1,1,3)$

$$
\begin{aligned}
& \pi f=2 x i+2 y j \\
& \nabla g=1+k \quad \quad \text { parallel } \\
& v=(2 i+2 j) \times 1+k \quad \text { to } v=a f \times R \rho \\
& =\left|\begin{array}{ccc}
i & j & k \\
2 & 2 & 0 \\
1 & 0 & 1
\end{array}\right|=2 \hat{i}-2 \hat{j}-2 \hat{k} \\
& x=x+f_{n} t=1+2 t \\
& y=1-2 t \\
& z=3-2 t
\end{aligned}
$$

Estimating the change in f in a
Direction U.
To estimate the charging in the value of a differentiable function f when we move a small distance as from a point po in a particular direction U, use formula.

$$
d f=\left(\nabla f / p_{0} \cdot u\right) d s
$$

Example:
Estimate how much the value

$$
f(x, y, z)=y \sin x+2 y z .
$$

will change if the point $p(x, y, z)$ moves 1 unit from po $(0,1,0)$ to $p_{1}(2,2,-2)$
sit.

$$
\begin{aligned}
& u=\frac{p_{0} p_{1}}{\left|p_{0} p_{1}\right|}=\frac{2}{3} i+\frac{1}{3} j-\frac{2}{3} k \\
& \nabla f: \quad y \cos x i+(\sin x+2 z) j+2 y x \\
& \left.\pi f\right|_{(0,1,0)}=i+2 k .
\end{aligned}
$$

$$
\begin{aligned}
\nabla f u & =(1+2 k)\left(\frac{2}{3} i+\frac{1}{3} j+\frac{2}{3} u\right) \\
& =\frac{2}{3}-\frac{4}{3}=-2 / 2 \\
d f & =\left(\nabla f / p_{0} .4\right) d i \\
& =-2 / 3(.1) \\
& =-0.067 \text { unuti. }
\end{aligned}
$$

Linearifation:-
$L x(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)$
The Oapproximatie

$$
f(x, y)=L(x, y)
$$

Exaple. Find the linearigation of

$$
f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3
$$

at point $(3,2)$

$$
\begin{aligned}
& f(3, \dot{2})=9-3(2)+\frac{1}{2}(4)+3 \\
&=9-6+2+3=8 \\
& f_{x}=2 x-y \\
& f^{\prime}(x(3,2)=6-2=4 \\
& f_{y}=-x+y \\
& f_{y}(3,2)=-3+2=-1 \\
& L(x, y)=8+4(x-3)-1(y-2) \\
&=8+4 x-12 y+2 \\
&=4 x-y-2
\end{aligned}
$$

147
consider the function

$$
f(x, y)=x^{2}+y^{2}+2 x y-x-y+1 \quad \text { over }
$$

Square $0 \leq x \leq 1$ and $0 \leq y \leq 1$
Find extreme values.
(i) on $x=0$.

$$
\begin{array}{ll}
\text { l) on } & x=0 \\
f(x, y)= & y^{2}-y+1
\end{array} \text { for } 0 \leq y \leq 1
$$

$$
f_{y}=2 y-1 \Rightarrow y=\frac{1}{2}
$$

$$
\begin{aligned}
& f\left(0, \frac{1}{2}\right)=\frac{1}{4}-\frac{1}{2}+1=\frac{1-2+4}{4}=\frac{3}{4} \\
& f(0,0)=1, f(0,1)=1
\end{aligned}
$$

(ii) for $y=0$

$$
\begin{aligned}
& f(x, 0)=x^{2}-x+1 \\
& f^{\prime}(x, 0)=2 x-1=0 \\
& \quad x=\frac{1}{2} \\
& f\left(\frac{1}{2}, 0\right)=\frac{1}{4}-\frac{1}{2}+1 \\
& =\frac{3}{4} \\
& f(0,0)=1 \\
& f(1,0)=1-1+1=1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
x & =1 \\
f(1, y) & =y^{2}+y+1 \\
f^{\prime}(1, y) & =2 y+1=, y=-\frac{1}{2}, f\left(1,-\frac{1}{2}\right)=? \\
f(1,0) & =1 \\
f(1,1) & =1+1+2-1-x+x=3 \\
f\left(1,-\frac{1}{2}\right) & =1^{2}+\frac{1}{4}+x(1)\left(-\frac{1}{2}\right)-1+\frac{1}{2}+1 \\
& =x+\frac{1}{4}-x-1+\frac{1}{2}+x \\
& =\frac{1+2}{4}=\frac{3}{4} .
\end{aligned}
$$

(iv) $\quad y=1$

$$
\begin{aligned}
f(x, 1) & =x^{2}+x+1 \\
f\left(x-\frac{1}{2}, 1\right) & =\left(-\frac{1}{2}\right)^{2}+1^{2}+2\left(-\frac{1}{4}\right)(1)+\frac{1}{2}-\not+\gamma \\
& =\frac{1}{4}+X-X+\frac{1}{2} \\
& =\frac{3}{4}
\end{aligned}
$$

Lagrange Multipliers:-
Suppose that $f(x, y, z)$ and $g(x, y, z)$ are differentiable and $\Sigma / g \neq 0$ when $g(x, y, z)=0$. To find the local maximum and minimum values of f subject to constraint $g(x, y, z)=0$, find the value x, y, z and λ that simultaneously satisfy the equations?

$$
\nabla f:=\lambda \nabla g \text { and } g(x, y, z)=0
$$

Fer two independent variables; the condition is simitar

Examples:-

$$
\begin{aligned}
& \text { (1) } f(x, y, z) \quad g(x, y, z)=k \\
& \text { Given } f(x, y, z)=3 x^{2}+y^{2}-2 z^{2} \text { and } \\
& 3 x+2 y-8 z=-50 \text {, use lagrange multipliers } \\
& \text { to find any maximum or minimum values } \\
& \text { sol: } f(x, y, z), g(x, y, z)=k \\
& x, y, z, \lambda
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}=\lambda g x, f_{y}=\lambda g y, f_{z}=\lambda g_{z} \\
& f_{x}=\lambda g_{x} \\
& f y=\lambda g y \\
& 6 x=\lambda 3 \\
& 2 y=\lambda 2 \\
& x=\frac{\lambda}{2} \\
& y=\lambda \\
& -4 z=\lambda(-8) \\
& z=2 \lambda \\
& 3\left(\frac{1}{2} \lambda\right)+2 \lambda-8(2 \lambda)=-50 \\
& \frac{3}{2} \lambda+2 \lambda-16 \lambda=-50 . \\
& \frac{3}{2} \lambda-14 \lambda=-50 \\
& 3 \lambda-28 \lambda=-100 \\
& -25 \lambda=-100 \\
& \lambda=4 \\
& x=\frac{1}{2}(4)=2, y=4, z=8 \\
& P(2,4,8) \mathrm{min} \\
& f(x, y, z)=3(4)+16-2(64) \\
& =-^{-100} \\
& P(4,-3,7)=3(4)^{2}+9-2\left(499^{-2}=-41\right.
\end{aligned}
$$

$$
f(x, y, z)=4 x+2 y+6 z \text { ad } x^{2}+y^{2}+z^{2}=14
$$

use lagrange multipliers to find any maximum or minimum values Sols-

$$
\begin{array}{l|l}
f_{x}=\lambda g x & f_{y}=\lambda g_{y} \\
4=\lambda 2 x & 2=2 \lambda y \\
x=\frac{2}{\lambda} & y=\frac{1}{\lambda}
\end{array}
$$

$$
\begin{aligned}
& f_{z}=\lambda g z \\
& 6=\lambda 2 \\
& z=\frac{3}{\lambda}
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{2}{\lambda}\right)^{2}+\left(\frac{1}{\lambda}\right)^{2}+\left(\frac{3}{\lambda}\right)^{2}=14 \\
\frac{4}{\lambda^{2}}+\frac{1}{\lambda^{2}}+\frac{9}{\lambda^{2}}=14 \\
\frac{14}{\lambda^{2}}=14 \quad, \lambda= \pm 1
\end{gathered}
$$

of $\lambda=1$

$$
\begin{aligned}
& x=2, y=1, z=3 \\
& \lambda=-1 \\
& x=-2, y=-1, \quad z=-3 \\
& f(2,1,3)=4(2)+2(1)+6(3)=28 \text { max } \\
& f(-2,-1,-3)=4(-3)+2(-1)+6\left(-3^{\prime}=-28 \mathrm{~min}\right.
\end{aligned}
$$

(3) Find the greatest and smallest values of the function

$$
f(x, y)=x y \text {, taus on }
$$

ellipse
ell

$$
\frac{x^{2}}{8}+\frac{y^{2}}{2}=1
$$

$$
g(x, y)=\frac{x^{2}}{8}+\frac{y^{2}}{2}-1
$$

$$
\begin{aligned}
& f_{x}=\lambda g x \\
& y=\lambda \frac{2 x}{8}
\end{aligned}
$$

$$
y=\frac{\lambda}{4} x
$$

$$
\begin{aligned}
& y=\frac{\lambda}{4}(\lambda y) \\
& y=\frac{\lambda^{2}}{4} y
\end{aligned}
$$

or $\lambda= \pm 2$
cases. $y=0$ then $x=y=0$ But $(0,0)$ not ellipse, Hence $y \neq 0$.
So case $2 \quad \lambda= \pm 2$
when

$$
\begin{aligned}
& \lambda=2 \\
& x=2 y \quad / \quad(2 y)^{2}+\frac{y^{2}}{8}=1
\end{aligned}
$$

$$
\begin{gathered}
\frac{4 y^{2}}{8}+\frac{y^{2}}{2}=1 \\
4 y^{2}+2 y^{2}=8 \\
8 y^{2}=8 \\
y= \pm 1 \\
x= \pm 2 \\
(\pm 2,1),(\pm 2,-1)
\end{gathered}
$$

the extreme values are $x y=2$ ad -2 .

Name: follh2 Sh ai

$$
\begin{aligned}
& \text { Roll \# 23I-0563 } \\
& B S(C S)-D
\end{aligned}
$$

Volume of cylinder $=\pi r^{2} h$
Volume of hemisphere $=2 / 3 \pi r^{3}$
Total Volume (v)

$$
V=\pi r^{2} h+\frac{\left(2 \pi r^{3}\right) \times 2}{3}
$$

$L_{7}:$ Two He mispheres

$$
\begin{aligned}
& V=\pi r^{2} h+\frac{4}{3} \pi r^{3} \\
& V(r, h)=\pi\left(r^{2} h+\frac{4}{3} r^{3}\right)
\end{aligned}
$$

Question:02

$$
\text { Volume }(v)=15 \mathrm{~cm}^{3}
$$

Surface Area $(A)=$?
Let length, width as hight as l, w and h

$$
\text { Surface } \begin{align*}
\operatorname{Area}(A) & =l w+2(h \omega)+2(h l) \\
\operatorname{Cost}(C) & =6 l w+3(2 h w+2 h l) \\
C & =6 l w+6 h w+6 h l \tag{A}
\end{align*}
$$

$$
\begin{aligned}
& V=l \omega h \\
& l \times w=\frac{15 \times\left(10^{-2}\right)^{3} \mathrm{~m}^{3}}{h} \\
& h=\frac{1.5 \times 10^{-5} \mathrm{~m}}{l w}
\end{aligned}
$$

Substitute in (1)

$$
\begin{aligned}
C & =\frac{\left(l \omega+(\omega+l) 1.5 \times 10^{-5}\right)}{l \omega} \\
& =6\left(l \omega+\left(\frac{1}{l}+\frac{1}{\omega}\right) 1.5 \times 10^{-5}\right) \\
& =6 l \omega+9 \times 10^{-5}(1 / l+1 / \omega)
\end{aligned}
$$

$$
\begin{equation*}
f(x, y)=100 x^{0.6} y^{0.4} \tag{A}
\end{equation*}
$$

Let $x^{\prime}=2 x, y^{\prime}=2 y$

$$
\begin{aligned}
f\left(x, y^{\prime}\right) & =100 x^{0.6} \cdot y^{\prime 0.4} \\
& =100 \cdot(2 x)^{0.6} \cdot(2 y)^{0.4} \\
& =100 \cdot 2^{0.6} \cdot 2^{0.4} x^{0.6} y^{0.4} \\
& =2^{0.6} \cdot 2^{0.4}\left(100 x^{0.6} y^{0.4}\right) \\
& =2^{0.6+0.4} f(x, y) \quad(\text { From (A) })
\end{aligned}
$$

Thus, Proved $f\left(x^{\prime}, y^{\prime}\right)=2 f(x, y) \Rightarrow f(2 x, 2 y)=2 f(x, y)$

Question: O4
i) $f(x, y)=\frac{e^{1 / x}}{\sin y}$

Domain=?

$$
\begin{aligned}
& x \neq 0, \sin y \neq 0 \Rightarrow \quad y \neq n \pi \\
& D:\{(x, y) \mid x \neq 0, y \neq n \pi\}
\end{aligned}
$$

ii) $f(x, y)=\sqrt{\frac{x^{2}+y^{2}}{x^{2}-y^{2}}}$

Domain:

$$
\begin{gathered}
\quad x^{2}-y^{2}>0 \\
|x|>|y| \\
D:\{(x, y)| | x|>|y|\}
\end{gathered}
$$

iii)

$$
\begin{aligned}
& f(x, y)=\sin ^{-1}\left(x^{2} / y^{2}\right) \\
& \rightarrow-1 \leqslant x^{2} / y^{2} \leqslant 1 \\
& \rightarrow x^{2} / y^{2} \geqslant 0 \$
\end{aligned}
$$

$$
\rightarrow y \neq 0 \quad \because \quad 0 \leq x^{2} / y^{2} \Rightarrow x>0, x^{2} / y^{2} \leq 1 \Rightarrow|x| \leqslant|y|
$$

Thus $D:\{x, y|x>0, y \neq 0,|x| \leq|y|$

(iv) $f(x, y)=\frac{\ln x}{\ln y}$

$$
\begin{aligned}
& 1 \quad \rightarrow \quad x>0, y>0 \\
& \rightarrow \ln y \neq 0 \Rightarrow y \neq 1 \\
& D:\{(x, y) \mid x>y, y>0, y \neq 1\} \\
& \ldots \ldots \ldots \ldots \\
& \text { (v) } f(x, y)=\arccos (y / x) \\
& -1 \leq y / x \leq 1 \\
& D:\{(x, y) \mid-x \leq y \leq x\}
\end{aligned}
$$

(vi) $f(x, y)=\arccos \left(y-x^{2}\right)$
(vii) $f(x, y)=\frac{2 \sin x}{\cos y}$

$$
\begin{aligned}
& \cos y \neq 0 \Rightarrow \quad y \neq(2 n+1) \pi / 2 \\
& D:\{(x, y, z) / y \neq(2 n+1) \pi / 2\}
\end{aligned}
$$

(viii) $f(x, y)=\frac{\sqrt{4-x^{2}}+\sqrt{1-y^{2}}}{1-\sqrt{9-z^{2}}}$

$$
\begin{array}{ll}
y-x^{2} \geqslant 0 \Rightarrow|x| \leq 4, & 1-y^{2} \geqslant 0 \Rightarrow|y| \leq 1 \\
9-z^{2} \geqslant 0 \Rightarrow|z| \leq 3, & 1-\sqrt{9-z^{2}} \neq 0 \\
& \left(\sqrt{9-z^{2}}\right\}^{2} \neq 1^{2} \\
D:\{(x, y)|\cdot| x|\leq 4,|z| \leq 3,|y| \leq 1 & 9-1=z^{2} \Rightarrow|z| \neq 2 \sqrt{2} \\
|z| \neq 2 \sqrt{2}\}
\end{array}
$$

$$
|z|+2 \sqrt{2}\}
$$

$$
\begin{aligned}
& -1 \leqslant y-x^{2} \leqslant 1 \\
& y-x^{2} \geqslant-1 \quad, \quad y-x^{2} \leqslant 1 \\
& y \geqslant x^{2}-1
\end{aligned}
$$

(i) $f(x, y, z)=e^{\sqrt{9-\left(x^{2}+y^{2}+z\right)}}$
\qquad
9. $\left(x^{2}+y^{2}+z^{2}\right) \geqslant 0$

$$
1 x^{2}+y^{2}+z^{2} \leq 0
$$

$$
D:\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leqslant 9\right\}
$$

Question: 05

Question: 06

$$
\begin{aligned}
& c=9 / \sqrt{4-\left(x^{2}+y^{2}\right)} \\
& \left(\frac{9}{c}\right)^{2}=4-\left(x^{2}+y^{2}\right) \\
& x^{2}+y^{2}=4-\frac{81}{c^{2}}
\end{aligned}
$$

for $c=18: \quad x^{2}+y^{2}=15 / 4$

$$
\begin{aligned}
& c=9: \quad x^{2}+y^{2}=3 \\
& c=6: x^{2}+y^{2}=7 / 4
\end{aligned}
$$

Question: 07

$$
\begin{aligned}
& c=\sqrt{x^{2}+y^{2}} \quad \text { for } \\
& x^{2}+y^{2}=c^{2} \\
& (y)=c
\end{aligned}
$$

QuESTION:08
a) $\left[(x, y): 4<x^{2} \leq 9\right]$

$$
\begin{aligned}
& =\sqrt{2^{2}}<\sqrt{x^{2}} \leq \sqrt{3^{2}} \\
& =2<|x| \leq 3 \\
& \Rightarrow|x|>2 \quad|x| \leq 3 \\
& -2>x>2-\oplus \quad-3 \leq x \leq 3-(B) \\
& {[-3,-2] \cup(+2,3]}
\end{aligned}
$$

\longrightarrow Open intarval
\longrightarrow boundry points lie on $x= \pm 2, x= \pm 3$
b) $y \leq x^{2}$

* boundry point lie on $y=x^{2}$
* open interval \qquad
\qquad

$$
\begin{array}{ll}
\text { a) } \lim _{(x, y) \rightarrow(2, e)} x^{2} e f \ln e f & \text { b) } \operatorname{Lim}^{2} y^{2}-4=(y, y) \rightarrow(3,2) x y-2 \times x(y-2) \\
= & 2^{2} e \ln e \\
= & 4 e
\end{array}
$$

d) $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}$

Path 1:

$$
\rightarrow x=0 \quad \lim \left(\frac{0-y^{2}}{0+y^{2}}\right)^{2}=+1
$$

Path 2 :

$$
\Rightarrow x y=0 \quad \lim _{(x, 0) \rightarrow(0,0)}\left(\frac{x^{2}-0}{x^{2}+0}\right)^{2}=-1
$$

$\lim _{(x, y) \rightarrow 6,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2} \Rightarrow \begin{aligned} & \text { Loesint exist blase } x^{2}+y^{2} \\ & \\ & \text { resonates back, ie: depends }\end{aligned}$ on d in polar Coordinates.
$\frac{\text { d) } \lim \frac{3 x^{2} y^{2}}{(x, y)-(0,0)} x^{4}+y^{4}}{(x)}$

Path $1 \lim _{x=0} \frac{30^{2} y^{2}}{}=0$
Path $2(0, y) \rightarrow(0,0) 0^{4} 1 y^{4}$
$x=1$
$(1, y) \rightarrow(1,4) \quad \frac{3 y^{2}}{1+y^{2}}=3 / 2$

limit not exist.

$$
\operatorname{Lim} f(x)=0
$$

limit undefined

$$
\gamma \rightarrow
$$

$$
f(0)=0
$$

Limiting value,
Sou cunifinous
ii)
tet $x \rightarrow \cos \theta, y=\sin (0)$
in)
let

$$
=\frac{3(r \cos \theta)(r \sin \theta)}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}
$$

$$
x=x \cos \theta, y=r \sin d \quad=3 \cos \theta \sin \theta
$$

$$
\frac{r^{2} \cos ^{2} \theta r \sin \theta}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}
$$

$\Rightarrow \mathrm{O}$ ranges from

$$
-1+0+1
$$

$$
=r \cos ^{2} \sin \theta
$$

Limit not exist and

$$
\gamma \rightarrow
$$ fuefion not contivous

$$
V_{m}=0
$$

limit exist

$$
\begin{aligned}
& \begin{array}{l}
\text { [Question 10] } \quad\left[\begin{array}{l}
\text { Question } 11] \\
\text { i) } x=r \cos \theta, y=r \sin \theta \\
\text { ii) } x>\cos \theta, y=1 \sin \theta
\end{array}\right.
\end{array} \\
& \begin{array}{ll}
=\frac{r \cos \theta r^{2} \sin ^{2} \theta}{}=\frac{\left.\cos \theta\left(r^{2} \cos ^{2} \theta\right)^{2} \sin ^{2} \theta\right)}{r^{2} \theta+r^{2} \sin ^{2} \theta} & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right. \\
=\frac{r^{3} \cos \theta \sin ^{2} \theta}{r^{2}} & =\frac{\cos \left(r^{2}\right)}{r^{2}} \\
=r \cos \theta \sin ^{2} \theta & r \rightarrow 0
\end{array}
\end{aligned}
$$

Question 17

$$
\begin{aligned}
& \text { Senfare A: } \quad \text { wion }) \text { (he }+2 \text { h } \\
& \text { Vohme : } 1101=500 \Rightarrow 11-100-(i) \\
& A(l, \omega)=\frac{l \omega+2 l .500}{l \omega}+\frac{2 . \omega 5}{\ell \omega} \\
& \begin{array}{l}
=\frac{l \omega+\frac{1000}{\omega}+\frac{1000}{d}}{\omega-\frac{1000}{l^{2}}, A 00}=l-\frac{1000}{\omega^{2}}
\end{array} \\
& A_{l}=0, \Rightarrow w=\frac{1000}{l^{2}} \quad A_{w}=0 \Rightarrow 1=\frac{1000}{\omega^{2}} \\
& \Rightarrow w=10 \mathrm{~m} \\
& \Rightarrow l=10 \mathrm{~m} \\
& \Rightarrow h=\frac{500}{l_{\text {xw }}}=5 \mathrm{~m}
\end{aligned}
$$

Muhammad Toha Faisal

$$
\begin{aligned}
& 231-0592 \\
& C S-D \quad \text { ASSIGNMENT -OZ }
\end{aligned}
$$

Qi)

$$
\begin{aligned}
& f(x, y)=x^{2}+4 y^{2} \\
& x^{2}+y^{2}=1 \Rightarrow g(x, y)=x^{2}+y^{2}-1
\end{aligned}
$$

According to Langrange multipliers,

$$
\nabla f=\lambda \nabla d_{f}^{d}
$$

$$
f_{x}=\lambda g_{x}
$$

$$
f_{y}=\lambda g_{y}
$$

$$
x^{2}+y^{2}=\rightarrow \text { (iii) }
$$

$$
\begin{equation*}
2 x=2 x \lambda, 2 \tag{ii}
\end{equation*}
$$

$$
8 y=\lambda 2 y
$$

(i)
from (i) either $\lambda=1$, or $x=0$
if $\lambda=1$ then
Put in (iii)

$$
x= \pm 1
$$

$(1,0),(-1,0)$
Possible extreme values are

$$
\begin{aligned}
& (1,0),(-1,0),(0,1),(0,-1) \\
& f(1,0)=1, f(-1,0)=1, \quad f(0,1)=4, \quad f(0,-1)=4
\end{aligned}
$$

So, Highest points $=(0, \pm 1)$
Lowest points $=(\pm 1,0)$
Q3)

$$
\begin{aligned}
& f(x, y)=\sin \pi x \cos \pi y \\
& R:\left[0, \frac{1}{4}\right] \times\left[\frac{1}{4}, \frac{1}{2}\right] \\
& \iint_{R} f(x, y) d A=\int_{\frac{1}{4}}^{\frac{1}{2}} \int_{R_{0}}^{\frac{1}{4}}(\operatorname{sn\pi })(005 \pi y) d x d y=\int_{0}^{\frac{1}{2}} \int_{\frac{1}{4}}^{\frac{1}{4}} \sin \pi x \cos \pi y d y d x \\
& =\left.\int_{0}^{\frac{1}{4}}\left(\frac{\sin \pi y}{\pi}\right)\right|_{\frac{1}{4}} ^{\frac{1}{2}} \sin \pi x d x=\frac{1}{\pi}\left[\sin \frac{\pi}{2}-\sin \frac{\pi}{4}\right]_{60}^{\frac{1}{4}} \int_{0}^{\frac{1}{4}} \sin \pi x d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\pi^{2}}\left[1-\frac{1}{\sqrt{2}}| |-\cos \pi x| |_{0}^{\frac{\pi}{4}}=\frac{-1}{\pi^{2}}\left[\frac{1}{\sqrt{2}}\right] \int \cos \frac{\pi}{4}-\cos \right. \\
& =\frac{-1}{\pi^{2}}\left[\frac{\sqrt{2}-1}{\sqrt{2}}\right]\left[\frac{1}{\sqrt{2}}-1\right]=\frac{-1}{\pi^{2}}\left[\frac{\sqrt{2}-1}{\sqrt{2}}\right]\left[\frac{1-\sqrt{2}}{\sqrt{2}}\right]=\frac{(\sqrt{2}-1)^{2}}{2 \pi^{2}} \\
& =\frac{2-2 \sqrt{2}+1}{2 \pi^{2}}=\frac{3-2 \sqrt{2}}{2 \pi^{2}}=0.0086 \\
& 0 \leq 0.0086 \leq 0.3125 \text { derble }
\end{aligned}
$$

15.1 Double and iterate over

Rectangles:-
Theorem 1- Fubini's Theorem (First form) 9. $f(x, y)$ is continuous throughout the rectangular region $R: a \leq x \leq b$, $c \leq y \leq d$, then

$$
\begin{aligned}
& \iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \\
& f(x, y) d y d x \text {. }
\end{aligned}
$$

Examples:-

$$
\begin{aligned}
& \int_{0}^{2} \int_{1}^{3} x y^{2} d y d x \\
= & \int_{1}^{3} x y^{2} d y \\
= & \left.\frac{x y^{3}}{3}\right|_{i=1} ^{y_{3}} \\
= & \frac{x}{3}\left[3^{3}-1^{3 \cdot}\right]=\frac{x}{3}(27-1) \\
= & \frac{26}{3} x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2} \frac{26}{3} x d x \\
& =\left.\frac{26}{3} \frac{x^{2}}{2}\right|_{0} ^{2} \\
& =\frac{26}{6}(4-0) \\
& =\frac{13}{3}(4)=\frac{26 \times 2}{3}=\frac{52}{3} \\
& \int_{0}^{2} \int_{1}^{3} x y^{2} d y d x=\frac{52}{3}
\end{aligned}
$$

Now By changing order of integration

$$
\begin{aligned}
\int_{0}^{2} x y^{2} d x & x y^{2} d x d y \\
& =\left.\frac{x^{2} y^{2}}{2}\right|_{x=0} ^{x=2} \\
& =\frac{y^{2}}{2}\left(2^{2}-0^{2}\right) \\
& =\frac{y^{2}}{2}(4) \\
& =2 y^{2}
\end{aligned}
$$

$$
\begin{aligned}
\int_{1}^{3} 2 y^{2} d y & =\frac{2 y^{3}}{3} 1_{1}^{3} \\
& =\frac{2}{3}(27-1) \\
& =\frac{52}{3}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
&-\iint_{R}\left(2 y-3 x^{2} y^{2}\right) d A \\
& R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\} \\
& \int_{0}^{1} \int_{0}^{2}\left(2 y-3 x^{2} y^{2}\right) d y d x \\
&=\int_{0}^{2} \int_{0}^{1}\left(2 y-3 x^{2} y^{2}\right) d x d y \\
& \int_{0}^{1} \int_{0}^{2}\left(2 y-3 x^{2} y^{2}\right) d y d x=? \\
& \int_{0}^{2}\left(2 y-3 x^{2} y^{2}\right) d y=\frac{2 y^{2}}{2}-\left.\frac{3 x^{2} y^{3}}{3}\right|_{0} ^{y} \\
&=\left(2^{2}-0^{2}\right)-x^{2}\left(2^{3}-0^{3}\right) \\
&=4-x^{2}(8) \\
&==4-8 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1}\left(4-8 x^{2}\right) d x=4 x-\left.\frac{8 x^{3}}{3}\right|_{0} ^{1} \\
& =4(1-0)-\frac{8}{3}(1-0) \\
& =4-8 / 3 \text {. } \\
& =\frac{12-8}{3}=4 / 3 \\
& \int_{0}^{2} \int_{0}^{1}\left(2 y-3 x^{2} y^{2}\right) d x d y=\text { ? } \\
& \int_{0}^{1}\left(2 y-3 x^{2} y^{2}\right) d x=\left.2 x y\right|_{x=0} ^{x=1}-\left.\frac{\beta x^{3} y^{2}}{\beta^{3}}\right|_{0} ^{1} \\
& =2 y(1-0)-y^{2}(1-0) \\
& 2 y-y^{2} \\
& \int_{0}^{2}\left(2 y-y^{2}\right) d y=\frac{2 y^{2}}{2}-\left.\frac{y^{3}}{3}\right|_{0} ^{2} \\
& =(4-0)-\frac{1}{3}(8-0) \\
& =4-\frac{8}{3} \\
& =\frac{12-8}{3} \\
& =4 / 3
\end{aligned}
$$

Double Integrals over General
Regions:-
Theorem 2.
Let $f(x, y)$ be continuous on a region R.

1. If \mathbb{R} is defined by $a \leq x \leq b$, $g_{2}(x) \leq y \leq g_{2}(x)$, with g_{1} and g_{2} continuous on $[a, b]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{q_{2}(x)} f(x, y) d y d x .
$$

(2) If R is defined by $c \leq y \leq d$, $h_{1}(y) \leq x \leq h_{2}(y)$, with h_{1} and h_{2} continuous on $[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 y}\left(4+2 x-y^{2}\right) d x d y \\
& \int_{0}^{2 y}\left(4+2 x-y^{2}\right) d x=4 x+\frac{2 x^{2}}{x}-\left.y^{2} x\right|_{0} ^{2} \\
& =4(2 y-0)+(2 y)^{2}-y^{2}(2 y) \\
& =8 y+4 y^{2}-2 y^{3} \\
& =\int_{0}^{1}\left(8 y+4 y^{2}-2 y^{3}\right) d y \\
& =\frac{8 y^{2}}{2}+\frac{4 y^{3}}{3}-\frac{2 y^{4}}{4} \\
& =4 y_{0}^{2}+\frac{4}{3} y^{3}-\frac{1}{2} y^{4} \\
& =4+\frac{4}{3}-\frac{1}{2} \\
& =\frac{24+8-3}{6}=\frac{29}{6}
\end{aligned}
$$

use double Integral find the volume of tetrahedron bounded by plane $x=4-4 x-2 y$

$$
V=\iint_{R}(4-4 x-2 y) d A \quad \begin{aligned}
& 0=4-4 x-2 y \\
& y=2-2 x
\end{aligned}
$$

Finding Limits of Integration:-
Example:-

$$
\int_{0}^{2} \int_{x^{2}}^{2 x}(4 x+2) d y d x
$$

write an equivalent integral with coder of integration reversed.

$$
\begin{aligned}
& x^{2} \leq y \leq 2 x \\
& y=x^{2}, y=2 x \\
& x=\sqrt{y}
\end{aligned}
$$

$$
x=\frac{y}{2}
$$

$$
x=0, y^{x=2}
$$

$$
\int_{0}^{4} \int_{y / 2}(4 x+2) d x d y
$$

$$
=\int_{0}^{1} \int_{0}^{2-2 x}(4-2 x-2 y) d y d x
$$

$$
=\frac{4}{3}
$$

15.5 Triple Integrals in

Rectangular coordinates:-

$$
\left.\begin{array}{c}
\iiint_{D} F(x, y, z) d v \\
\iiint_{B} x^{3} y z^{2} d v \quad\{0 \leq x \leq 2 \\
\int_{0}^{2} \int_{-2}^{3} \int_{0}^{1} x^{3} y z^{2} d z d y d x \\
0 \leq z \leq 1
\end{array}\right\}
$$

$$
\begin{aligned}
& =\int_{0}^{2} \int_{-2}^{3} x^{3} y / 3 d y d x \\
& =\frac{x^{3}}{3} d y \\
& =\frac{\left.x^{3} y^{2}\right|_{-2} ^{3}}{6} \\
& =\frac{x^{3}}{6}(9-4) \\
& =\frac{5}{6} x^{3} \\
& =\int_{0}^{2} \frac{5}{6} x^{3} d x \\
& =\frac{5}{6} \frac{x^{4}}{4} y_{0}^{2} \\
& =\frac{5}{2}(16-0) \\
& =3 \frac{10}{3} \\
& =10
\end{aligned}
$$

(2) $\int_{0}^{3} \int_{0}^{x} \int_{0}^{x-y} 4 x y d z d y d x$.

$$
\begin{aligned}
& \int_{0}^{x-y} 4 x y d z=\left.4 x y 2\right|_{0} ^{2 x} \\
&=4 x y(x-y) \\
&=4 x^{2} y-4 x y^{2} \\
&= \int_{0}^{3} \int_{0}^{x} 4 x^{2} y-4 x y^{2} d y d x \\
& \int_{0}^{x}\left(4 x^{2} y-4 x y^{2}\right) d y \\
&= \frac{4 x^{2} y^{2}}{2}-\frac{4 x y^{3}}{3} y^{4} x \\
&= \frac{4 x^{2} x^{2}}{2}-\frac{4 x x^{3}}{3} \\
&=\frac{2 x^{4}-\frac{4}{3} x^{4}}{2} \\
&=\frac{6 x^{4}-4 x^{4}}{3}=\frac{2}{3} x^{4} \\
&= \frac{2}{3} x^{4} d x \\
&=\frac{2}{3} \frac{x^{5}}{5} l_{0}^{3} \frac{3^{5}}{5}=\frac{2}{3} \frac{243}{5}=\frac{162}{5}
\end{aligned}
$$

Average value of function in space:Average value of F over D

$$
=\frac{1}{\text { volume of } D} \iint_{D} F A d V
$$

Example:-
Find the average value of $F(x, y, z)=x y z$ throughout the uric region (D) bounded by the circinate planes and planes $x=2$, $y=2$ ad $z=2$ in the octeint

$$
\begin{aligned}
& \text { volume of regin }=x y z \\
&=2(2)(2) \\
&=8 \\
& \begin{aligned}
\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} x y t d x d y d t & =8 \\
\text { Avg } & =\frac{1}{5} \iiint_{\text {cub }} x y z a v
\end{aligned}
\end{aligned}
$$

(1) using Integration find the of the triangular region whose sides have Equations $y=2 x+1$ $y=3 x+1$, and $x=4$.

$$
\begin{aligned}
& f(x) \geqslant g(x) \\
& a \leq x \leq h \\
& \int_{a}^{b}(f(x)-g(x) d x
\end{aligned}
$$

Area $=\int(3 x+1)-(2 x+1) d x$
(2) $=8 s^{2}$
the regin $f(x, y)=x+y=x^{2} \quad$ over

$$
=\int_{0}^{1} \int_{x^{3}}^{x^{2}}(x+y) d y d x
$$

15.4 Double Integral in polar (1) ordinates:-

$$
\iint_{R} f(r, \theta) d A=\int_{\theta=\alpha}^{\theta-\beta} \int_{\gamma=g_{1} \theta}^{\left.\alpha \cdot y_{2}, \theta\right)} f(r, \theta) r d r d \theta
$$

How the find limit of 15 tegration

1. Sketch the region cane label the bounding curves.
2 - Find r limit of Integration:
Imagine a ray L from the origion cutting through R in the direction of increalif r.Mark the r-values where L inters and leaves.
2. Find the θ-lints of Integration. Find the largest ad smallest Q -values.

(1)

$$
r=9 \quad \frac{\pi}{2} \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 9 .
$$

(2)

Find the limit
If integration
for integrating $f(r, 0)$ over the region
R that lies inside the cardicided $\gamma^{2}=(1+\cos \theta)$ and outside the circleir=1 in the cone 1 st quadrant

$$
\begin{aligned}
& 11=\int_{2}^{\pi / 2} \int_{2}^{2(1+\cos \theta)} f(r, \theta) r d r d \theta \\
& =\cos ^{\prime}(\theta)
\end{aligned}
$$

(4) use polar double integral to find the area enclosed by the three-petaled rose $r=\sin 3 \theta$

$$
\begin{aligned}
& A=\int_{0}^{\pi / 3} \sin 3 \theta \cos _{0}^{2} d \theta \\
& =\left.\int_{0}^{\pi / 3} \frac{\gamma^{2}}{2}\right|_{0} ^{\sin 3 \theta} d \theta \\
& =\int_{0}^{\pi / 3} \frac{(\sin 3 \theta)^{2}}{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 3} \sin 3 \theta d \theta \\
& =\frac{1}{4}(\pi / 3)=\frac{1}{12} \pi \\
& \text { Area }=3 \frac{1}{12} \pi=\frac{\pi}{4}
\end{aligned}
$$

I
Double Integrals in Polar ferm:-

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& d x d y=r d r d \theta
\end{aligned}
$$

(1)

$$
\begin{aligned}
& x=r \cos \theta \\
& x^{2}+y^{2}=1 \\
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1
\end{aligned}
$$

$$
y=1
$$

$$
\gamma=0,1
$$

$$
\theta=\frac{\pi}{2}, \quad 3 \pi / 2
$$

$$
I=\int_{\pi / 2}^{3 \pi / 2} \int_{0}^{1} r \cos \theta \gamma d \gamma d \theta
$$

$$
\begin{aligned}
& =\int_{\pi / 2}^{3 \pi / 2} \int_{0}^{3 \pi} \gamma^{2} \cos \theta d r d \theta \\
& =\left.\int_{\pi / 2}^{3 \pi / 2} \cos \theta \frac{\gamma^{3}}{3}\right|_{0} ^{1} d \theta \\
& =\frac{1}{3} \int_{\pi / 2}^{3 \pi / 2} \cos \theta d \theta \\
& =\frac{1}{3}\left[\frac{\sin }{3} \frac{3 \pi}{2}-\sin \pi / 2\right] \\
& =\frac{2}{3}(-1-1) \\
& =
\end{aligned}
$$

Convert pular into certesian:-
(1)

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{1} r^{3} \sin \theta \cos \theta d r d \theta \\
& r=0, \quad r=1, \theta=0, \theta=\pi / 2 \\
& \Rightarrow \quad x^{2}+y^{2}=1^{2} \\
& x=r \cos \theta . \\
& y=r \sin \theta \\
& \cos \theta=\frac{\frac{x}{r}}{r} \\
& \sin \theta=\frac{y}{r} \\
& =\iint x^{2}+y^{2} \sin \theta \cos \theta \quad r d r d \theta . \\
& =\iint\left(x^{2}+y^{2}\right) \frac{x^{\prime}}{r}\left(\frac{y}{r}\right) r d r d \theta \text {. } \\
& =\iint\left(x^{2}+y^{2}\right) \frac{x y}{x^{2}+y^{2}} r d r d \theta \\
& =\int_{0}^{1} \int_{0}^{1-x^{2}} x y d y d x \text {. }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \sec \theta} r^{5} \sin ^{2} \theta d r d \theta \text {. } \\
& r=0, \gamma=2 \sec \theta, \gamma=\frac{2}{\cos \theta} \Rightarrow 20 \gamma=\frac{2}{\frac{x}{x}} \\
& x=2 \\
& \theta=0, \quad \theta=\frac{\pi}{4} \\
& \tan \theta=\frac{y}{x} \Rightarrow \frac{y}{x}=, y=x \text {. } \\
& =\iint r^{4} \sin ^{2} \theta \text { rdrde} \\
& =\iint r^{2 r} \frac{2 \gamma^{2}}{\gamma y} \gamma d r d \theta \\
& =\iint_{x}^{2} y^{2} r d r d \theta \text {. } \\
& =\int_{0}^{x} \int_{0}^{2}\left(x^{2}+y^{2}\right) y^{2} d x d y
\end{aligned}
$$

155
Triple Integrals in Rectangular coordinates:-

Examples
1.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x \\
= & \int_{0}^{1} \int_{0}^{1} x^{2} z+y^{2} z+\left.\frac{z^{3}}{3}\right|_{0} ^{1} d y d x \\
= & \int_{0}^{1} \int_{0}^{1} x^{2}+y^{2}+\frac{1}{3} d y d x \\
= & \int_{0}^{1}\left(x^{2} y+\frac{y^{3}}{3}+\frac{1}{3} y\right)_{0}^{1} d x \\
= & \int_{0}^{1} x^{2}+\frac{1}{3}+\frac{1}{3} d x \\
= & \int_{0}^{1} x^{2}+\frac{1}{3}+\frac{1}{3} d x \\
= & \frac{x}{3}+\frac{1}{3} x+\left.\frac{1}{3} x\right|_{0} ^{1} \\
= & \frac{1}{3}+\frac{1}{3}+\frac{1}{3} \\
= & \frac{1}{3}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { Evaluate } \\
& \int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+2} d z d y d x \\
& =\left.\int_{0}^{\log 2} \int_{0}^{x} \frac{e^{x+y+2}}{1}\right|_{0} ^{x+y} d y d x \\
& =\int_{0}^{\log 2} \int_{0}^{x} e^{x+y+x+y}-e^{x+y} d y d x . \\
& =\int_{0}^{\log r} \int_{0}^{x}\left(e^{2 x+2 y}+e^{x+y}\right) d y d x \\
& =\int_{0}^{\log 2} \frac{e^{2 x+2 y}}{2}-\left.\frac{e^{x+y}}{1}\right|_{0} ^{x} d x \\
& =\int_{0}\left(\frac{e^{2 x+2 x}}{2}-\frac{e^{2 x+0}}{2}\right)-\left(e^{2 x}-e^{x}\right) d x \\
& =\int_{0}^{\log 2}\left(\frac{e^{2 x}}{2}-\frac{e^{2 x}}{2}-e^{2 x}+e^{x}\right) d x \\
& =\int_{0}^{10 y^{2}}\left(\frac{e^{4 x}}{2}-\frac{3 e^{2 x}}{2}+e^{x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{e^{4 x}}{2 \times 4}\right|_{0} ^{\log 2}-\left.\frac{3}{4} e^{2 x}\right|_{0} ^{\log 2}+\left.e^{x}\right|_{0} ^{\log 1} \\
= & \frac{1}{8}\left(e^{4 \log 2}-1\right)-\frac{3}{4}\left(e^{2 \log 2}-1\right)+e^{\lg 2}-1 \\
= & \frac{e^{\log 2^{4}}}{8}-\frac{1}{8}-\frac{3}{4} e^{\log 2^{2}}+\frac{3}{4}+e^{\log 2}-1 \\
= & \frac{2}{8}-\frac{1}{8}-\frac{3}{4} \cdot 4 x+\frac{3}{4}+2-1 \\
= & \frac{16}{8}-\frac{1}{8}-\frac{3}{8}+\frac{3}{4}+1 \\
= & \frac{16-2-24+6+8}{8} \\
= & 5 / 8 \text { Ans }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) Lraluale } \\
& \text { if letrahedran } x=0, y=0,6 \\
& x+y+z=1 \\
& z=0 \\
& z=0, x=1-x-y \\
& y=0, \quad y=1-x \\
& x \div 0, \quad x=1 \\
& =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y}(1+x+y+z)^{-3} d z d y d x \\
& =\int_{0}^{1} \int_{0}^{1-2} \frac{(1+x+y+z)}{-2} \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{(1+x+y+1-x-y)^{-2}}{-2} \frac{(1+x+y+0)^{-2}}{-2} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{(2)^{-2}-(1+x+y)^{-2}}{-2} d y d_{1} .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1+x+y)^{1}} \frac{1}{4} \int_{0}^{1} d y d x \\
& =\frac{1}{2} \int_{0}^{1} \frac{1+x+y)\left.^{-1}\right|_{0} ^{1}-\left.\frac{1}{4} y\right|_{0} ^{1-x} d x}{-1}-\frac{(1+x)}{-1}-\frac{1}{4}(1-x) d^{-1} \\
& =\frac{1}{2} \int_{0}^{1}\left(\frac{2}{-1}+(1+x)-\frac{1}{4}+\frac{1}{4} x\right) d x \\
& \left.=\frac{1}{2} \int_{0}^{1}(1+x)_{0}^{-1}+\frac{1}{4} x-\frac{1}{4}-2\right)^{-1} d x \\
& =\frac{1}{2}\left[\ln 1+\left.x\right|_{0} ^{1}+\left.\frac{x^{2}}{8}\right|_{0} ^{1}-\left.\frac{1}{4} x\right|_{0} ^{1}-\left.2 x\right|_{0} ^{1}\right. \\
& \left.=\frac{1}{2}[\ln 2-\ln 1)+\frac{1}{8}-\frac{1}{4}-2\right] \\
& =\frac{1}{2}\left[\ln 2+\frac{1}{4}-\frac{1}{4}-2\right]=-\frac{1}{2}\left[\ln 2+\frac{1}{9}-\frac{3}{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{8 \ln 2+1-6}{8}\right] \\
& =\frac{1}{2}\left[\frac{8 \ln 2-5}{8}\right] \\
& =\frac{1}{2}[\ln 2-5 / 8] \text { Any }
\end{aligned}
$$

(4) Find the volume of 8 enclosed by surfaces $z=x^{2}+3 y^{2}$ ald $z=8-x^{2}-y$

Sol:

$$
\begin{gathered}
U=\iint_{B} d 2 d y d x \\
z=x^{2}+3 y^{2}, z=8-x^{2}-y^{2} \\
x^{2}+3 y^{2}=8-x^{2}-y^{2} \\
4 y^{2}=8-2 x^{2} \\
y^{2}=\frac{4-x^{2}}{2} \quad 4-x^{2}=0 \\
\left.\left.y= \pm \frac{x^{2}=4}{\frac{4-x^{2}}{2}} \right\rvert\, \begin{array}{l}
x+2
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \int_{-2}^{2} \int_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2} / 2}} \int_{x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} d z d y d x \\
& =\int_{-2}^{2} \int_{-\sqrt{4-x^{2} / 2}}^{\sqrt{4-x^{2}} / 2}\left(8-x^{2}-y^{2}-x^{2}-3 y^{2}\right) d y d x . \\
& =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}}}\left(8-2 x^{2}-14 y^{2}\right) d y d x \\
& =\int_{-2}^{2}\left(8-2 x^{2}\right) y-\left.\frac{4}{3} y^{3}\right|_{-/ 4-x^{2} / 2} d x \\
& =\int_{-2}^{2} 8-2 x^{2} \sqrt{\frac{4-x^{2}}{2}}-\frac{4}{3}\left(\sqrt{\frac{4-x^{2}}{2}}\right)^{3}+\left(8-2 x^{2} \sqrt{\frac{4-x^{2}}{2}} e^{3} \frac{4}{3}\left(\sqrt{\frac{4-x^{2}}{2}}\right)_{0 x}\right. \\
& =\int^{2} 2\left(8-2 x^{2}\right) \sqrt{\frac{4-x^{2}}{2}}-\frac{8}{3}\left(\frac{4-x^{2}}{2}\right)^{3 / 2} d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-2}^{2} 2.2\left(4-x^{2}\right) \sqrt{\frac{4-x^{2}}{2}}-\frac{8}{3}\left(\frac{4-x^{2}}{2}\right)^{\frac{3}{2}} d x \\
& =\int_{-2}^{2} 8 \frac{4-x^{2}}{2} \sqrt{\frac{4-x^{2}}{2}}-8 / 3\left(\frac{4-x^{2}}{2}\right)^{3 / 2} d x . \\
& =\int_{2}^{2} 8\left(\frac{4-x^{2}}{2}\right)^{3 / 2}-8 / 3\left(\frac{4-x^{2}}{2}\right)^{3 / 2} d x \\
& =\int_{-2}^{2}\left(\frac{4-x^{2}}{2}\right)^{3 / 2}(8-8 / 3) d x \\
& =\int_{-2}^{2}\left(\frac{4-x^{2}}{2}\right)^{3 / 2}\left(\frac{24-8}{3}\right) d x \\
& =\frac{16}{3} \int_{-2}^{2}\left(\frac{4-x^{2}}{2}\right)^{3 / 2} d x \text {. } \\
& =\frac{16}{3} 2^{3 / 2} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x \\
& =\frac{16}{2 \sqrt{2}} \int_{-2}^{2}\left(4-x^{2}\right)^{1 / 2} d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{3 \sqrt{2}} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x \\
& =\frac{4 \sqrt{2} \sqrt{2}}{3 \sqrt{2}} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x \\
& =\frac{4}{3} \sqrt{2} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x \text {. } \\
& x=2 \sin u \\
& d x=2 \cos u d x \\
& \sin \theta=\frac{x}{2} \\
& \text { when } x=2, \quad, \quad \theta=\frac{\pi}{2} \\
& x^{2-2} a=-\pi / 2 \text {. } \\
& =\frac{4 \sqrt{2}}{3} \int_{-\pi / 2}^{\pi / 2}\left(4-4 \sin ^{2} 4\right)^{3 / 2} 2 \cos u d u \\
& =\frac{4 \sqrt{2}}{3} \int_{-\pi / 2}^{\pi / 2}\left(4\left(1-\sin ^{2} u\right)^{3 / 2} 2 \cos u d u .\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{412}{3} \cdot \int_{\pi / 1}^{\pi / 2} \\
& \left(4(6)^{2} 4\right)^{7 / 2} 2 \cos 4 d u \\
& =\frac{4 \sqrt{2}}{3} \cdot \int_{\pi / 2}^{\pi / 2}(2 \cos 4)^{?} 2 \cos 4 d 4 \\
& =\frac{4 \sqrt{2}}{3} \int_{\pi}^{\pi / 2} 8 \times 2 \cos ^{4} u d u \text {. } \\
& =\frac{64 \sqrt{2}}{3}\left(\frac{3 \pi}{8}-\frac{3}{8}(-\pi / 2)\right) \\
& =\frac{64 \sqrt{2}}{3} \cdot\left(\frac{3 \pi}{16}+\frac{3 \pi}{16}\right) \\
& =\frac{16 x_{1} \sqrt{2}}{3} \cdot \frac{26 \pi}{16} \\
& =8 \sqrt{2} \pi \\
& =8 \pi \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int\left(\cos ^{2} x\right)^{2} d x \\
= & \int\left(\frac{1+\cos 2 x}{2}\right)^{2} d x \\
= & \frac{1}{4} \int(1+\cos 2 x) d x \\
= & \frac{1}{4} \int\left(1+\cos ^{2} 2 x+2 \cos 2 x\right) d x \\
= & \frac{1}{4} \int 1+2 \cos 2 x+\left(\frac{1+c}{2}\right) d x \\
= & \frac{1}{4} \int 1+2 \cos 2 x+\frac{1}{2}+\frac{\cos 4 x}{2} d x \\
= & \frac{1}{4} \int \frac{1}{2}+\frac{1}{2}+\cos 4 x \\
= & \frac{1}{4}\left(\frac{3}{2} x+2 \sin 2 x+\frac{1}{2} \frac{\sin 4 x}{4}+c\right. \\
= & \frac{3}{8} x+\frac{1}{4} \sin 2 x+\frac{1}{3} \sin 4 x+c
\end{aligned}
$$

Nh value of a function in spares
Avo rage value qFoven $D=\frac{1}{\text { volume }} \int_{\text {iD }} \int_{D} \int_{D} F d u$
Example:-
Find the arg value of $F(x, y, z)=x y z$ throughout the apical regions O bounded by the coordinate planes and the planes $x=2, y=2$ ad $z=2$ in the first octant

$$
\begin{aligned}
\int_{0}^{\text {the }} \int_{0}^{2} \int_{0}^{2} x y z d x d y d z & =\int_{0}^{2} \int_{0}^{2} \frac{x^{2}}{2} d y z d y d z \\
& =\int_{0}^{2} \int_{0}^{2} 2 y z d y d z \\
& =\left.\int_{0}^{2} \frac{2 y^{2}}{2} z\right|_{0} ^{2} d z
\end{aligned}
$$

$$
\begin{aligned}
&=8 \\
& \text { Avg value }=\frac{1}{\text { volume }} \iiint_{\text {abe }} x y z d \| \\
&=\frac{1}{8}(8) \\
&=1
\end{aligned}
$$

15.9
application
If multiple Integrals:

1) Masses and first moments:if $\delta(x, y, z)$ is the density (mass perunit volume) of an object occupying a region D in spare, the integral of o over O gives the mass of an object.

Thee dimensional solid:
\therefore mass

$$
M=\iiint_{D} \delta d v \quad \delta=\delta(x, y, z) \text {. }
$$

1.2.1 First moments about coordinate planes:

$$
\begin{aligned}
& M y z=\iiint_{D} x \delta d v, M_{x z}=\iiint_{0} y \delta d v, \\
& M x y=\iint_{0} z \sigma d v
\end{aligned}
$$

1.8.2 centre of mass:

$$
\bar{x}=\frac{M y z}{M}, \bar{y}=\frac{M M z}{M}, \bar{z}=\frac{M x y}{M}
$$

Two-dimmensional plates
Mass $M=\iint_{R} \delta d v \quad \delta(x, y)$
First moments

$$
\begin{aligned}
& M y=\iint_{R} x \delta d A \\
& M_{x}=\iint_{R} y \delta d v
\end{aligned}
$$

centre of mass

$$
\begin{aligned}
& \text { of mass } \\
& \bar{x}=\frac{M y}{M}, \bar{y}=\frac{C M \pi}{21}
\end{aligned}
$$

centre 8 mas

$$
(\bar{x}, \bar{y}, \bar{z})
$$

\therefore When density iscentant then antre of mats called centroid. Exaplesin 12
Find the centre of mass of a two-dimensiunal plate that occupies the quarter tate circle $x^{2}+y^{2} \leq 1$ in the first quadrant and has density $k\left(x^{2}+y^{2}\right)$.

$$
\begin{align*}
M & =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} k\left(x^{2}+y^{2}\right) d y d x \tag{2}\\
& =k \int_{0}^{1} x^{2} y+\left.\frac{y^{3}}{3}\right|_{0} ^{\sqrt{1-x^{2}}} d x \\
& =k \int_{0}^{1} x^{2} \sqrt{1-x^{2}}+\frac{\left(1-x^{2}\right)^{3 / 2}}{3} d x
\end{align*}
$$

Now, Ne change into polar.

$$
M=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} k\left(x^{2}+y^{2}\right) d y d x
$$

$d x d y=r d r d u$.

$$
\begin{aligned}
& M=\int_{0}^{\pi / 2} k r^{2} r d r d \theta \\
&=\left.\int_{0}^{\pi / 2} k \frac{r^{4}}{4}\right|_{0} ^{1} d \theta=k \int_{0}^{\pi / 2} \frac{1}{4} d \theta \\
&=\left.k \frac{1}{4} \theta\right|_{0} ^{\pi / 2} \\
&=\frac{k \pi}{8}
\end{aligned}
$$

$$
\begin{aligned}
& M M_{x}=k \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{3} r \sin \theta d r d \theta \\
& =k \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{4} \sin \theta d r d \theta \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ad }(1,0) \text { has density } \\
\text { function } S(x, y)=x y
\end{array} \\
& \begin{array}{l}
\text { function } S(x, y)=x y \\
\text { Find it total mass }
\end{array} \\
& =K \int_{0}^{\pi / 2} \frac{1}{5} \sin \theta d \theta \\
& =k-\left.\frac{1}{5} \cos \theta\right|_{0} ^{\pi / 2} \\
& =-\left.k \frac{1}{5}(\sin \pi / 2-\cos 0)\right|_{0} ^{1-x+1} \\
& \text { similealy, } M y=\mathrm{k} / \mathrm{s} \\
& \stackrel{\text { Sol }}{(0,1)} \frac{1}{2} x_{1}^{x+y=1} \\
& =-k \frac{1}{5}\left(0-1 \int_{0} \int_{0} \delta(x, y) d y d x\right. \text {. } \\
& \bar{x}=\frac{M \dot{y}}{M}=\frac{k / 5}{\frac{k \pi}{8}}=\frac{k}{5} \times \frac{8}{k \pi}=8 / 5 \pi \\
& \bar{x}=\bar{y}=\frac{8}{5 \pi} \text {. }
\end{aligned}
$$

piments of Inertia:
Three-dimensial solid
About x-axis $I_{x}=\iiint\left(y^{2}+z^{2}\right) \delta d v$

$$
y \text {-axis } I y=\iiint\left(x^{2}+z^{2}\right) \delta d v
$$

About the line $I_{L}=\iiint \gamma^{2}(x, y, z) \delta d v$.
two-dimensimal plate:
About x-axis

$$
I_{x}=\iint y^{2} \delta d A
$$

About y-axis $I_{y}=\iint x^{2} \delta d A$.
About a line $I^{I}=\iint \gamma^{2}(x, y) \delta d A$

Example: (2)
A thin plate covers the triangutt region bounded by thex-axis ad the lines $x=1$ ad $y=2 x$ in the first quadrant. The plate density at a point (x, y) is $\delta(x, y)=6 x+6 y+6$. Find the plate moments of inertia about the coordinate axes ad crigion.

$$
\begin{aligned}
& I_{x}=\int_{0}^{1} \int_{0}^{2 x} y^{2} 8(x, y) d y d x \\
& =\int_{0}^{1} \int_{0}^{2 x} y^{2}(6 x+6 y+6) d y d x \\
& =\int_{0}^{1} \int_{0}^{2 n}\left(6 x y^{2}+6 y^{3}+6 y^{2}\right) d y d x \mid \\
& =\int_{0}^{1} \frac{6 x y^{3}}{3}+\frac{6 y^{4}}{4}+\left.\frac{6 y^{3}}{x}\right|_{0} ^{2 x} d x \\
& =\int_{1}^{1} 2 x\left(8 x^{3}\right)+\frac{3}{2}\left(6 x^{4}+2.8 x^{3} d x\right. \\
& =\int_{0}^{1}\left(16 x^{4}+24 x^{4}+16 x^{3}\right) d x=\int_{0}^{1} x 10 x^{4}+16 x^{1} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lecture } \\
& \text { (1) } \int_{0}^{1} \int_{2}^{4-2 x} f x y d x \\
& x=0, x=1 \\
& \text { (2) } \int_{2}^{1} \int_{0}^{4} \int_{0}^{\frac{4-y}{2}} \int_{1-x}^{1-x^{2}} f(x, y) d y d x \\
& \int_{0}^{1} \int_{1-y}^{\sqrt{-y}} \operatorname{Pen}^{\infty} y d x d y
\end{aligned}
$$

(3)

$$
\int_{0}^{\frac{\pi}{6}} \int_{\sin x}^{1 / 2} x y^{2} d y c x
$$

$$
\int_{0}^{\frac{1}{2} \sin ^{-1} y} x y^{2} d x d y
$$

15.3

Area By double Integration:
The area of a closed, bounded region $R^{\text {is }}$

$$
A=\iint_{R} d A
$$

Examples:- (1)
Find the area of region \mathbb{R} bermeded by $y=x^{2}$ ad $y=x^{2}$ in the first quadrant

$$
\begin{aligned}
A & =\left.\int_{0}^{1}\right|_{x} ^{x^{2}} d y d x \\
& =\left.\int_{0}^{1} y\right|_{x^{2}} ^{x} d x \\
& =\int_{0}^{1}\left(x^{2}-x^{2}\right) d x \\
& =\frac{x^{2}}{2}-\left.\frac{x^{2}}{3}\right|_{0} ^{1} \frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

(2) Find the area

The parabola ad the line $y=x+2$

$$
\begin{gathered}
=\int_{-2}^{1} \int_{y-2}^{-y^{2}} d x d y \\
=\frac{9}{2}
\end{gathered}
$$

(3) Sketch ad find the area

$$
\int_{0}^{6} \int_{y^{2} / 3}^{2 y} d x d y
$$

$$
=12
$$

Average value
Average value of f over $R=\frac{1}{\operatorname{areag} R} \iint_{R} f d n$
Examples:-
(1) Find the averge value of $f(x, y)=\sin (x+y)$ over the rectangle $0 \leq x \leq \pi, \quad 0 \leq y \leq \pi / 2$

$$
\begin{aligned}
& \theta=\frac{1}{\operatorname{arcacog} R} \int_{0}^{\pi} \int_{0}^{\pi / 2} \sin (x+y) d y d x \\
& \frac{\frac{1}{2}}{2} \int_{0}^{\pi} \int_{0}^{\pi} \\
& \pi / 2 \\
& \sin (x+y) d y d x \\
& \frac{2}{\pi^{2}} \int_{0}^{\pi}-\left.\cos (x+y)\right|_{0} ^{\pi / 2} \\
& \left.=\frac{2}{\pi^{2}} \int_{0}^{\pi}-\left[\cos \left(x+\frac{\pi}{2}\right)\right]-\cos x\right] d x \\
& =\frac{2}{\pi^{2}} \int_{0}^{\pi}-\sin \left(x+\frac{\pi}{2}\right)+\left.\sin x\right|_{0} ^{\pi} \\
& \frac{2}{\pi^{2}}\left[\left(\sin \frac{3 \pi}{2}-\sin \pi\right)+\left(\sin \frac{\pi}{2}-\sin u\right)\right] \\
& =\frac{2}{k^{2}}(1+1) \\
& =\frac{4}{\pi^{2}} \\
& \text { que } \frac{1^{20}+1 \text { Mathscom }}{4^{6}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) Iind the ang height } q \text { the } \\
& \text { parabulud } z=x^{2}+y^{2} \text { are the square } \\
& 0 \leq x \leq 2,0 \leq y \leq 2 \text {. } \\
& \text { Jol: } \\
& \text { argheight }=\frac{1}{4} \int_{0}^{2} \int_{0}^{2}\left(x^{2}+y^{2}\right) d y d x \\
& =\frac{8 / 3}{3}
\end{aligned}
$$

$Q 4$

$$
z=16-x^{2}-2 y^{2} \quad x=2, y=2 \quad \text { and } \quad z=0, x=0, y=0
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left(\left(16-x^{2}-2 y^{2}\right) d y d x\right. \\
= & \int_{0}^{2}\left(32-2 x^{2}-\frac{2(-8)}{3}\right) d x=\left.\int_{0}^{2}\left(16 y+\left(x^{2} y\right)-\frac{2 y^{3}}{3}\right)\right|_{0} ^{1} d x \\
& \left.=32(2)-\frac{2(2)^{3}}{3} \frac{-16(2)}{3}-\frac{16}{3}\right) d x=\left(32 x-\frac{x^{3}}{3}-\frac{16}{3}\right)^{2}
\end{aligned}
$$

Q5)
$x+2 y+z=0 \quad$ assume $z=0$

$$
\iint_{R}(2-x-2 y) d y d x=\int_{0}^{1} \int_{x / 2}^{1-\frac{x}{2}}(2-x-2 y) d y d x
$$

$$
=\int_{0}^{1} \int_{1 / 2}^{1-\frac{x}{2}}(2-x-2 y) d y d x=\int_{0}^{1}\left(2 y-x y-2 y^{2}\right)_{x / 2}^{1-\frac{x}{2}} d x
$$

$$
\begin{aligned}
& =\int_{1}\left(\left[2\left(1-\frac{x}{2}\right)-x\left(1-\frac{x}{2}\right)-\left(1-\frac{x}{2}\right)\right)^{2}-\left(2\left(\frac{x}{2}\right)-x\right.\right. \\
& =\int_{0}\left(2-2\left(\frac{x}{2}\right)-x+\frac{x^{2}}{2}-\left[1+\frac{x^{2}}{4}-x\right]-\frac{x}{2}+\frac{x^{2}}{2}-\frac{x^{2}}{4}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}\left(2-x-x+\frac{x^{2}}{2}-1-\frac{x^{2}}{4}+x-x+\frac{x^{2}}{2}+\frac{x^{2}}{4}\right. \\
& =\int_{0}^{1}\left(1-2 x+x^{2}\right) d x=\left.\left(\frac{x^{3}}{3}+x\right)\right|_{0} ^{1}=\frac{1}{3}-1+1 \Rightarrow v=\frac{1}{3} \text { cubic unit) }
\end{aligned}
$$

(4) using y-simple, from $y=0, y=1$

$$
\begin{aligned}
& y=(x+1)^{2} \\
& \sqrt{y-1=x} \\
& y-y^{3}=x
\end{aligned}
$$

for, $y=(0,1)$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^{3}} d x d y=\left.\int_{0}^{1}(x)\right|_{\sqrt{y}-1} ^{y-y^{3}} d y=\int_{0}^{1}\left(y-y^{3}-\sqrt{y}+1\right) d y \\
& =\left.\left(\frac{y^{2}}{2}-\frac{y^{4}}{4}-\frac{2}{3}\left(y^{3 / 2}\right)+y\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{4}-\frac{2}{3}+1=\frac{7}{12}
\end{aligned}
$$

y-simple from $y=0$ to $y=-1$;

$$
\begin{aligned}
& x=-1 \quad x=y-y^{3} \\
& \int_{-1}^{0} \int_{-1}^{y-y^{3}} d x d y=\left.\int_{-1}^{0}(x)\right|_{-1} ^{y-y^{3}}=\int_{-1}^{0}\left(y-y_{\Delta}^{3}+1\right) d y=\left(\frac{y^{2}}{2}-\frac{y^{4}}{4}+y\right)_{-1}^{0} \\
& =\frac{1}{2}-\frac{1}{4}-1=\frac{2-1-4}{4}=\frac{-3}{4} \Rightarrow A=\frac{3}{4}
\end{aligned}
$$

Total Area $=\frac{3}{4}+\frac{7}{12}=\frac{4}{3}$
Qt)

$$
\begin{aligned}
& z=x^{2}+y^{2} \quad 3 x+2 y^{2}+z^{2}=9 \quad P(1,1,2) \\
& \nabla f=2 x \hat{i}+2 y \hat{j}-\hat{k} \quad \nabla \sigma=6 x \hat{i}+4 y \hat{j}+2 z \hat{k}
\end{aligned}
$$

Vector in direction of $=\nabla f \times \Delta \nabla g$
tangent

$$
\begin{aligned}
\vec{v}=\nabla f \times \nabla g \quad \begin{array}{lll}
\vec{v}= & \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 2 & -1 \\
\delta & 4 & 4
\end{array}\right|=\begin{array}{l}
\hat{i}(8+4)-\hat{j}(81 \\
\\
\\
\\
\hat{k}(8-12)
\end{array} \\
\vec{v}=12 \hat{y}-14 \hat{j}-4 \hat{k}
\end{array},
\end{aligned}
$$

Parametric form; $x(t)=1+12 t, \quad y(t)=1-14 t, z(t)=2-4 \pi$
Q8(b)

$$
\begin{aligned}
& f(x, y)=x e^{x y} \\
& f_{x}(x, y)=x e^{x y} \cdot y+e^{x y} \\
& f_{y}(x, y)=x e^{x y} \cdot x+e^{x y}(0) \\
& f_{y}(x, y)=x^{2} e^{x y}
\end{aligned}
$$

Partial derivative exist and function is continuous, so it is differentable.

$$
\begin{aligned}
z & =z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& =1+\left(0+e^{0}\right)(x-1)+1(y-0) \\
& =1+x-y+y \\
\Rightarrow z & =x+y \\
(x, y) & =(1.1,-0.1) \\
z & =1.1-0.1=1
\end{aligned}
$$

Qa)

$$
\begin{aligned}
& z= f(x, y)=x^{2}+3 x y-y^{2} \\
& d z=f_{x}(x, y) d x+f_{y}(x, y) \cdot d y \\
& d z=(2 x+3 y) d x+(3 x-2 y) d y \\
& x=2, \quad d x=0.05, y=3, d y=-0.04 \\
& d z=[2(2)+3(3)](0.05)+[3(2)-2(3)][-0.04] \\
&=(4+9)(0.05)+0=0.65 \\
& \Delta z=f(x, y)-f(x, y 0) \\
& f(2,3)=(2)^{3}+3(2)(3)-(3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 5,2.46)=(2.05)^{2}+8(2.05)(2.96)-(2.96)^{2} \\
& =4.2025+18.204-8.7616 \\
& \Rightarrow \quad f(2.05), 2.96)=13.64
\end{aligned}
$$

So, $d z$ and Δz has difference of 0.01
Quo)

$$
\begin{aligned}
& =\iint_{R} 10,000 \frac{e^{y}}{1+\frac{|x|}{2}} d y d x \\
& =\int_{-5}^{5} \int_{-2}^{0}\left[10,000 \frac{e^{y}}{1+\frac{|x|}{2}}\right]^{0} d y d x \\
& =10000 \int_{-5}^{0}\left[\frac{1-e^{-2}}{1+\frac{|x|}{2}}\right]_{-2}^{0} d y x \\
& =10,000\left(1-e^{-2}\right)\left(\frac{1}{0} \frac{1}{1-\frac{x}{2}} d x+\int_{0}^{0} \frac{1}{1+\frac{x}{2}} d x\right. \\
& =10000\left(1-e^{-2}\right)\left[\int_{-5}^{-2 \ln \left(\frac{1-x}{2}\right)}\left(1+\frac{x}{2}\right)\right]_{0}^{5} \\
& =10000\left(1-e^{-2}\right) 4 \ln \left(\frac{7}{2}\right)
\end{aligned}
$$

Total Population of $=43328.7 \approx 43329$ Answer
Bacteria
9

$$
\begin{aligned}
& f(t)=b+2 t \quad f(-20)=2, f(20)=7 \\
& 2 z=b-20 a \rightarrow(1) \quad 7=b+20 a \rightarrow(2) \\
& \text { diameter }=40 \mathrm{~m} \quad \text { radius }=20 \mathrm{~m} \\
& \text { volume }=?
\end{aligned}
$$

If radius $=20 \mathrm{~m}$, then circle is

$$
\begin{aligned}
& x^{2}+y^{2} \leq(20)^{2} \\
& x^{2}+y^{2} \leq 400
\end{aligned}
$$

Depth is constant at x-axis, but increases on y-axis from $f(0,-20)=2$ to $f(0,20)=7$

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2} \cdot y_{1}}{x_{2}-x_{1}}=\frac{-7-2}{20+20}=\frac{1}{8}
$$

$$
\begin{aligned}
& 2=\frac{1}{8}\left(y+y_{0}\right)+2 \quad z=\frac{1}{8} y+\frac{9}{2} \\
& \text { Whine }=\iint f(x, y) d A
\end{aligned}
$$

using poler coordinates,

$$
x=x \cos \theta \quad y=0 \sin \theta \quad 0 \leq \theta \leq 2 \pi \quad 0 \leq x \leq 20
$$

$$
x^{2}+y^{2}=\gamma
$$

$$
=\int_{0}^{2 \pi} \int_{0}^{20}\left(\frac{1}{8} \sin \theta+\frac{9}{2}\right) r d \gamma d \theta
$$

$$
=\int_{0}^{2 \pi}\left[\frac{1}{8}\left(\frac{\gamma^{3}}{3}\right) \sin \theta+\left(\frac{\gamma^{2}}{2}\right)\left(\frac{q}{2}\right)\right]_{0}^{20} d \theta
$$

$$
=\int_{0}^{2 \pi}\left(\frac{1}{24}(8000) \sin \theta+900\right) d \theta
$$

$$
=\left[-\frac{1000}{3} \cos \theta+900 \theta\right]_{0}^{2 \pi}
$$

$$
=\left[\frac{-1000}{3}+1800 \pi\right]-\left[\frac{-1000(1)}{3}+0\right]
$$

- $1800 \pi \approx 5654.8$ Answer

Q2 The shortest distance is $O P \perp A B$
If we analyze from triangle $A O B$

$$
\begin{aligned}
& \frac{O P}{O B}=\frac{O B}{A B} \Rightarrow O P \Rightarrow \frac{O A \cdot O B}{H \cdot B} \\
& \Rightarrow \frac{5(3)}{\sqrt{(5)^{2}+(3)^{2}}} \Rightarrow \frac{15}{\sqrt{34}} \approx 2.572 \mathrm{miles} \\
& \text { minimum cost }=2.572 \times 250,000 \\
&=643,120 \text { Answer }
\end{aligned}
$$

