NUMERICAL ANALYSIS:

Numerical Analysis is the branch of mathematics that provides tools and methods for solving mathematical problems in numerical form. In numerical analysis we are mainly interested in implementation and analysis of numerical algorithms for finding an approximate solution to a mathematical problem.

It is the study of algorithms that use numerical approximations (as opposed to general symbolic manipulation) for the problem of mathematical analysis (as distinguished from discrete mathematics)

IMPORTANCE: Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the $21^{\text {st }}$ century, the life science and even the arts have adopted elements of scientific computations. Ordinary differential equations appear in the movements of heavenly bodies (planets, stars, galaxies); optimization occurs in portfolio management; numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology.

Before the advent of modern computers numerical methods often depended on hand interpolation in large printed tables. Since the mid- $20^{\text {th }}$ century, computers calculate the required functions instead. These same interpolation formulas nevertheless continues to be used a part of the software algorithms for solving differential equations.

The overall goal of the field of numerical analysis is the design and analysis of techniques to give approximate but accurate solutions to hard problems, the variety of which is suggested by the following;

- Advanced numerical methods are essential in making numerical weather prediction feasible.
- Computing the trajectory of a space craft requires the accurate numerical solutions of a system of ordinary differential equations.
- Car companies can improve the crash safety of their vehicle by using computer simulations of car crashes. Such simulations essentially consist of solving partial differential equations numerically.
- Hedge funds (Private investment funds) use tools from all fields of numerical analysis to calculate the value of stocks and derivatives more precisely than other market participants.
- Airlines use sophisticated optimization algorithms to decide ticket prices, airplane and crew assignments and fuel needs. Historically, such algorithms were developed within the overlapping fields of operations research.
- Insurance companies use numerical programs for actuarial analysis.

HISTORY:

The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 year ago. Many great mathematicians of the past were preoccupied by numerical analysis, as is obvious from the names of important algorithms like Newton's method, Lagrange's interpolation polynomial, Gaussian elimination or Euler's method.To facilitate computations by hand, large books were produced with formulas and tables of data such as interpolation points and function coefficients. Using these tables, often calculated out to 16 decimal places or more for some functions, one could look up values to plug into the formulas given and achieve very good numerical estimates of some functions. The canonical work in the field is the NIST publications edited by Abramovitz and Stegun, a 1000 plus page book of a very large number of commonly used formulas and functions and their values at many points. The function values are no longer very useful when a computer is available, but the large listing of formulas can still be very handy.
The mechanical calculator was also developed as a tool for hand computation. These calculators evolved into electronic computers in the 1940's and it was then found that these computers were also useful for administrative purposes. But the invention of the computer also influenced the field of numerical analysis, since now longer and more complicated calculations could be done.

Direct methods compute the solution to a problem in a finite number of steps. These methods would give the precise answer if they were performed in infinite precision arithmetic. Examples include Gaussian elimination, the QR factorization method for solving the system of linear equations and the simplex method of linear programming. In practice, finite precision is used and the result is an approximation of the true solution (assuming stability)

In contrast to direct methods, iterative methods are not expected to terminate in a number of steps. Starting from an initial guess, iterative methods from successive approximations that converge to the exact solution only in the limit. A convergence test is specified in order to decide when a sufficiently accurate solution has (hopefully) been found. Even using infinite precision arithmetic these methods would not reach the solution within a finite number of steps (in general). Examples include Newton's method, the Bisection method and Jacobi iteration. In computational matrix algebra, iterative methods are generally needed for large problems. Iterative methods are more common than direct methods in numerical analysis. Some methods are direct in principle but are usually use as though they were not, e.g. GMRES and the conjugate gradient method. For these methods the number of steps needed to obtain the exact solution is so large that an approximation is accepted in the same manner as for an iterative method.

NUMERICAL METHOD (NUMERICAL ITERATION METHOD):

A complete set of rules for solving a problem or problems of a particular type involving only the operation of arithmetic.

OR: A mathematical procedure that generates a sequence of improving approximate solution for a class of problems i.e. the process of finding successive approximations.

NUMERICAL ALGORITHM (ALGORITHM OF ITERATION METHOD):

A complete set of procedures which gives an approximate solution to a mathematical problem. A specific way of implementation of an iteration method, including to termination criteria is called algorithm of an iteration method. In the problem of finding the solution of an equation, an iteration method uses as initial guess to generate successive approximation to the solution. CRITERIA FOR A GOOD METHOD

1) Number of computations i.e. Addition, Subtraction, Multiplication and Division.
2) Applicable to a class of problems.
3) Error management.
4) Speed of convergence.
5) Stability.

STABLE ALGORITHM:

Algorithm for which the cumulative effect of errors is limited, so that a useful result is generated is called stable algorithm. Otherwise Unstable.

NUMERICAL STABILITY:

Numerical stability is about how a numerical scheme propagates error.

Why we use numerical iterative methods for solving equations?

As analytic solutions are often either too tiresome or simply do not exist, we need to find an approximate method of solution. This is where numerical analysis comes into picture.

CONVERGENCE CRITERIA FOR A NUMERICAL COMPUTATION:

If the method leads to the value close to the exact solution, then we say that the method is convergent otherwise the method is divergent. i.e. $\lim _{n \rightarrow \infty} x_{n}=r$

LOCAL CONVERGENCE:

An iterative method is called locally convergent to a root, if the method converges to root for initial guesses sufficiently close to root.

RATE OF CONVERGENCE OF AN ITERATIVE METHOD:

Suppose that the sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ converges to " r " then the sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ is said to converge to " r " with order of convergence "a" if there exist a positive constant " p " such that $\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-r\right|}{\left|x_{n}-r\right|^{a}}=\lim _{n \rightarrow \infty} \frac{\epsilon_{n+1}}{\epsilon_{n}^{\alpha}}=p$ (error constant) Thus if $a=1$, the convergence is linear. If $a=2$, the convergence is quadratic and so on. Where the number " a " is called convergence factor.

REMARK

- Rate of convergence for fixed point iteration method is linear with $a=1$
- Rate of convergence for Newton Raphson method is quadratic with $a=2$
- Rate of convergence for Secant method is super linear with $a>1$

ORDER OF CONVERGENCE OF THE SEQUENCE

Let $\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots ..\right)$ be a sequence that converges to a number "a" and set $\varepsilon_{\mathrm{n}}=\mathrm{a}-\mathrm{x}_{\mathrm{n}}$
If there exist a number " k " and a positive constant "c" such that $\quad \lim _{n \rightarrow \infty} \frac{\left|\boldsymbol{\epsilon}_{\boldsymbol{n}}+\mathbf{1}\right|}{\left|\epsilon_{\boldsymbol{n}}\right|^{k}}=\boldsymbol{c}$ Then " k " is called order of convergence of the sequence and " c " the asymptotic error constant.

CONSISTENT METHOD:

a multi - step method is consistent if it has order at least one.
Let $\boldsymbol{x} \boldsymbol{\epsilon}[\boldsymbol{a}, \boldsymbol{b}], \boldsymbol{y} \boldsymbol{\epsilon} \boldsymbol{R}^{\boldsymbol{d}}$ and the function $f:[\mathrm{a}, \mathrm{b}] \times \mathrm{R}^{\mathrm{d}} \times \mathrm{R}_{+} \rightarrow \mathrm{R}^{\mathrm{d}}$ may be thought of as the approximate increment per unit step, Or the approximate difference quotient and it defines the method and consider $\mathrm{T}(\mathrm{x}, \mathrm{y}: \mathrm{h})$ is truncation error then the method " f " is called consistent if $T(x, y: h) \rightarrow 0$ as $h \rightarrow 0$ uniformly for $(x, y) \epsilon[a, b] \times R^{d}$

PRECISION:

Precision mean how close are the measurements obtained from successive iterations.

ACCURACY:

Accuracy means how close are our approximations from exact value.

DEGREE OF ACCURACY OF A QUADRATURE FORMULA:

It is the largest positive integer " n " such that the formula is exact for " x " for each $(k=0,1,2, \ldots \ldots n)$. i.e. Polynomial integrated exactly by method.

CONDITION OF A NUMERICAL PROBLEM:

A problem is well conditioned if small change in the input information causes small change in the output. Otherwise it is ill conditioned.

ZERO STABILITY:

A numerical IVP solver is Zero Stable if small perturbation in the initial conditions do not cause the numerical approximation to diverge away from the true solution provided the true solution of the IVP is bounded.

A_STABILITY:

A numerical IVP solver is A- Stable if its region of absolute stability includes the entire complete half plane with negative real part, \mathbb{C}^{-}

STEP SIZE, STEP COUNT, INTERVAL GAP

The common difference between the points i.e. $\mathrm{h}=\frac{\boldsymbol{b}-\boldsymbol{a}}{\boldsymbol{n}}=\mathrm{t}_{\mathrm{i}+1}-\mathrm{t}_{\mathrm{i}}$ is called step-size.

ERROR ANALYSIS

ERROR:

Error is a term used to denote the amount by which an approximation fails to equal the exact solution. \quad Error $=$ Exact solution - Approximation

For example: $\pi=3.14159265 \ldots \ldots$ is irrational and $\frac{22}{7}=3.142857 \ldots \ldots$ and a rational. And $\pi \approx \frac{22}{7}$ then Error $=3.14159265 \ldots-3.142857 \ldots=-0.00126449 \ldots$ is accurate .

SOURCE OF ERRORS:

Numerically computed solutions are subject to certain errors. Mainly there are three types of errors

1. Inherent errors
2. Truncation errors
3. Round Off errors

INHERENT (EXPERIMENTAL) ERRORS (1 ${ }^{\text {st }}$ Type of error)
Errors arise due to assumptions made in the mathematical modeling of problems. Also arise when the data is obtained from certain physical measurements of the parameters of the problem i.e. errors arising from measurements.

TRUNCATION ERRORS ($2^{\text {nd }}$ Type of error)

Errors arise when approximations are used to estimate some quantity.

These errors corresponding to the facts that a finite (infinite) sequence of computational steps necessary to produce an exact result is "truncated" prematurely after a certain number of steps.

How Truncation error can be removed?:

Use exact solution. OR , Error can be reduced by applying the same approximation to a larger number of smaller intervals or by switching to a better approximation.

ROUND OFF ERRORS ($3^{\text {rd }}$ Type of error):

Errors arising from the process of rounding off during computations. These are also called "chopping" i.e. discarding all decimals from some decimals on.

CHOPPING:

discarding all decimals from some decimals on. This is cutting of process.
(Rounding off): Cutting of process increasing one digit in last one.

ROUNDING:

For $x \in R ; \mathrm{f}(\mathrm{x})$ is an element of " F " nearest to " x " and the transformation $\mathrm{x} \rightarrow \mathrm{f}(\mathrm{x})$ is called Rounding (to nearest).

For Example: let $\frac{22}{7}=3.142857$... then chopping off $=3.142$ and Rounding off $=3.143$
There are two common ways to express the size of error.

- Absolute error
- Relative error

RELATIVE ERRORS

If "a" is an approximate value of a quantity whose exact value is "a" then relative error $\left(\boldsymbol{\epsilon}_{\boldsymbol{r}}\right)$ of
" \bar{a} " is defined by $\quad\left|\epsilon_{\boldsymbol{r}}\right|=\frac{\mid \text { error } \mid}{\mid \text { true value } \mid}=\frac{|\boldsymbol{\epsilon}|}{|\boldsymbol{a}|}$

EXAMPLE:

Consider $\sqrt{\mathbf{2}}=1.414213 \ldots \ldots$ upto four decimal places then $\sqrt{\mathbf{2}}=1.4142+$ errors
\mid error $\left|=|1.4142-1.41421|=0.00001\right.$ taking 1.4142 as true or exact value. Hence $\boldsymbol{\epsilon}_{\boldsymbol{r}}=\frac{\mathbf{0 . 0 0 0 0 1}}{\mathbf{1 . 4 1 4 2}}$
OR Relative Error $=\frac{\text { True value }- \text { Approximation }}{\text { True value }}$

EXAMPLE:

If $\overline{\mathrm{a}}=2.34$ is an approximation to $\mathrm{a}=2.3456$ then the absolute error is 0.00239

REMARK

i. Relative error is useful when two values are so small.
ii. $\quad \boldsymbol{\epsilon}_{\boldsymbol{r}} \approx \frac{\boldsymbol{\epsilon}}{\overline{\mathrm{a}}}$ if $|\boldsymbol{\epsilon}|$ is much less than $|\overline{\mathrm{a}}|$
iii. We may also introduce the quantity " $\boldsymbol{\gamma}=\mathrm{a}-\overline{\mathrm{a}}=-\boldsymbol{\epsilon}$ " and called it the "correction"
iv. \quad True value $=$ Approximate value + Correction

ABSOLUTE ERROR

If " \bar{a} " is an approximate value of a quantity whose exact value is "a" then the difference
" $\boldsymbol{\epsilon}=\mathrm{a}-\overline{\mathrm{a}}$ " is called absolute error of "a". i.e

Absolute Error $=\mid$ True value - Approximation \mid

- $\overline{\mathrm{a}}=\mathrm{a}+\boldsymbol{\epsilon}$

EXAMPLE:

If $\overline{\mathrm{a}}=2.34$ is an approximation to $\mathrm{a}=2.3456$ then the absolute error is $\boldsymbol{\epsilon}=0.00562$
PRACTICE: Find the Absolute error and Relative errors of the followings;
i. $\quad y=10,00000$ and $\bar{y}=999996$
ii. $\quad p=e$ and $p^{*}=2.718$
iii. $\quad p=\sqrt{2}$ and $p^{*}=1.414$
iv. $\quad z=0.000023$ and $\bar{z}=0.000009$
v. $\quad p=0.3000 \times 10^{1}$ and $p^{*}=0.3100 \times 10^{1}$
vi. $\quad p=0.3000 \times 10^{-3}$ and $p^{*}=0.3100 \times 10^{-3}$
vii. $\quad p=0.3000 \times 10^{4}$ and $p^{*}=0.3100 \times 10^{4}$

ANALYTICAL ERROR:

Error arising due to instrument malfunction and operator error.
Or Error arising due to wrong patient in test. When patient samples are incorrectly collected, mislabeled, are not delivered in time or lost.

PERCENTAGE ERROR

It is calculated by the formula: percentage error $=\left(\frac{\text { actual error-calculated error }}{\text { actual error }}\right) \times \mathbf{1 0 0} \%$
ERROR BOUND: It is a number " β " for "ā" such that $|\bar{a}-a| \leq \beta$ i.e. $|\boldsymbol{\epsilon}| \leq \beta$

PROBABLE ERROR:

This is an error estimate such that the actual error will exceed the estimate with probability one half.

In other words, the actual error is as likely to be greater than the estimate as less. Since this depends upon the error distribution, it is not an easy target and a rough substitute is often used $\sqrt{\boldsymbol{n}} \boldsymbol{\epsilon}$ with " $\boldsymbol{\epsilon}$ " the maximum possible error.

INPUT ERROR

Error arises when the given values ($\left.\mathrm{y}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right), \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots \ldots . . \mathrm{y}_{\mathrm{n}}\right)$ are inexact as experimental or computed values usually are.

LOCAL ERROR:

This is the error after first step. Given by $\boldsymbol{\epsilon}_{\mathrm{i}+1}=\mathrm{x}\left(\mathrm{t}_{0}+\mathrm{h}\right)-\mathrm{x}_{1}$
The Local Error is the error introduced during one operation of the iterative process.

GLOBAL ERROR: :

This is the error at n -step. Given by $\boldsymbol{\epsilon}_{\mathrm{n}}=\mathrm{x}\left(\mathrm{t}_{\mathrm{n}}\right)-\mathrm{x}_{\mathrm{n}}$
The Global Error is the accumulation error over many iterations.
Note that the Global Error is not simply the sum of the Local Errors due to the non-linear nature of many problems although often it is assumed to be so, because of the difficulties in measuring the global error

PROPAGATED ERRORS:

An error in the succeeding steps of a process due to an accurance of an earlier error, such error is an addition to the local error.

LOCAL TRUNCATION ERROR: It is the ratio of local error by step size.i.e. LTE $=\frac{L O C A L E R R O R}{S T E P S I Z E}$

REMARK : Floating point numbers are not equally spaced.

STIFFNESS:

The phenomenon of Stiffness is not precisely defined in the literature. Some attempts of describing a stiff problem are;

- A problem is stiff if it contains widely varying time scales i.e. some components of solution decay much more rapidly than others.
- A problem is stiff if the step size is dictated by stability requirements rather than by accuracy requirements.
- A problem is stiff if explicit methods don't work, or work only extremely slowly.
- A linear problem is stiff if all of its eigenvalues have negative real part and the Stiffness Ratio (the ratio of the magnitudes of the real parts of the largest and smallest eigenvalues) is large.
- More generally, a problem is stiff if the eigenvalues of Jacobians of ' \boldsymbol{f} ' differ greatly in magnitude.
- A system is called Stiff if the solution consist of components that vary with very different speed/frequency.

Definition:
A solution is correct within \mathbf{P} decimal places if the error is less than 0.5×10^{-p}
c)

Question:-
To how many decimal

- places is 22 accurate as an
approximation $\frac{7}{7}$ to π ?
Sol:-

$$
\begin{aligned}
& 1 \pi-\frac{22}{7}=1314159265=3.142857 \\
& 1 / 2 \times 10 \times 1
\end{aligned}
$$

So the approximation is $=\frac{1}{2}$ accurate to
two decimal places
E Example:
Another approximation to π is
$\frac{355}{113 \text { is it accurate many decimal places }}$
is it accurate

$$
\begin{aligned}
& \left\lvert\, \pi-\frac{355}{113}+\right.=13.14159265-3.14159292 \\
&=0 \cdot 00000027 \\
& \frac{1}{2} \times 10^{-7}<\left|-\frac{355}{113}\right|<\frac{1}{2} \times 10^{-6}
\end{aligned}
$$

This approximation is accurate to 6 decimal places

SOLUTION OF NON-LINEAR EQUATIONS

ROOTS (SOLUTION) OF AN EQUATION OR ZEROES OF A FUNCTION

Those values of " x " for which $f(x)=0$ is satisfied are called root of an equation or zero of a function. Thus " a " is root of $f(x)=0$ iff $f(a)=0$

DEFLATION: It is a technique to compute the other roots of $f(x)=0$

ZERO OF MULTIPLICITY:

A solution " p " of $f(x)=0$ is a zero of multiplicity " m " of " f " if for " $x \neq p$ " we can write $\mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{p})^{\mathrm{m}} \mathrm{q}(\mathrm{x})$ where " $\lim _{\boldsymbol{k} \rightarrow \boldsymbol{p}} \boldsymbol{q}(\boldsymbol{x}) \neq \mathbf{0}$ "

Theorem 2:11 The function $f \in C^{1}[a, b]$ has a simple zero at p in (a, b) if and only if $f(p)=0$, but $f^{\prime}(p) \neq 0$.

Proof If f has a simple zero at p, then $f(p)=0$ and $f(x)=(x-p) q(x)$, where $\lim _{\mathrm{I} \rightarrow p} q(x) \neq 0$. Since $f \in C^{1}[a, b]$,

$$
f^{\prime}(p)=\lim _{x \rightarrow p} f^{\prime}(x)=\lim _{x \rightarrow p}\left[q(x)+(x-p) q^{\prime}(x)\right]=\lim _{x \rightarrow p} q(x) \neq 0
$$

Conversely, if $f(p)=0$, but $f^{\prime}(p) \neq 0$, expand f in a zeroth Taylor polynonial about p. Then

$$
f(x)=f(p)+f^{\prime}(\xi(x))(x-p)=(x-p) f^{\prime}(\xi(x))
$$

where $\xi(x)$ is between x and p. Since $f \in C^{\prime}[a, b]$,

$$
\lim _{x \rightarrow p} f^{\prime}(\xi(x))=f^{\prime}\left(\lim _{x \rightarrow p} \xi(x)\right)=f^{\prime}(p) \neq 0
$$

Letting $q=f^{\prime} \circ \xi$ gives $f(x)=(x-p) q(x)$, where $\lim _{x \rightarrow p} q(x) \neq 0$. Thus f has a simple zero at p.

ALGEBRAIC EQUATION:

The equation $f(X)=0$ is called an algebraic equation if it is purely a polynomial in " x ". e.g. $x^{3}+5 x^{2}-6 x+3=0$

TRANSCENDENTAL EQUATION:

The equation $f(x)=0$ is called transcendental equation if it contains Trigonometric, Inverse trigonometric, Exponential, Hyperbolic or Logarithmic functions.e.g.
i. $\quad M=e-e \sin x$
ii. $\quad a x^{2}+\log (x-3)+e x \sin x=0$

PROPERTIES OF ALGEBRAIC EQUATIONS

1. Every algebraic equation of degree " n " has " n " and only " n " roots.e.g.

$$
x^{2}-1=0 \text { has distinct roots i.e. } 1,-1
$$

$x^{2}+2 x+1=0$ has repeated roots i.e. $-1,-1$
$x^{2}+1=0$ has complex roots i.e. $+i,-i$
2. Complex roots occur in pair. i.e. (a+bi) and (a-bi) are roots of $f(x)=0$
3. If $x=a$ is a root $f(x)=0$, a polynomial of degree " n " then $(x-a)$ is factor of $f(x)=0$ on dividing $\mathrm{f}(\mathrm{x})$ by $(x-a)$ we obtain polynomial of degree ($\mathrm{n}-1$).

DIFFERENCE BETWEEN ALGEBRAIC EQUATIONS AND TRANSCENDENTAL EQUATION:

An equation $\mathrm{f}(\mathrm{x})=0$ is called transcendental equation if it contains Trigonometric, Inverse trigonometric, Exponential, Hyperbolic or Logarithmic functions while An equation $f(x)=0$ is called algebraic equation if it contains a polynomial.

DISCARTS RULES OF SIGNS

The number of positive roots of an algebraic equation $f(x)=0$ with the real coefficient cannot exceed the number of changes in sign of the coefficient in $f(x)=0$.
e.g. $\quad x^{3}-3 x^{2}+4 x-5=0$ changes its sign 3 -time, so it has 3 roots.

Similarly, the number of negative roots of $f(x)=0$ cannot exceed the number of changes in sign of the coefficient of $f(-x)=0$ e.g. $-x^{3}-3 x^{2}-4 x-5=0$ does not changes its sign, so it has no negative roots.

REMARK: There are two types of methods to find the roots of Algebraic and Transcendental equations.
(i) DIRECT METHODS
(ii) INDIRECT (ITERATIVE) METHODS

DIRECT METHODS

1. Methods which calculate the required solution without any initial approximation in finite number of steps.
2. Direct methods give the exact value of the roots in a finite number of steps.
3. These methods determine all the roots at the same time assuming no round off errors.
4. In the category of direct methods; Elimination Methods are advantageous because they can be applied when the system is large.
5. Examples; Gauss's Elimination method, Gauss's Jordan method, Cholesky's method.

INDIRECT (ITERATIVE) METHODS

1. Methods based on the concept of successive approximations. The general procedure is to start with one or more approximation to the root and obtain a sequence of iterates "x" which in the limit converges to the actual or true solution to the root.
2. Indirect Methods determine one or two roots at a time.
3. Rounding error have less effect
4. These are self-correcting methods.
5. Easier to program and can be implemented on the computer.
6. Examples; Gauss's Jacobi method, Gauss's Seidal method, Relaxation method.

REMEMBER: Indirect Methods are further divided into two categories
I. BRACKETING METHODS II. OPEN METHODS

BRACKETING METHODS
These methods require the limits between which the root lies. e.g. Bisection method, False position method.

OPEN METHODS

These methods require the initial estimation of the solution. e.g. Newton Raphson method.

ADVANTAGES AND DISADVANTAGES OF BRACKETING METHODS

Bracket methods always converge.
The main disadvantage is, if it is not possible to bracket the root, the method cannot applicable.

GEOMETRICAL ILLUSTRATION OF BRACKET FUNCTIONS

In these methods we choose two points " x_{n} " and " x_{n-1} " such that $f\left(x_{n}\right)$ and $f\left(x_{n-1}\right)$ are of opposite signs. Intermediate value property suggests that the graph of " $\mathrm{y}=\mathrm{f}(\mathrm{x})$ " crosses the x -axis between these two points, therefore a root (say) " $\mathrm{x}=\mathrm{x}_{\mathrm{r}}$ " lies between these two points.

REMARK: Always set your calculator at radian mod while solving Transcendental or Trigonometric equations.

How to get first approximation?:

We can find the approximate value of the root of $f(x)=0$ by "Graphical method" or by "Analytical method".

INTERMEDIATE VALUE THEOREM:

According to this theorem;
If the end points of straight line lies in positive and negative, then the line cuts the $\mathrm{x}-$ axis.
OR: If the one value of function is constant and the other is negative and function is continuous then the curve will cuts the x - axis.

OR: if $f(x) \in C[a, b]$ and $f(a) . f(b)<0$ then there exist a root "c $\in(a, b)$ " such that " $f(c)=0$ "
OR: For $\mathrm{f}(\mathrm{x})$ being a real valued function defined on $[\mathrm{a}, \mathrm{b}]$ if
$f(x)$ is continuous at $[a, b]$ and differentiable at (a, b) then there exists " $c \in(a, b)$ " such that " $\mathrm{f}(\mathrm{c})=0 "$

BISECTION METHOD

Bisection method is one of the bracketing methods. It is based on the "Intermediate value theorem"

The idea behind the method is that if $f(x) \in C[a, b]$ and $f(a) . f(b)<0$ then there exist a root "c $\in(a, b)$ " such that " $f(c)=0$ "
This method also known as BOLZANO METHOD (or) BINARY SEARCH METHOD.
ALGORITHM: For a given continuous function $f(x)$

1. Find a, b such that $f(a) \cdot f(b)<0$ (this means there is a root " $\mathrm{r} \in(\mathrm{a}, \mathrm{b})$ " such that $\mathrm{f}(\mathrm{r})=0$
2. Let $\mathrm{c}=\frac{\boldsymbol{a}+\boldsymbol{b}}{2}$ (mid-point)
3. If $\mathrm{f}(\mathrm{c})=0$; done (lucky!)
4. Else; check if $\boldsymbol{f}(\boldsymbol{c}) . \boldsymbol{f}(\boldsymbol{a})<\mathbf{0}$ or $\boldsymbol{f}(\boldsymbol{c}) . \boldsymbol{f}(\boldsymbol{b})<\mathbf{0}$
5. Pick that interval $[a, c]$ or $[c, b]$ and repeat the procedure until stop criteria satisfied.

STOP CRITERIA

1. Interval small enough.
2. $\left|f\left(c_{n}\right)\right|$ almost zero
3. Maximum number of iteration reached
4. Any combination of previous ones
5. $\left|f\left(c_{n}\right)\right|<\epsilon$

Remark:

To determine which subinterval of $\left[a_{n}, b_{n}\right]$ contains a root of ' f ' it is better to make use of signum function, which is defined as
$\operatorname{sgn}(x)= \begin{cases}-1 & \text {;if } x<0 \\ 0 & \text {;if } x=0 \\ 1 & \text {;if } x>0\end{cases}$
Then test $\operatorname{sgn}\left(f\left(a_{n}\right)\right) \operatorname{sgn}\left(f\left(p_{n}\right)\right)<0 \quad$ instead of $f\left(a_{n}\right) f\left(p_{n}\right)<0$

Theorem:-
belongs to sum that $f \in \subset[a, b] C f$ belongs to continues functions on exists ul a and that then

- exists a number $r \in[a, b]$ such
...that $f(r)=0$, if $f(a)$ and $f(b)$ have opposite signs and $\left[C_{n}\right]_{n=0}^{\alpha}$ represent the sequence
of midpoints, generated by the
bisection process (A) and (B). then

$$
\left\lvert\, r-c_{n} \leq \frac{b=a}{2 n+1}-n=a\right., 2
$$

and therefore the sequence $\left[\mathrm{cn}_{n=0}\right.$ converges to the root $x=r$
Proofs- Li ${ }_{n \rightarrow \infty} C_{n}=r$ root "r "and the mid point c_{n} lies in the $\left|r-c_{n}\right| \leq b_{n}-a_{n}$ interval [an, bn]. So, $\quad\left|b_{1}-a_{1}\right|=1 \frac{b}{2} a^{2}$
the distance from
c_{n} and r cannot
be greater than

$$
\frac{\left|b_{2}-a_{2}\right|=\left\lvert\, \frac{b-a \mid}{2^{2}}\right.}{\left|b_{n}-a_{n}\right|=\frac{1 b-a \mid}{2^{n}}}
$$

so $|\gamma-c n| s\left|b^{2^{n}}-a\right| / 2^{n+}$
half the width of this interval

$$
\left|x-c_{n}\right| \leqslant \frac{b_{n}-a_{n} \mid ; \forall n \rightarrow d ;}{2}
$$

The successiuc interval width ane $\left|b_{1}-a_{1}\right|=-\frac{b_{0}-a_{0} \mid}{2}$

$$
\left|b_{2}=a_{2}-\right|=\frac{b_{1}-a_{1} \mid}{2}
$$

$$
\left|b_{2}-a_{2}\right|=\frac{\left|b_{0}-a_{0}\right|}{2^{2}}
$$

Similarly, $\quad b_{n}=a_{n} \left\lvert\,=\frac{1 b_{0}-a_{0}}{2^{n}} \rightarrow c_{2}\right.$
From (1) and (2)
at can be written as

$$
\operatorname{lr}-\operatorname{Cn}_{n} \ln \frac{1 b_{0}-a_{0}}{2^{n+1}} \forall n \rightarrow(3)
$$

-Thus, cr conucgges to r. Since, for $\ldots n-\infty$

$$
\begin{aligned}
& =\frac{1 b_{0}-\frac{a_{0} 1}{2 n+1} \rightarrow 0}{\lim _{n \rightarrow \infty} C n}=r \\
& \Rightarrow \quad l
\end{aligned}
$$

$$
\begin{aligned}
& \text { Theorom } 21 \quad \text { Suppose that } f \in C[a, b] \text { and } f(a) \cdot f(b)<0 \text {. The Bisection method generates a sequence } \\
& \\
& {\left[p_{n}\right\}_{n=1}^{\infty} \text { approximating a zeno } p \text { of } f \text { with }} \\
& \qquad\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}, \text { when } n \geq 1 .
\end{aligned}
$$

Proof For each $n \geq 1$, we have

$$
b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a) \quad \text { and } p \in\left(a_{n}, b_{n}\right)
$$

Since $p_{*}=\frac{1}{2}\left(a_{n}+b_{n}\right)$ for all $n \geq 1$, it follows that

$$
\left|P_{n}-P\right| \leq \frac{1}{2}\left(b_{n}-a_{n}\right)=\frac{b-a}{2^{*}}
$$

Because

$$
\left|p_{n}-p\right| \leq(b-a) \frac{1}{2^{n}}
$$

the sequence $\left\{p_{N}\right\}_{n=1}^{\infty}$, converges to p with rate of convergence $O\left(\frac{1}{2^{7}}\right)$: that is.

$$
p_{n}=p+o\left(\frac{1}{2^{n}}\right)
$$

It is important to realize that Theorem 2.1 gives only a bound for approximation error and that this bound might be quite conservative. For example, this bound applied to the

CONVERGENCE CRITERIA

Number of iterations needed in the bisection method to achieve certain accuracy
Consider the interval $\left[\mathrm{a}_{0}, \mathrm{~b}_{0}\right], \mathrm{c}_{0}=\frac{a_{0}+b_{0}}{2}$ and let $\mathrm{r} \in\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$ be a root then the error is $\epsilon_{0}=\left|\mathrm{r}-\mathrm{c}_{0}\right| \leq \frac{b_{\mathbf{0}}-a_{0}}{2}$

Denote the further intervals as " $\left[a_{n}, b_{n}\right]$ for iteration number " n " then $\epsilon_{\mathrm{n}}=\left|\mathrm{r}-\mathrm{c}_{\mathrm{n}}\right| \leq \frac{\boldsymbol{b}_{n}-a_{n}}{2} \leq \frac{\boldsymbol{b}_{0}-a_{0}}{2^{n+1}}=\frac{\epsilon_{0}}{2^{n}}$

If the error tolerance is " \in " we require " $\epsilon_{\mathrm{n}} \leq \in$ " then $\frac{\boldsymbol{b}_{0}-\boldsymbol{a}_{0}}{2^{n+1}} \leq \in$
After taking logarithm $\Rightarrow \log \left(\mathrm{b}_{0}-\mathrm{a}_{0}\right)-\mathrm{n} \log 2 \leq \log (2 \epsilon)$
$\Rightarrow \frac{\boldsymbol{\operatorname { l o g }}\left(b_{0}-a_{0}\right)-\boldsymbol{\operatorname { l o g } (2 \epsilon)}}{\boldsymbol{\operatorname { l o g }} 2} \leq \mathrm{n} \Rightarrow \frac{\boldsymbol{\operatorname { l o g }}(b-a)-\boldsymbol{\operatorname { l o g }} 2 \epsilon}{\boldsymbol{\operatorname { l o g }} 2} \leq \mathrm{n} \quad$ (which is required)

MERITS OF BISECTION METHOD

1. The iteration using bisection method always produces a root, since the method brackets the root between two values.
2. (method always converges) As iterations are conducted, the length of the interval gets halved. So one can guarantee the convergence in case of the solution of the equation.
3. Bisection method is simple to program in a computer.

DEMERITS OF BISECTION METHOD

1. The convergence of bisection method is slow as it is simply based on halving the interval.
2. Cannot be applied over an interval where there is discontinuity.
3. Cannot be applied over an interval where the function takes always value of the same sign.
4. Method fails to determine complex roots (give only real roots)
5. If one of the initial guesses " a_{0} " or " b_{0} " is closer to the exact solution, it will take larger number of iterations to reach the root.

EXAMPLE: Solve $\mathrm{x}^{3}-9 \mathrm{x}+1=0$ for roots between $\mathrm{x}=2$ and $\mathrm{x}=4$ using Bisection method.
SOLUTION

x	2	4
$f(x)$	-9	29

Since $\mathrm{f}(2) . \mathrm{f}(4)<0$ therefore root lies between 2 and 4
(1) $\mathrm{x}_{\mathrm{r}}=\frac{2+4}{2}=3$ so $\mathrm{f}(3)=1(+\mathrm{ve})$
(2) For interval $[2,3] ; \mathrm{x}_{\mathrm{r}}=\frac{2+3}{2}=2.5$ $\mathrm{f}(2.5)=-5.875(-\mathrm{ve})$
(3) For interval $[2.5,3] ; x_{r}=(2.5+3) / 2=2.75$ $\mathrm{f}(2.75)=-2.9534(-\mathrm{ve})$
(4) For interval $[2.75,3] ; x_{r}=(2.75+3) / 2=2.875$ $\mathrm{f}(2.875)=-1.1113(-\mathrm{ve})$
(5) For interval $[2.875,3] ; x_{r}=(2.875+3) / 2=2.9375$ $\mathrm{f}(2.9375)=-0.0901(-\mathrm{ve})$
(6) For interval $[2.9375,3] ; x_{r}=(2.9375+3) / 2=2.9688$ $\mathrm{f}(2.9688)=+0.4471(+\mathrm{ve})$
(7) For interval $[2.9375,2.9688] ; x_{r}=(2.9375+2.9688) / 2=2.9532$ $\mathrm{f}(2.9532)=+0.1772(+\mathrm{ve})$
(8) For interval $[2.9375,2.9532] ; x_{r}=(2.9375+2.9532) / 2=2.9453$ $\mathrm{f}(2.9453)=0.1772$
Hence root is 2.9453 because roots are repeated.

EXAMPLE: Use bisection method to find out the roots of the function describing to drag coefficient of parachutist given by
$\mathrm{f}(\mathrm{c})=\frac{667.38}{c}[1-\exp (-0.146843 \mathrm{c})]-40 \quad$ Where " $\mathrm{c}=12$ " to " $\mathrm{c}=16$ " perform at least two iterations.
SOLUTION: Given that $\quad \mathrm{f}(\mathrm{c})=\frac{\mathbf{6 6 7 . 3 8}}{\boldsymbol{c}}[1-\exp (-0.146843 \mathrm{c})]-40$

X	12	13	14	15
$\mathrm{f}(\mathrm{x})$	6.16	3.64	1.47	-2.46

Since $\mathrm{f}(14)$. $\mathrm{f}(15)<0$ therefore root lie between 14 and 15
$X_{r}=\frac{14+15}{2}=14.5 \quad$ So $f(14.5)=-4.77$
Again f (14). f (14.5) <0 therefore root lie between 14 and 14.5
$X_{r}=\frac{\mathbf{1 4 + 1 4 . 5}}{2}=14.25 \quad$ So $f(14.25)=1.05$ These are the required iterations

EXAMPLE:

Explain why the equation $\mathrm{e}^{-\mathrm{x}}=\mathrm{x}$ has a solution on the interval $[0,1]$. Use bisection to find the root to 4 decimal places. Can you prove that there are no other roots?

SOLUTION:

If $f(x)=e^{-x}-x$, then $f(0)=1, f(1)=1 / e-1<0$, and hence a root is guaranteed by the Intermediate Value Theorem. Using Bisection, the value of the root is $\mathrm{x}^{?}=.5671$. Since $f^{0}(x)=-e^{-x}-1<0$ for all x, the function is strictly decreasing, and so its graph can only cross the x axis at a single point, which is the root.

EXAMPLE:

Using Bisection Method Solve $\mathrm{x}-\operatorname{Cos} \mathrm{x}=0$

SOLUTION

X	0	1
$\mathrm{f}(\mathrm{x})$	-1	0.46

Since $f(0) . f(1)<0$ therefore root lies between 0 and 1 and let $\epsilon=\frac{1}{2} \times 10^{-3}=0.0005$

$$
\begin{equation*}
\mathrm{x}_{\mathrm{r}}=\frac{\mathbf{0 + 1}}{\mathbf{2}}=0.5 \quad \text { so } \mathrm{f}(0.5)=-0.3775(-\mathrm{ve}) \tag{1}
\end{equation*}
$$

(2) For interval $[0.5,1] \quad ; \quad x_{r}=\frac{\mathbf{0 . 5 + 1}}{\mathbf{2}}=0.75$ so $f(0.75)=0.0183(+\mathrm{ve})$

Similarly, other terms are given below

Interval	x_{r}	$f\left(\mathrm{x}_{\mathrm{r}}\right)$
$[0.5,0.75]$	0.625	-0.1859
$[0.625,0.75]$	0.6875	-0.0853
$[0.6875,0.75]$	0.71875	-0.0338
$[0.71875,0.75]$	0.73	-0.0152
$[0.73,0.75]$	0.74	-0.0015
$[0.73,0.74]$	0.735	-0.0068
$[0.735,0.74]$	0.7375	-0.0026
$[0.7375,0.74]$	0.73875	-0.00056

Since $f(0.73875)=|-0.0005| \leq \epsilon$ so the root is $0.73875=0.739$
EXERCISE: :Solve by using Bisection method
i. $\quad x^{3}-3 x-5=0$
ii. $x^{3}-4 x-9=0$
iii. $e^{x}-x^{2}+3 x-2=0$ for $0 \leq x \leq 1$
iv. $\operatorname{Cos} x=\sqrt{x}$
v. $3 x=\sqrt{1+\operatorname{Sin} x}$

FALSE POSITION METHOD

This method also known as REGULA FALSI METHOD, CHORD METHOD „, LINEAR INTERPOLATION and method is one of the bracketing methods and based on intermediate value theorem.

This method is different from bisection method. Like the bisection method we are not taking the mid-point of the given interval to determine the next interval and converge faster than bisection method.

ALGORITHM: Given a function $\mathrm{f}(\mathrm{x})$ continuous on an interval $[\mathrm{a}, \mathrm{b}]$
i. $\quad f(a) . f(b)<0$ for all

$$
n=0,1,2,3 \ldots \ldots \ldots \ldots \ldots
$$

ii. Use following formula to next root $x_{r}=x_{f}-\frac{x_{f}-x_{i}}{f\left(x_{f}\right)-f\left(x_{i}\right)} \mathrm{f}\left(\mathrm{x}_{\mathrm{f}}\right)$
iii. $\quad \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)=0$; done! Otherwise use interval again

We can also use $x_{r}=x_{n+1},, x_{f}=x_{n}, x_{i}=x_{n-1}$

STOPING CRITERIA

1. Interval small enough.
2. $\left|f\left(c_{n}\right)\right|$ almost zero
3. Maximum number of iteration reached
4. Same answer.
5. Any combination of previous ones

EXAMPLE:

Using Regula Falsi method Solve $x^{3}-9 x+1=0$ for roots between $x=2$ and $x=4$

SOLUTION

X	2	4
$\mathrm{f}(\mathrm{x})$	-9	29

Since $f(2) . f(4)<0$ therefore root lies between 2 and 4
Using formula $\quad x_{r}=\mathrm{x}_{\mathrm{f}}-\frac{x_{f}-x_{i}}{f\left(x_{f}\right)-f\left(x_{i}\right)} \mathrm{f}\left(\mathrm{x}_{\mathrm{f}}\right)$
For interval $[2,4] \quad$ we have $\quad x_{r}=\mathbf{4 -} \frac{\mathbf{4 - 2}}{29-(-9)} \times 29=\mathbf{2 . 4 7 3 7}$
Which implies $\boldsymbol{f}(\mathbf{2 . 4 7 3 7})=\mathbf{- 6 . 1 2 6 3}(-\mathrm{ve})$

Similarly, other terms are given below

Interval	x_{r}	$f\left(\mathrm{x}_{\mathrm{r}}\right)$
$[2.4737,4]$	2.7399	-3.0905
$[2.7399,4]$	2.8613	-1.326
$[2.8613,4]$	2.9111	-0.5298
$[2.9111,4]$	2.9306	-0.2062
$[2.9306,4]$	2.9382	-0.0783
$[2.9382,4]$	2.9412	-0.0275
$[2.9412,4]$	2.9422	-0.0105
$[2.9422,4]$	2.9426	-0.0037
$[2.9426,4]$	2.9439	0.0183
$[2.9426,2.9439]$	2.9428	-0.0003
$[2.9426,2.9439]$	2.9428	-0.0003

EXAMPLE: Using Regula Falsi method to find root of equation " $\boldsymbol{\operatorname { l o g } \boldsymbol { x } \boldsymbol { x } - \boldsymbol { \operatorname { c o s } } \boldsymbol { x } = \mathbf { 0 } \text { " upto four }}$ decimal places, after 3 successive approximations.

SOLUTION

| X | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~F}(\mathrm{X})$ | $-\infty$ | -0.5403 | 1.1093 |

Since $f(1) . f(2)<0$ therefore root lies between 1 and 2
Using formula $\mathrm{X}_{\mathrm{r}}=\mathrm{x}_{\mathrm{f}}-\frac{x_{f}-x_{i}}{f\left(x_{f}\right)-f\left(x_{i}\right)} \mathrm{f}\left(\mathrm{x}_{\mathrm{f}}\right)$
For interval [1,2] we have $\quad \mathrm{x}_{\mathrm{r}}=2-\frac{\mathbf{2 - 1}}{\mathbf{1 . 1 0 9 3 - (- 0 . 5 4 0 3)}} \times 1.1093=1.3275$
Which implies $f(2.4737)=0.0424(+$ ve $)$
Similarly, other terms are given below

Interval	x_{r}	$f\left(x_{r}\right)$
$[1,1.3275]$	1.3037	0.0013
$[1,1.3037]$	1.3030	0.0001

Hence the root is 1.3030

KEEP IN MIND

- Calculate this equation in Radian mod
- If you have "log" then use "natural log". If you have " $\boldsymbol{\operatorname { l o g }}_{\mathbf{1 0}}$ " then use "simple log".

EXAMPLE: Using Regula Falsi method to find root of equation " $x \log _{10} x=1.2$ " upto three decimal places.

SOLUTION: Given that $f(x)=x \log _{10} x-1.2$

X	2	3
$\mathrm{~F}(\mathrm{X})$	-0.5979	0.2314

Since $f(2) . f(3)<0$ therefore root lies between 2 and 3
Using formula $\mathrm{X}_{\mathrm{r}}=\mathrm{x}_{\mathrm{f}}-\frac{x_{f}-x_{i}}{f\left(x_{f}\right)-f\left(x_{i}\right)} \mathrm{f}\left(\mathrm{x}_{\mathrm{f}}\right)$
For interval $[2,3] \quad$ we have $\quad x_{r}=3-\frac{3-2}{0.2314-(-\mathbf{0 . 5 9 7 9})} \times 0.2314=2.72097$
Which implies $f(2.72097)=-0.01713(-\mathrm{ve})$
Similarly, other terms are given below

Interval	x_{r}	$f\left(x_{r}\right)$
$[3,2.72097]$	2.7402	-3.8905×10^{-4}

Thus the root of the given equation correct to three decimal places is 2.740
GENERAL FORMULA FOR REGULA FALSI USING LINE EQUATION
Equation of line is $\quad \frac{y-f\left(x_{n}\right)}{x-x_{n}}=\frac{f\left(x_{n-1}\right)-f\left(x_{n}\right)}{x_{n-1}-x_{n}}$
$\operatorname{Put}(\mathrm{x}, 0)$ i.e. $\mathrm{y}=0 \quad \frac{-f\left(x_{n}\right)}{x-x_{n}}=\frac{f\left(x_{n-1}\right)-f\left(x_{n}\right)}{x_{n-1}-x_{n}}$
$\Rightarrow \frac{-f\left(x_{n}\right)}{f\left(x_{n-1}\right)-f\left(x_{n}\right)}=\frac{x-x_{n}}{x_{n-1}-x_{n}} \Rightarrow \frac{-\left(x_{n-1}-x_{n}\right) f\left(x_{n}\right)}{f\left(x_{n-1}\right)-f\left(x_{n}\right)}=x-x_{n} \Rightarrow x=x_{n}-\frac{\left(x_{n-1}-x_{n}\right) f\left(x_{n}\right)}{f\left(x_{n-1}\right)-f\left(x_{n}\right)}$
Hence first approximation to the root of $f(x)=0$ is given by
$x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$
We observe that $f\left(x_{n-1}\right), f\left(x_{n+1}\right)$ are of opposite sign so, we can apply the above procedure to successive approximations.

EXAMPLE: Using False Position method Solve x Tanx $=-1$ in $(2.5,3)$
SOLUTION:
Here $f(x)=x \operatorname{Tan} x+1$

X	2.5	3
$\mathrm{f}(\mathrm{x})$	-0.8675	0.5723

Since $f(0) . f(1)<0$ therefore root lies between 2.5 and 3 and let $\epsilon=\frac{1}{2} \times 10^{-3}=0.0005$
Using formula $\mathrm{X}_{\mathrm{r}}=\mathrm{x}_{\mathrm{f}}-\frac{x_{f}-x_{i}}{f\left(x_{f}\right)-f\left(x_{i}\right)} \mathrm{f}\left(\mathrm{x}_{\mathrm{f}}\right)$
For interval $[2.5,3] \quad$ we have $\quad \mathrm{x}_{1}=3-\frac{\mathbf{3 - 2 . 5}}{\mathbf{0 . 5 7 2 3 - (- \mathbf { 0 . 8 6 7 5 })}} \times 0.5723=2.426$
Which implies $f(2.426)=1.0953(-v e)$
Similarly, other terms are given below

Interval	x_{r}	$f\left(\mathrm{x}_{\mathrm{r}}\right)$
$[2.426,3]$	2.8	0.0045
$[2.426,2.8]$	2.798	-0.0010
$[2.798,2.8]$	2.7983	-0.0002

Since $f(2.7983)=|-0.0002| \leq \epsilon$ so the root is 2.7983

EXERCISE: :Solve by using Regula Falsi method
i. $\quad x^{3}+x-3=0$ correct to four decimal places.
ii. $x^{6}-x^{4}-x^{3}-1=0$ for $1.4 \leq x \leq 1.5$ correct to four decimal places after three successive approximations.
iii. $x^{3}-\sin x+1=0$ for $-1 \leq x \leq-2$ correct to four decimal places after three successive approximations.
iv. $\operatorname{Cos} x-x e^{x}=0$
v. $x^{3}-4 x-9=0$

SECANT METHOD

The secant method is a simple variant of the method of false position which it is no longer required that the function " f " has opposite signs at the end points of each interval generated, not even the initial interval.

In other words, one starts with two arbitrary initial approximations $\boldsymbol{x}_{\mathbf{0}} \neq \boldsymbol{x}_{\boldsymbol{1}}$ and continues with $x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} \quad ; \mathrm{n}=1,2,3,4 \ldots \ldots \ldots \ldots$

This method also known as QUASI NEWTON'S METHOD.

ADVANTAGES

1. No computations of derivatives
2. One $f(x)$ computation each step
3. Also rapid convergence than Falsi method

EXAMPLE: Using Secant method Solve $x \log _{10} x=1.2$

SOLUTION:

Here $f(x)=x \log _{10} x-1.2$

X	0	1	2	3
$\mathrm{f}(\mathrm{x})$	-1.2	-1.2	-0.598	0.23

Since $f(2) . f(3)<0$ therefore root lies between 2and 3 and let $\epsilon=\frac{1}{2} \times 10^{-3}=0.0005$
Using formula $x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$
For $\mathrm{n}=1 \Rightarrow \boldsymbol{x}_{\mathbf{2}}=\boldsymbol{x}_{\mathbf{1}}-\frac{\left(\boldsymbol{x}_{1}-x_{0}\right) \boldsymbol{f}\left(\boldsymbol{x}_{1}\right)}{\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)-\boldsymbol{f}\left(x_{0}\right)}=2.73 \Rightarrow f\left(\boldsymbol{x}_{\mathbf{2}}\right)=-0.00928$
For $\mathrm{n}=2 \Rightarrow \boldsymbol{x}_{3}=\boldsymbol{x}_{2}-\frac{\left(x_{2}-x_{1}\right) \boldsymbol{f}\left(x_{2}\right)}{\boldsymbol{f}\left(x_{2}\right)-\boldsymbol{f}\left(x_{1}\right)}=2.74 \Rightarrow f\left(\boldsymbol{x}_{2}\right)=-0.0005$
Since $f\left(\boldsymbol{x}_{\mathbf{3}}\right)=|-0.0002| \leq \epsilon$ so the root is 2.74
EXAMPLE: Using Secant method Solve $x=\operatorname{Cos} x$
SOLUTION:
Here $f(x)=x-\operatorname{Cos} x$

X	0	1
$f(x)$	-1	0.4597

Since $\mathrm{f}(0) . \mathrm{f}(1)<0$ therefore root lies between 0and 1 and let $\epsilon=\frac{1}{2} \times 10^{-3}=0.0005$
Using formula $x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$
For $\mathrm{n}=1 \Rightarrow \boldsymbol{x}_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right) f\left(x_{1}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}=0.779 \Rightarrow f\left(x_{2}\right)=0.0674$
For $\mathrm{n}=2 \Rightarrow \boldsymbol{x}_{\mathbf{3}}=\boldsymbol{x}_{2}-\frac{\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right) \boldsymbol{f}\left(\boldsymbol{x}_{2}\right)}{\boldsymbol{f}\left(x_{2}\right)-\boldsymbol{f}\left(x_{1}\right)}=0.73681 \Rightarrow f\left(\boldsymbol{x}_{3}\right)=-0.0038$
For $\mathrm{n}=3 \Rightarrow x_{4}=x_{3}-\frac{\left(x_{3}-x_{2}\right) f\left(x_{3}\right)}{f\left(x_{3}\right)-f\left(x_{2}\right)}=0.74 \Rightarrow f\left(x_{4}\right)=0.0015$
For $\mathrm{n}=4 \Rightarrow \boldsymbol{x}_{\mathbf{5}}=\boldsymbol{x}_{\mathbf{4}}-\frac{\left(x_{4}-x_{3}\right) f\left(x_{4}\right)}{\boldsymbol{f (x _ { 4 }) - f (x _ { 3 })}}=0.738 \Rightarrow f\left(\boldsymbol{x}_{5}\right)=-0.0018$
For $\mathrm{n}=5 \Rightarrow x_{6}=x_{5}-\frac{\left(x_{5}-x_{4}\right) f\left(x_{5}\right)}{f\left(x_{5}\right)-f\left(x_{4}\right)}=0.73 \Rightarrow f\left(x_{5}\right)=-0.0016$
Since $f\left(\boldsymbol{x}_{5}\right)=|-0.0016| \leq \epsilon$ so the root is 0.73

FIXED POINT:

The real number " x " is a fixed point of the function " f " if $f(x)=x$
The number $x=0.7390851332$ is an approximate fixed point of $f(x)=\cos x$
REMARK : Fixed point are roughly divided into three classes
ASYMPTOTICALLY STABLE: with the property that all nearby solutions converge to it.
STABLE: All nearby solutions stay nearby.
UNSTABLE: Almost all of whose nearby solutions diverge away from the fixed point

FIXED POINT ITERATION METHOD

ALGORITHM

1. Consider $\mathrm{f}(\mathrm{x})=0$ and transform it to the form $\mathrm{x}=\boldsymbol{\varphi}$ (x$)$
2. Choose an arbitrary x_{0}
3. Do the iterations $\mathrm{x}_{\mathrm{k}+1}=\boldsymbol{\varphi}\left(\boldsymbol{x}_{\boldsymbol{k}}\right) \quad ; \mathrm{k}=0,1,2,3 \ldots \ldots \ldots$.

STOPING CRITERIA: Let " $\boldsymbol{\epsilon}$ " be the tolerance value

1. $\left|x_{k}-x_{k-1}\right| \leq \epsilon$
2. $\left|x_{k}-f\left(x_{k}\right)\right| \leq \epsilon$
3. Maximum number of iterations reached.
4. Any combination of above.

CONVERGENCE CRITERIA: Let " x " be exact root such that $\mathrm{r}=\mathrm{f}(\mathrm{x})$ out iteration is $\mathrm{x}_{\mathrm{n}+1}=$ $\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)$

Define the error $\quad \boldsymbol{\epsilon}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}-\mathrm{r} \quad$ Then
$\epsilon_{n+1}=x_{n+1}-r=f\left(x_{n}\right)-r=f\left(x_{n}\right)-f(r)=f^{\prime}(\S)\left(x_{n}-r\right)$
(Where $\S \in\left(x_{n}, r\right)$; since f is continuous)

$$
\epsilon_{n+1}=f^{\prime}(\S) \epsilon_{n} \Rightarrow \epsilon_{n+1} \leq\left|f^{\prime}(\S)\right|\left|\epsilon_{n}\right|
$$

OBSERVATIONS:
If $\left|\boldsymbol{f}^{\prime}(\S)\right|<1$, error decreases, the iteration converges (linear convergence)
If $\left|\boldsymbol{f}^{\prime}(\S)\right| \geq 1$, error increases, the iteration diverges.
REMEMBER: If $\left|\boldsymbol{\varphi}^{\prime}(\boldsymbol{x})\right|<1$ in questions then take that point as initial guess.

EXAMPLE:

Find the root of equation $2 \boldsymbol{x}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}+\mathbf{3}$ correct to three decimal points using fixed point iteration method.

SOLUTION:
Given that $f(x)=2 x-\cos x-3$

X	0	1	2
$\mathrm{~F}(\mathrm{X})$	-4	-1.5403	1.4161

Root lies between " 1 " and " 2 "
Now $2 x-\cos x-3=0 \Rightarrow x=\frac{\cos x+3}{2}=\varphi(x)$
$\Rightarrow \varphi^{\prime}(x)=\frac{1}{2}(-\sin x) \Rightarrow\left|\varphi^{\prime}(x)\right|=\left|\frac{1}{2}(-\sin x)\right|$
Now $\quad x_{n+1}=\varphi\left(x_{n}\right) \Rightarrow x_{n+1}=\frac{1}{2}\left(\cos x_{n}+3\right)$
Here we will take " x_{0} " as mid-point. So

If by putting 1 we get $\left|\varphi^{\prime}(x)\right|<1$ then take it as " x_{0} " if not then check for 2 rather take their midpoint
$\mathrm{X}_{0}=\frac{1+2}{2}=1.5$

$\mathrm{X}_{1}=\frac{1}{2}\left(\cos x_{0}+3\right)=1.5354$	$\mathrm{~F}\left(\mathrm{x}_{1}\right)=0.0354$
$\mathrm{X}_{2}=\frac{1}{2}\left(\cos x_{1}+3\right)=1.5177$	$\mathrm{~F}\left(\mathrm{x}_{2}\right)=-0.0177$
$\mathrm{X}_{3}=1.5265$	$\mathrm{~F}\left(\mathrm{x}_{3}\right)=0.0087$
$\mathrm{x}_{4}=1.5221$	$\mathrm{~F}\left(\mathrm{x}_{4}\right)=-0.0045$
$\mathrm{X}_{5}=1.5243$	$\mathrm{~F}\left(\mathrm{x}_{5}\right)=0.0021$
$\mathrm{X}_{6}=1.5232$	$\mathrm{~F}\left(\mathrm{x}_{6}\right)=-0.0012$
$\mathrm{X}_{7}=1.5238$	$\mathrm{~F}\left(\mathrm{x}_{7}\right)=0.0006$
$\mathrm{X}_{8}=1.5235$	$\mathrm{~F}\left(\mathrm{x}_{8}\right)=-0.0003$
$\mathrm{X}_{9}=1.5236$	$\mathrm{~F}\left(\mathrm{x}_{9}\right)=0.0000$

Hence the real root is 1.5236

EXAMPLE: Find the root of equation $\boldsymbol{e}^{-\boldsymbol{x}}=\mathbf{1 0 x}$ correct to four decimal points using fixed point iteration method.

SOLUTION: Given that $f(x)=e^{-x}-10 x$

X	0	1
$F(X)$	1	-9.6321

Root lies between " 0 " and " 1 "
Now $e^{-x}-10 x=0 \Rightarrow x=\frac{e^{-x}}{10}=\varphi(x) \Rightarrow \varphi^{\prime}(x)=-\frac{e^{-x}}{10}$
Now since $\left|\varphi^{\prime}(0)\right|=0.1$ is less than " 1 " therefore $\mathrm{x}_{0}=0$ then $x_{n+1}=\varphi\left(x_{n}\right) \Rightarrow x_{n+1}=\frac{e^{-x_{n}}}{10}$

$\mathrm{X}_{1}=\frac{e^{-x_{0}}}{10}=\frac{e^{-0}}{10}=0.1000$	$\mathrm{f}\left(\mathrm{x}_{1}\right)=-0.0952$
$\mathrm{X}_{2}=0.0905$	$\mathrm{f}\left(\mathrm{x}_{2}\right)=0.0085$
$\mathrm{X}_{3}=0.0913$	$\mathrm{f}\left(\mathrm{x}_{3}\right)=-0.0003$
$\mathrm{X}_{4}=0.0913$	$\mathrm{f}\left(\mathrm{x}_{4}\right)=-0.0003$

Hence the real root is 0.0913
EXAMPLE: Find the root of equation $\boldsymbol{x}^{3}+\boldsymbol{x}^{2}-\mathbf{1}=\mathbf{0}$ by iteration method.
SOLUTION: Given that $f(x)=x^{3}+x^{2}-1$

x	0	1
$f(x)$	-1	

Root lies between " 0 " and " 1 "
Now rewrite the equation $x^{2}(x+1)=1 \Rightarrow x=\frac{1}{\sqrt{x+1}}=\varphi(x)$
$\Rightarrow \varphi^{\prime}(x)=-\frac{1}{2(x+1)^{3 / 2}} \Rightarrow\left|\varphi^{\prime}(x)\right|<1$ then $x_{n+1}=\varphi\left(x_{n}\right) \Rightarrow x_{n+1}=\frac{1}{\sqrt{x_{n}+1}}$
Here we will take initial value " $x_{0}=1$ " So

$x_{1}=\frac{1}{\sqrt{x_{0}+1}}=\frac{1}{\sqrt{2}}=0.70711$	$f\left(x_{1}\right)=-0.14644$
$x_{2}=0.76537$	$f\left(x_{2}\right)=0.03414$
$x_{3}=0.75263$	$f\left(x_{3}\right)=7.2213 \times 10^{-3}$
$x_{4}=0.75536$	$f\left(x_{4}\right)=1.55658 \times 10^{-3}$
$x_{5}=0.75477$	$f\left(x_{5}\right)=-3.44323 \times 10^{-4}$
$X_{6}=0.7549$	$f\left(x_{6}\right)=7.38295 \times 10^{-5}$

Hence the real root is 0.7549

REMARK:

The given equation can be written in many ways. Suppose we rewrite $\boldsymbol{x}^{2}=\mathbf{1}-\boldsymbol{x}^{\mathbf{3}}$ or $\boldsymbol{x}=\sqrt{1-x^{3}}=\boldsymbol{\varphi}(x) \Rightarrow \varphi^{\prime}(x)=-\frac{3 x^{2}}{2 \sqrt{1-x^{3}}} \Rightarrow\left|\varphi^{\prime}(1)\right|=\infty$ in the interval (0,1) then the condition $\left|\varphi^{\prime}(x)\right|<1$ violated.

Example 1. $f(x)=x-\cos x$.
Choose $g(x)=\cos x$, we have $x=\cos x$.
Choose $x_{0}=1$, and do the iteration $x_{k+1}=\cos \left(x_{k}\right)$:

$$
\begin{aligned}
x_{1} & =\cos x_{1}=0.5403 \\
x_{2} & =\cos x_{1}=0.8576 \\
x_{3} & =\cos x_{2}=0.6543 \\
& \vdots \\
x_{23} & =\cos x_{22}=0.7390 \\
x_{24} & =\cos x_{23}=0.7391 \\
x_{24} & =\cos x_{24}=0.7391 \quad \text { stop here }
\end{aligned}
$$

Our approximation to the root is 0.7391 .

Example 2. Consider $f(x)=e^{-2 x}(x-1)=0$. We see that $r=1$ is a root.
Rewrite as

$$
x=g(x)=e^{-2 x}(x-1)+x
$$

Choose an initial guess $x_{0}=0.99$, very close to the real root. Iterations:

$$
\begin{aligned}
& x_{1}=\cos x_{0}=0.9886 \\
& x_{2}=\cos x_{1}=0.9870 \\
& x_{3}=\cos x_{2}=0.9852 \\
& \vdots \\
& x_{27}=\cos x_{26}=0.1655 \\
& x_{28}=\cos x_{23}=-0.4338 \\
& x_{20}=\cos x_{28}=-3.8477 \text { Diverges. It does not work. }
\end{aligned}
$$

Convergence depends on x_{0} and $g(x)!$
EXERCISE: : Solve by using iteration method
i. $2 x=\operatorname{Cos} x+3$ correct to three decimal places.
ii. $\operatorname{Cos} x-x e^{x}=0$

Theorem:-
Assume that g is continuous
function and that $\{\ln \}_{n=0}$ is a
sequence generated by fixed
Point Iteration. If lin in P then
Proof a fixed point of $g(x)$.

$P=g(P)$ and hence P is fixed point of $\mathrm{g}(\mathrm{P})$.

Note:-
Given a rot finding problem
ff) $=0$ ut can define a function... g with a fixed point at p in a number of ways, for example as Cover $g(x)=x-f(x)$
Conucsly if the function g has a fixed point at p, then the function dst fined by

$$
f(x)=x=g(x)
$$

has a zero at p
Theorem:-
(a) $\frac{9 f}{} g \in c[a, b]$ and $g(x) \in[a, b]$, then g has a fixed point in $[a, b 1$
(b) If in addition, $g(x)$ exists on Ia, b a and a positive constant $-\quad k<1$ exists with.

$$
\left|g^{\prime}(x)\right|<k \cdot \forall x \in J a_{2} b \mid
$$

then the fixed point in $[a, b]$ is unique

The function $h(x)=g(x)-x$
is continueoss on $[a, b]$ and

$$
h(a)=g(a)-a \geq 0
$$

$$
-h(b)=9(b)=b<0
$$

- Ila Intermediate value theorem implies that there exists $r \in(a, b)$ for which $h(r)=0$

Fer this value of γ

$$
\begin{array}{r}
h(r)=g(\gamma)=r=0 \\
\Rightarrow o r(r)=\gamma \\
\Rightarrow r=g(\gamma)
\end{array}
$$

which shows that r is a fixed
(b) print of ?

Suppose in addition that $|g(x)| \leq k \leq 1$ -ard that $-p$ and q are both
fixed point in $[a, b$? with $p \neq q$
By mean value, theorem, there exists a number γ exists' between p and q and hence in internal $[a, b]$ with
\qquad

$$
g^{\prime}(\gamma)=\frac{g(8)-g(q)}{p-q} \rightarrow(1)
$$

$$
|p-q|=|g(p)=g(q)|=|p-q||g(r)|(\text { by } 1)
$$

$$
\leq\left|P-C_{l}\right| \cdot R
$$

$$
\leqslant|P-q| \cdot 1
$$

- This contradiction nun come from

The only supposition $p \neq q$. Hence $p \neq q$ and the fixed point in $[\mathrm{a}, \mathrm{b}]$ is unique.

The following theonem gives sufficient conditions for the existence and uniqueness of a fixed point.

Theorem 2.3
(i) If $g \in C[a, b]$ and $g(x) \in[a, b]$ for all $x \in[a, b]$, then g has at least one fixed point in $[a, b]$.
(ii) If, in addition, $g^{\prime}(x)$ exists on (a, b) and a positive constant $k<I$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

then thene is exactly one fixed point in [$a, b]$. (See Figure 2.4.)
Figure 2.4

Proof

(i) If $g(a)=a$ or $g(b)=b$, then g has a fixed point at an endpoint. If not, then $g(a)>a$ and $g(b)<b$. The function $h(x)=g(x)-x$ is conlinucus on $[a, b \mid$, with

$$
h(a)=g(a)-a>0 \quad \text { and } \quad h(b)=g(b)-b<0
$$

The Intennediate Value Theorem implies that there exists $p \in(a, b)$ for which $h(p)=0$. This number p is a fixed point for g because

$$
0=h(p)=g(p)-p \quad \text { implies that } g(p)=p .
$$

(II) Suppose, in addition. that $\left|z^{\prime}(x)\right| \leq k<1$ and that p and q are both fixed points in $|a, b|$. $f p \neq q$, then the Mean Value Theorem implies that a number ξ exisls between p and q, and hence in [a,b], with

$$
\frac{g(p)-g(q)}{p-q}=g^{\prime}(\xi) .
$$

Thus

$$
|p-q|=|g(p)-g(q)|=\left|g^{\prime}(\xi)\right||p-q| \leq k|p-q|<|p-q| .
$$

which is a contradiction. This contradiction must come from the only supposition, $p \neq q$. Hence, $p=q$ and the fixed point in $[a, b]$ is unique.

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all x in $[a, b]$. Suppose, in addition, that g^{\prime} exists on (a, b) and that a constant $0<k<l$ exists with

$$
\lg ^{\prime}(x) \mid \leq k, \text { for all } x \in(a, b) .
$$

Then for any number p_{0} in $[a, b]$, the sequence defined by

$$
p_{n}=g\left(p_{n-1}\right), \quad n \geq 1,
$$

converges to the unique fixed point p in $[a, b]$.
Proot Theorem 2.3 implies that a unique point p exists in $[a, b]$ with $g(p)=p$. Since g maps $[a, b]$ into isself, the sequence $\left\{p_{n}\right)_{n=0}^{x}$ is defined for all $n \geq 0$, and $p_{n} \in[a, b]$ for all n. Using lhe fact that $\left|g^{\prime}(x)\right| \leq k$ and the Mean Value Theorem 1.8 , we have, for each n,

$$
\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right|=\left|g^{\prime}\left(\xi_{n}\right)\right|\left|p_{n-1}-p\right| \leq k\left|p_{n-1}-p\right|,
$$

where $\xi_{0} \in(a, b)$. Applying this inequality inductively gives

$$
\begin{equation*}
\left|p_{\mathrm{n}}-p\right| \leq k\left|p_{n-1}-p\right| \leq k^{2}\left|p_{n-2}-p\right| \leq \cdots \leq k^{n}\left|p_{0}-p\right| . \tag{2.4}
\end{equation*}
$$

Since $0<k<1$, we have $\lim _{n \rightarrow \infty} k^{n}=0$ and

$$
\lim _{n \rightarrow \infty}\left|p_{n}-p\right| \leq \lim _{n \rightarrow \infty} k^{n}\left|p_{n}-p\right|=0 .
$$

Hence $\left\{\left.p_{n}\right|_{n=0} ^{\infty}\right.$ converges io p.

NEWTON RAPHSON METHOD

Nature and Nature's laws lay hid in night:
 God said, Let Newton be! And all was light.

Alexander Pope, 1727

The Newton Raphson method is a powerful technique for solving equations numerically. It is based on the idea of linear approximation. Usually converges much faster than the linearly convergent methods.

ALGORITHM: The steps of Newton Raphson method to find the root of an equation " $\mathrm{f}(\mathrm{x})=0$ " are; Evaluate $\boldsymbol{f}^{\prime}(\boldsymbol{x})$

Use an initial guess (value on which $\mathrm{f}(\mathrm{x})$ and $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ becomes (+ve) of the roots " x_{n} " to estimate the new value of the root" " x_{n+1} " as $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \ldots \ldots \ldots$.....this value is known as Newton's iteration

STOPING CRITERIA

1. Find the absolute relative approximate error as $\left|\boldsymbol{\epsilon}_{\alpha}\right|=\left|\frac{x_{n+1}-x_{n}}{x_{n+1}}\right| \times \mathbf{1 0 0}$
2. Compare the absolute error with the pre-specified relative error tolerance " $\boldsymbol{\epsilon}_{\mathrm{s}}$ ".
3. If $\left|\boldsymbol{\epsilon}_{a}\right|>\boldsymbol{\epsilon}_{\mathrm{s}}$ then go to next approximation. Else stop the algorithm.
4. Maximum number of iterations reached.
5. Repeated answer.

When the Generalized Newton Raphson method for solving equations is helpful?

To find the root of " $\mathrm{f}(\mathrm{x})=0$ " with multiplicity " p " the Generalized Newton formula is required.

What is the importance of Secant method over Newton Raphson method?

Newton Raphson method requires the evaluation of derivatives of the function and this is not always possible, particularly in the case of functions arising in practical problems.

In such situations Secant method helps to solve the equation with an approximation to the derivatives.

Why Newton Raphson method is called Method of Tangent?

In this method we draw tangent line to the point" $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{f}\left(\mathrm{x}_{0}\right)\right.$)". The $(\mathrm{x}, 0)$ where this tangent line meets x -axis is $1^{\text {st }}$ approximation to the root. Similarly, we obtained other approximations by tangent line. So, method also called Tangent method.

Difference between Newton Raphson method and Secant method.

Secant method needs two approximations $\mathrm{x}_{0}, \mathrm{x}_{1}$ to start, whereas Newton Raphson method just needs one approximation i.e. x_{0}. Also Newton Raphson method converges faster than Secant method.

Newton Raphson method is an Open method, how?

Newton Raphson method is an open method because initial guess of the root that is needed to get the iterative method started is a single point. While other open methods use two initial guesses of the root but they do not have to bracket the root.

INFLECTION POINT

For a function " $\mathrm{f}(\mathrm{x})$ " the point where the concavity changes from up-to-down or down-to-up is called its Inflection point.
e.g. $f(x)=(x-1)^{3}$ changes concavity at $x=1$, Hence $(1,0)$ is an Inflection point.

DRAWBACKS OF NEWTON'S RAPHSON METHOD

- Method diverges at inflection point.
- For $\mathrm{f}(\mathrm{x})=0$ Newton Raphson method reduce. So one must be avoid division by zero. Rather method not converges.
- Root jumping is another drawback.
- Results obtained from Newton Raphson method may oscillate about the Local Maximum or Minimum without converging on a root but converging on the Local Maximum or minimum.

Eventually, it may
lead to division by a number close to zero and may diverge.

- The requirement of finding the value of the derivatives of $f(x)$ at each approximation is either extremely difficult (if not possible) or time consuming.
(GEOMETRICALLY EXPLAIN NR METHOD TO FIND A ROOT OF THE EQUATION $f(x)=0$ AND HENCE DERIVE THE GENERAL FORMULA)

GEOMETRICAL INTERPRETATION (GRAPHICS) OF NEWTON RAPHSON FORMULA

Suppose the graph of function " $\mathrm{y}=\mathrm{f}(\mathrm{x})$ " crosses x -axis at " \propto " then " $x=\alpha$ " is the root of equation" $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$ ".

CONDITION

Choose "x " such that " $\boldsymbol{f}(\boldsymbol{x})$ " and f " (\boldsymbol{x}) have same sign. If " $\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)\right)$ " is a point then slope of tangent at " $\left(x_{0}, f\left(x_{0}\right)\right)=m=\left.\frac{d y}{d x}\right|_{\left(x_{0}, f\left(x_{0}\right)\right)}=f^{\prime}\left(x_{0}\right)$ "

Now equation of tangent is
$y-y_{0}=m\left(x-x_{0}\right)$
$\Rightarrow y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
Since $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)=\boldsymbol{y}_{\mathbf{1}}=\mathbf{0}\right)$ as we take x_{1} as exact root
(i) $\Rightarrow \quad 0-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
$\Rightarrow-\frac{f\left(x_{0}\right)}{f^{\prime}(x 0)}=x_{1}-x_{0} \Rightarrow x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
Which is first approximation to the root ${ }^{\prime \prime} \propto$ ". If " P_{1} " is a point on the curve corresponding to " x_{1} " then tangent at " P_{1} " cuts x-axis at $P_{1}\left(x_{2}, 0\right)$ which is still closer to " \propto " than " x_{1} ". Therefore " x_{2} " is a $2^{\text {nd }}$ approximation to the root.

Continuing this process, we arrive at the root " \propto ".

FORMULA DARIVATION FOR NR-METHOD

Given an equation " $\mathrm{f}(\mathrm{x})=0$ " suppose " x_{0} " is an approximate root of " $\mathrm{f}(\mathrm{x})=0$ "
Let $\boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{h}$ \qquad

$$
\begin{equation*}
\text { since } x_{1}-x_{0}=h \tag{1}
\end{equation*}
$$

Where "h" is the small; exact root of $\mathrm{f}(\mathrm{x})=0$ Then $\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)=\mathbf{0}=\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{h}\right) \quad \therefore \quad \boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{h}$
By Taylor theorem $f\left(\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{h}\right)=f\left(\boldsymbol{x}_{\mathbf{0}}\right)+\boldsymbol{h} \boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\mathbf{0}}\right)+\frac{\boldsymbol{h}^{2}}{2!} \boldsymbol{f}^{\prime \prime}\left(\boldsymbol{x}_{\mathbf{0}}\right) \ldots \ldots \ldots \ldots \ldots$.
Since " h " is small therefore neglecting higher terms we get
$f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)=0 \Rightarrow h=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
$(1) \Rightarrow x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
Similarly $\quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

$$
\begin{gathered}
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f\left(x_{1}\right)} \\
\vdots=\vdots-\quad \vdots
\end{gathered}
$$

$\boldsymbol{x}_{\boldsymbol{n}+\boldsymbol{1}}=\boldsymbol{x}_{\boldsymbol{n}}-\frac{\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}{\boldsymbol{f}_{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}$ This is required Newton's Raphson Formula.

EXAMPLE:

Apply Newton's Raphson method for $\boldsymbol{\operatorname { c o s } \boldsymbol { x }}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$ at $\boldsymbol{x}_{\mathbf{0}}=\mathbf{1}$ correct to three decimal places.

SOLUTION

$f(x)=\cos x-x e^{x}$
$f^{\prime}(x)=-\sin x-e^{x}-x e^{x}$
Using formula $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}$

$$
\begin{aligned}
& \text { at } x_{0}=1 \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0.653 \quad \text { (after solving) } \\
& f\left(x_{1}\right)=-0.460 ; f^{\prime}\left(x_{1}\right)=-3.783
\end{aligned}
$$

Similarly

n	$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$	$\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$
2	0.531	-0.041	-3.110
3	0.518	-0.001	-3.043
4	0.518	-0.001	-3.043

Hence root is " 0.518 "

REMARK

1. If two are more roots are nearly equal, then method is not fastly convergent.
2. If root is very near to maximum or minimum value of the function at the point, NRmethod fails.

EXAMPLE:

Apply Newton's Raphson method for $\boldsymbol{x} \boldsymbol{\operatorname { l o g }}_{\mathbf{1 0}} \boldsymbol{x}=\mathbf{4 . 7 7}$ correct to two decimal places.

SOLUTION

$$
\begin{aligned}
& f(x)=x \log _{10} x-4.77 \\
& f^{\prime}(x)=\log _{10} x+x \frac{1}{x} \log _{10} e \\
& f^{\prime}(x)=\log _{10} x+\log _{10} e \\
& f^{\prime}(x)=\log _{10} x+0.4343 \quad \text { since } e=2.71828 \\
& f^{\prime \prime}(x)=\frac{1}{x} \log _{10} e=\frac{0.4343}{x}
\end{aligned}
$$

For interval

X	0	1	2	3	4	5	6	7
$\mathrm{f}(\mathrm{x})$	-4.77	-4.77	-4.17	-3.34	-2.36	-1.28	-0.10	1.15

Root lies between 6 and 7 and let $x_{0}=7$
Using formula $\quad \boldsymbol{x}_{\boldsymbol{n}+\boldsymbol{1}}=\boldsymbol{x}_{\boldsymbol{n}}-\frac{\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}{\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)}$
Thus $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=6.10$ after solving
$f\left(x_{1}\right)=0.02 ; f^{\prime}\left(x_{1}\right)=1.22$
Similarly

n	$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$	$\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$
2	6.08	0.00	0.00

Hence root is " 6.08 "

CONDITION FOR CONVERGENCE OF NR-METHOD

Since by Newton Raphson method $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
And by General Iterative formula $x_{n+1}=\varphi\left(x_{n}\right)$
Comparing (1) and (2) $\varphi\left(x_{n}\right)=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad$ and $\quad \varphi(x)=x-\frac{f(x)}{f^{\prime}(x)} \quad$ (simply)
Since by iterative method condition for convergence $\left|\varphi^{\prime}(x)\right|<1$
So $\quad \varphi^{\prime}(x)=1-\left[\frac{f^{\prime}(x) f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}\right] \Rightarrow \varphi^{\prime}(x)=1-\frac{\left(f^{\prime}(x)\right)^{2}}{\left(f^{\prime}(x)\right)^{2}}+\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}$
$\varphi^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \quad$ Using in (3) we get
$\Rightarrow\left|\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}\right|<1 \quad \Rightarrow\left|f(x) f^{\prime \prime}(x)\right|<\left(f^{\prime}(x)\right)^{2}$
Which is required condition for convergence of Newton Raphson method, provided that initial approximation " x_{0} " is choose sufficiently close to the root and $\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{f}^{\prime}(\boldsymbol{x}), \boldsymbol{f}$ " (\boldsymbol{x}) are continuous and bounded in any small interval containing the root.

NEWTON RAPHSON METHOD IS QUADRATICALLY CONVERGENT
 (OR) NEWTON RAPHSON METHOD HAS SECOND ORDER CONVERGENCE
 (OR) ERROR FOR NEWTON RAPHSON METHOD

Let " \propto " be the root of $\mathrm{f}(\mathrm{x})=0$ and $\binom{x_{n}-\alpha=\epsilon_{n}}{x_{n+1}-\alpha=\epsilon_{n+1}}$
If we can prove that $\epsilon_{n+1}=k \in_{n}^{p} \quad$ where " k " is constant then " p " is called order of convergence of iterative method then we are done.

Since by Newton Raphson formula we have $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad$ Then using (1) in it
$\Rightarrow \alpha+\epsilon_{n+1}=\alpha+\epsilon_{n}-\frac{f\left(\alpha+\epsilon_{n}\right)}{f^{\prime}\left(\alpha+\epsilon_{n}\right)} \Rightarrow \epsilon_{n+1}=\epsilon_{n}-\frac{f\left(\alpha+\epsilon_{n}\right)}{f^{\prime}\left(\alpha+\epsilon_{n}\right)}$
Since by Taylor expansion we have $\epsilon_{n+1}=\epsilon_{n}-\frac{f(\alpha)+\epsilon_{n} f^{\prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)+\epsilon_{n} f^{\prime \prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime \prime}(\alpha)}$
Since " \propto " is root of $f(x)$ therefore $" f(\propto)=0 "$
$\epsilon_{n+1}=\epsilon_{n}-\frac{\epsilon_{n} f^{\prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)+\epsilon_{n} f^{\prime \prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime \prime}(\alpha)}=\frac{\epsilon_{n}\left[f^{\prime}(\alpha)+\epsilon_{n} f^{\prime \prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime \prime}(\alpha)\right]-\epsilon_{n} f^{\prime}(\alpha)-\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)+\epsilon_{n} f^{\prime \prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime \prime}(\alpha)}$
$\Rightarrow \epsilon_{n+1}=\frac{\frac{\epsilon_{n}^{2}}{2} f^{\prime \prime}(\alpha)+\frac{\epsilon_{n}^{3}}{2!} f^{\prime \prime \prime}(\alpha)}{f^{\prime}(\alpha)+\epsilon_{n} f^{\prime \prime}(\alpha)+\frac{\epsilon_{n}^{2}}{2!} f^{\prime \prime \prime}(\alpha)}$
After neglecting higher terms $\in_{n+1}=\frac{\frac{\epsilon_{n}^{2}}{2} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)+\epsilon_{n} f^{\prime \prime}(\alpha)}$
$\in_{n+1}=\frac{\epsilon_{n}^{2} f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)\left[1+\frac{\epsilon_{n} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}\right]}=\frac{\epsilon_{n}^{2} f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\left[1+\frac{\epsilon_{n} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}\right]^{-1}$
$\epsilon_{n+1}=\frac{\epsilon_{n}^{2} f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\left[1+(-1) \frac{\epsilon_{n} f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}+\right.$ neglected $=\frac{\epsilon_{n}^{2} f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}-\frac{\epsilon_{n}^{3} f^{\prime \prime 2}(\alpha)}{2 f^{\prime 2}(\alpha)}$
$\epsilon_{n+1}=\frac{\epsilon_{n}^{2} f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}=k \in_{n}^{2} \quad$ where $k=\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}$
It shows that Newton Raphson method has second order conyergence
Or converges quadratically.

EXAMPLE 2.10 Newton's Method for a Problem with a Root of Multiplicity >1

Consider the function $f(x)=x(1-\cos x)$, which has a root of multiplicity three at $x=0$. The following table shows the results of ten iterations of Newton's method applied to this problem with a starting value of $p_{0}=1$. For comparison, the results of the bisection method, starting from the interval $[-2,1]$ are shown in the third column.

	Newton's Method	Bisection Method
1	0.6467039965	-0.5000000000
2	0.4259712109	0.2500000000
3	0.2825304410	-0.1250000000
4	0.1879335654	0.0625000000
5	0.1251658102	-0.0312500000
6	0.0834075192	0.0156250000
7	0.0555942620	-0.0078125000
8	0.0370596587	0.0039062500
9	0.0247054965	-0.0019531250
10	0.0164700517	0.0009765625

MUHAMMAD USMAN HAMID (0323-6032785)

Convergence of Newton-Raphson Method

- Usually converges quadratically

Example: $f(x)=e^{-x}-x \quad($ true solution $=0.567143290409784)$

Solved with 2 methods:
Newton-Raphson with $\mathrm{X}_{0}=0$
False-Position Method with $x_{1}=0$ and $x_{u}=20$

	Newton-Raphson	
	Iterations	true error
	0	100.000000000%
$x_{0}=$	0	11.838858282%
	0.500000000000000	0.146750782%
$x_{2}=$	0.566311003197218	0.000022106%
$=$	0.567143165034862	0.000000000%

False-Position

	Iterations	true error
$\mathrm{x}_{0}=$	0.952380952	67.925984240\%
x_{1}	0.607944265065116	7.194121018\%
x_{2}	0.571658116501746	0.796064446\%
x_{3}	0.567645088312370	0.088478152\%
$\mathrm{x}_{4}=$	0.567199089558233	0.009838633\%

NEWTON RAPHSON EXTENDED FORMULA

(CHEBYSHEVES FORMULA OF $3^{\text {RD }}$ ORDER)

Consider $f(x)=0$. Expand $f(x)$ by Taylor series in the neighborhood of " x_{0} ". We obtain after retaining the first term only.
$0=f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+$ neglected $\Rightarrow 0=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)$
$\Rightarrow x-x_{0}=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \quad \Rightarrow x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
This the first approximation to the root therefore
$x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

Again expanding $\mathrm{f}(\mathrm{x})$ by Taylor Series and retaining the second order term only
$0=f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)$
$0=f\left(x_{1}\right)=f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x_{1}-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right) \quad \therefore f(x)=f\left(x_{1}\right)$
$0=f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x_{1}-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)$
Using eq. (1) in (2) we get

$$
\begin{aligned}
& f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2}\left[-\frac{f\left(x_{0}\right)}{f \prime\left(x_{0}\right)}\right]^{2} f^{\prime \prime}\left(x_{0}\right)=0 \\
& f\left(x_{0}\right)+\left(x_{1}-x_{0}\right) f^{\prime}\left(x_{0}\right)=-\frac{1}{2}\left[\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right]^{2} f^{\prime \prime}\left(x_{0}\right) \\
& x_{1} f^{\prime}\left(x_{0}\right)=x_{0} f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right)-\frac{1}{2}\left[\frac{f\left(x_{0}\right)}{f \prime\left(x_{0}\right)}\right]^{2} f^{\prime \prime}\left(x_{0}\right) \\
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}-\frac{1}{2} \frac{\left[f\left(x_{0}\right)\right]^{2}}{\left[f \prime\left(x_{0}\right)\right]^{3}} f^{\prime \prime}\left(x_{0}\right)
\end{aligned}
$$

This is Newton Raphson Extended formula. Also known as "Chebysheves formula of third order"

NEWTON SCHEME OF ITERATION FOR FINDING THE SQUARE ROOT OF
POSITION NUMBER
The square root of " N " can be carried out as a root of the equation
$\mathrm{x}=\sqrt{\mathrm{N}} \Rightarrow x^{2}=N \Rightarrow x^{2}-N=0$
Here $f(x)=x^{2}-N \quad ; \quad f\left(x_{n}\right)=x_{n}^{2}-N$

$$
f^{\prime}(x)=2 x \quad ; \quad f^{\prime}\left(x_{n}\right)=2 x_{n}
$$

Using Newton Raphson formula $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f r\left(x_{n}\right)}$

$$
\Rightarrow x_{n+1}=x_{n}-\frac{\left(x_{n}^{2}-N\right)}{2 x_{n}}=\frac{2 x_{n}^{2}-x_{n}^{2}+N}{2 x_{n}}=\frac{1}{2}\left[\frac{x_{n}^{2}+N}{x_{n}}\right]
$$

$\Rightarrow x_{n+1}=\frac{1}{2}\left[x_{n}+\frac{N}{x_{n}}\right] \quad$ This is required formula.

QUESTION: Evaluate $\sqrt{12}$ by Newton Raphson formula.
SOLUTION: Let

$$
\mathrm{x}=\sqrt{12} \Rightarrow x^{2}=12 \Rightarrow x^{2}-12=0
$$

Here $f(x)=x^{2}-12 ; \quad f^{\prime}(x)=2 x \quad ; \quad f^{\prime \prime}(x)=2$

X	0	1	2	3	4
$\mathrm{~F}(\mathrm{x})$	-12	-11	-8	-3	4

Root lies between 3 and 4 and $x_{0}=4$
Now using formula $\quad x_{n+1}=\frac{1}{2}\left[x_{n}+\frac{N}{x_{n}}\right] \Rightarrow x_{n+1}=\frac{1}{2}\left[x_{n}+\frac{12}{x_{n}}\right]$
For $\mathrm{n}=0$

$$
x_{1}=\frac{1}{2}\left[x_{0}+\frac{12}{x_{0}}\right] \Rightarrow x_{1}=\frac{1}{2}\left[4+\frac{12}{4}\right]=3.5
$$

For $\mathrm{n}=2$

$$
x_{2}=\frac{1}{2}\left[x_{1}+\frac{12}{x_{1}}\right] \Rightarrow x_{2}=\frac{1}{2}\left[3.5+\frac{12}{3.5}\right]=3.4643
$$

Similarly

$$
x_{3}=3.4641 \text { and } x_{4}=3.4641 \text { Hence } \sqrt{12}=3.4641
$$

NEWTON SCHEME OF ITERATION FOR FINDING THE "pth" ROOT OF POSITION NUMBER "N"

Consider $x=N^{\frac{1}{p}} \Rightarrow x^{p}=N \Rightarrow x^{p}-N=0$
Here

$$
\begin{array}{ll}
f(x)=x^{p}-N & ; f\left(x_{n}\right)=x_{n}^{p}-N \\
f^{\prime}(x)=p x^{p-1} & ; f^{\prime}\left(x_{n}\right)=p x_{n}^{p-1}
\end{array}
$$

Since by Newton Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f \prime\left(x_{n}\right)} \Rightarrow x_{n+1}=x_{n}-\frac{\left(x_{n}^{p}-N\right)}{\left(p x_{n}^{p-1}\right)} \Rightarrow x_{n+1}=\frac{1}{p x_{n}^{p-1}}\left[p x_{n}^{p-1+1}-x_{n}^{p}+N\right]
$$

$$
x_{n+1}=\frac{1}{p x_{n}^{p-1}}\left[(p-1) x_{n}^{p}+N\right] \Rightarrow x_{n+1}=\frac{1}{p}\left[\frac{(p-1) x_{n}^{p}+N}{x_{n}^{p-1}}\right] \quad \text { Required formula for pth root. }
$$

QUESTION: Obtain the cube root of 12 using Newton Raphson iteration.
SOLUTION: Consider $x=12^{\frac{1}{3}} \Rightarrow x^{3}=12 \Rightarrow x^{3}-12=0$
Here $\quad f(x)=x^{3}-12$ and $f^{\prime}(x)=3 x^{2} \quad ; \quad f^{\prime \prime}(x)=6 x$

x	0	1	2	3
$\mathrm{f}(\mathrm{x})$	-12	-11	-4	15

Root lies between 2 and 3 and $x_{0}=3$

Since by Newton Raphson formula for pth root.

$$
x_{n+1}=\frac{1}{p}\left[\frac{(p-1) x_{n}^{p}+N}{x_{n}^{p-1}}\right] \Rightarrow x_{n+1}=\frac{1}{3}\left[\frac{(3-1) x_{n}^{3}+12}{x_{n}^{3-1}}\right]=\frac{1}{3}\left[\frac{2 x_{n}^{3}+12}{x_{n}^{2}}\right]
$$

Put $\mathrm{n}=0 \quad x_{1}=\frac{1}{3}\left[\frac{2 x_{0}^{3}+12}{x_{0}^{2}}\right]=\frac{1}{3}\left[\frac{2(3)^{3}+12}{(3)^{2}}\right]=2.4444$
Similarly $\quad x_{2}=2.2990, x_{3}=2.2895, x_{4}=2.2894 \quad x_{5}=2.2894$
Hence $\sqrt[3]{12}=2.2894$

DARIVATION OF NEWTON RAPHSON METHOD FROM TAYLOR SERIES

Newton Raphson method can also be derived from Taylor series.
For the general function " $\mathrm{f}(\mathrm{x})$ " Taylor series is
$f\left(x_{n+1}\right)=f\left(x_{n}\right)+f^{\prime}\left(x_{n+1}-x_{n}\right)+\frac{f^{\prime \prime}\left(x_{n}\right)}{2!}\left(x_{n+1}-x_{n}\right)^{2}+\cdots \ldots \ldots \ldots \ldots .$.
As an approximation, taking only the first two terms of the R.H.S.
$f\left(x_{n+1}\right)=f\left(x_{n}\right)+f^{\prime}\left(x_{n+1}-x_{n}\right)$
And we are seeking a point where $f(x)=0$
That is If we assume $\mathrm{f}\left(\mathrm{x}_{\mathrm{n}+1}\right)=0 \Rightarrow f\left(x_{n}\right) \not f^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)=0$
This gives $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left(x_{n}\right)} \quad$ This is the formula for Newton Raphson Method.
EXERCISE: :Solve by using Newton Raphson method
i. $x^{3}-x-1=0$ correct to four decimal places.
ii. $x e^{x}-2=0$ correct to two decimal places.
iii. Obtain the real root of the equation $x^{3}-3 x-5=0$ after third iteration.
iv. $x^{4}-x-10=0$ correct to four decimal places.
v. $e^{x} \operatorname{Sin} x=1$
vi. $\mathrm{x}=\operatorname{Cos} \mathrm{x}$

THE SOLUTION OF LINEAR SYSTEM OF EQUATIONS

A system of " m " linear equations in " n " unknowns " $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \ldots \ldots \ldots . . \boldsymbol{x}_{\boldsymbol{n}}$ " is a set of the equations of the form
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots \ldots \ldots \ldots \ldots a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots \ldots \ldots \ldots \ldots a_{2 n} x_{n}=b_{2}$
...
$a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots \ldots \ldots \ldots \ldots a_{m n} x_{n}=b_{m}$
Where the coefficients " $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{k}}$ " and " $\boldsymbol{b}_{\boldsymbol{i}}$ " are given numbers.
The system is said to be homogeneous if all the " $\boldsymbol{b}_{\boldsymbol{i}}$ " are zero. Otherwise it is said to be non-homogeneous.

SOLUTION OF LINEAR SYSTEM EQUATIONS: A solution of system is a set of numbers " $x_{1}, x_{2}, \ldots, x_{n}$ " which satisfy all the "m" equations.

PIVOTING: Changing the order of equations is called pivoting.
We are interested in following types of Pivoting

1. PARTIAL PIVOTING

2. TOTAL PIVOTING

PARTIAL PIVOTING: In partial pivoting we interchange rows where pivotal element is zero.
In Partial Pivoting if the pivotal coefficient " $\boldsymbol{a}_{\boldsymbol{i}}$ " happens to be zero or near to zero, the $\mathrm{i}^{\text {th }}$ column elements are searched for the numerically largest element. Let the $\mathrm{j}^{\text {th }}$ row ($j>i$) contains this element, then we interchange the " i "t" equation with the " j " " equation and proceed for elimination. This process is continued whenever pivotal coefficients become zero during elimination.

TOTAL PIVOTING: In Full (complete, total) pivoting we interchange rows as well as column.
In Total Pivoting we look for an absolutely largest coefficient in the entire system and start the elimination with the corresponding variable, using this coefficient as the pivotal coefficient (may change row and column). Similarly, in the further steps. It is more complicated than Partial Pivoting. Partial Pivoting is preferred for hand calculation.

Why is Pivoting important?: Because Pivoting made the difference between non-sense and a perfect result.

PIVOTAL COEFFICIENT: For elimination methods (Guass's Elimination, Guass's Jordan) the coefficient of the first unknown in the first equation is called Pivotal Coefficient.

BACK SUBSTITUTION

The analogous algorithm for upper triangular system "Ax=b" of the form
$\left(\begin{array}{ccccc}a_{11} & a_{12} & \ldots & \ldots & \ldots \\ 0 & a_{22} & \ldots & \ldots & \ldots \\ a_{1 n} \\ \vdots & \vdots & & a_{2 n} \\ 0 & 0 & \ldots & \ldots & \\ \vdots\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right) \quad$ Is called Back Substitution.
The solution " x_{i} " is computed by $\quad \boldsymbol{x}_{\boldsymbol{i}}=\frac{\boldsymbol{b}_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}} \quad ; i=1,2,3, \ldots \ldots \ldots n$

FORWARD SUBSTITUTION

The analogous algorithm for lower triangular system " $L x=b$ " of the form

The solution " x_{i} " is computed by $\quad \boldsymbol{x}_{i}=\frac{\boldsymbol{b}_{i}-\sum_{j=1}^{i-1} l_{i j} x_{j}}{\boldsymbol{l}_{i i}} \quad ; \boldsymbol{i}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots \ldots n$

THINGS TO REMEMBER

Let the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ is given

- If $\boldsymbol{B} \neq \mathbf{0}$ then system is called non homogenous system of linear equation.
- If $\boldsymbol{B}=\mathbf{0}$ then $\boldsymbol{A} \boldsymbol{X}=\mathbf{0}$ then system is called homogenous system of linear equation.
- If the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ has solution then this system is called consistent.
- If the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ has no solution then this system is called inconsistent.

RANK OF A MATRIX

The rank of a matrix ' A ' is equal to the number of non - zero rows in its echelon form or the order of $\boldsymbol{I}_{\boldsymbol{r}}$ in the conical form of A.

KEEP IN MIND

- TYPE I: when number of equations is equal to the number of variables and the system $A X=B$ is non - homogeneous then unique solution of the system exists if matrix ' A ' is non- singular after applying row operation.
- TYPE II: when number of equations is not equal (may be equal) to the number of variables and the system $A X=B$ is non - homogeneous then system has a solution if $\operatorname{rank} A=\operatorname{rank} A_{b}$
- TYPE III: a system of ' m ' homogeneous linear equations $A X=0$ in ' n ' unknown has a non- trivial solution if $\operatorname{rank} A<n$ where ' n ' is number of columns of A .
- TYPE IV: if $\operatorname{rank} A=\operatorname{rank} A_{b}<$ number of unknown then infinite solution exists
- TYPE V: if $\operatorname{rank} A \neq \operatorname{rank} A_{b}$ then no solution exists

GAUSS ELIMINATION METHOD

ALGORITHM

- In the first stage, the given system of equations is reduced to an equivalent upper triangular form using elementary transformation.
- In the second stage, the upper triangular system is solved using back substitution procedure by which we obtain the solution in the order " $\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}_{\boldsymbol{n}-1}, \ldots \ldots \ldots . . \boldsymbol{x}_{2}, \boldsymbol{x}_{1}$ "

REMARK:

Gauss's Elimination method fails if any one of the Pivotal coefficient become zero. In such a situation, we rewrite the equation in a different order to avoid zero Pivotal coefficients.

QUESTION Solve the following system of equations using Elimination Method.

$$
\begin{gathered}
2 x+3 y-z=5 \\
4 x+4 y-3 z=3 \\
-2 x+3 y-z=1
\end{gathered}
$$

SOLUTION We can solve it by elimination of variables by making coefficients same.

$$
\begin{gather*}
2 x+3 y-z=5 \tag{i}\\
4 x+4 y-3 z=3 \tag{ii}\\
-2 x+3 y-z=1 \tag{iii}
\end{gather*}
$$

\qquad

Multiply (i) by 2 and subtracted by (ii) $\quad 2 y+z=7$ \qquad
Adding (i) and (iii)

$$
\begin{equation*}
6 y-2 z=6 \tag{v}
\end{equation*}
$$

\qquad
Now eliminating " y " Multiply (iv) by 3 then subtract from (v)

$$
z=3
$$

Using " z " in (iv) we get $\quad y=2 \quad$ and Using " $y "$ ", " z " in (i) we get $x=1$
Hence solution is

$$
x=1, y=2, z=3
$$

QUESTION: Solve the following system of equations by Gauss's Elimination method with partial pivoting.

$$
\begin{gathered}
x+y+z=7 \\
3 x+3 y+4 z=24 \\
2 x+y+3 z=16
\end{gathered}
$$

SOLUTION

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 3 & 4 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
24 \\
16
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{lll}
3 & 3 & 4 \\
1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
24 \\
7 \\
16
\end{array}\right] \quad \sim R_{12} \quad \Rightarrow \quad\left[\begin{array}{lll}
1 & 1 & \frac{4}{3} \\
1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
7 \\
16
\end{array}\right] \quad \sim \frac{1}{3} R_{1} \\
& \Rightarrow\left[\begin{array}{llr}
1 & 1 & \frac{4}{3} \\
0 & 0 & -\frac{1}{3} \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
-1 \\
16
\end{array}\right] \quad \sim R_{2}-R_{1} \Rightarrow\left[\begin{array}{ccc}
1 & 1 & \frac{4}{3} \\
0 & 0 & -\frac{1}{3} \\
0 & -1 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
-1 \\
0
\end{array}\right] \quad \sim R_{3}-2 R_{1}
\end{aligned}
$$

$2^{\text {nd }}$ row cannot be used as pivot row as $a_{22}=0$, So interchanging the $2^{\text {nd }}$ and $3^{\text {rd }}$ row we get

$$
\left[\begin{array}{ccc}
1 & 1 & \frac{4}{3} \\
0 & -1 & \frac{1}{3} \\
0 & 0 & -\frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
0 \\
-1
\end{array}\right] \quad \underset{\sim}{\sim}
$$

Using back substitution
$-\frac{1}{3} z=-1 \quad \Rightarrow z=3$
$-y+\frac{1}{3} z=0 \quad \Rightarrow y=3 \quad \therefore z=3$
$x+y+\frac{4}{3} z=8 \quad \Rightarrow x=3 \quad \therefore y=3, z=3$

QUESTION: Solve the following system of equations using Gauss's Elimination Method with partial pivoting.

$$
\begin{gathered}
0 x_{1}+4 x_{2}+2 x_{3}+8 x_{4}=24 \\
4 x_{1}+10 x_{2}+5 x_{3}+4 x_{4}=32 \\
4 x_{1}+5 x_{2}+65 x_{3}+2 x_{4}=26 \\
9 x_{1}+4 x_{2}+4 x_{3}+0 x_{4}=21
\end{gathered}
$$

SOLUTION

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 4 & 2 & 8 \\
4 & 10 & 5 & 4 \\
4 & 5 & 65 & 2 \\
9 & 4 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
24 \\
32 \\
26 \\
21
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{cccc}
9 & 4 & 4 & 0 \\
4 & 10 & 5 & 4 \\
4 & 5 & 65 & 2 \\
0 & 4 & 2 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
21 \\
32 \\
26 \\
24
\end{array}\right] \sim R_{14} \Rightarrow\left[\begin{array}{cccc}
1 & 4 / 9 & 4 / 9 & 0 \\
4 & 10 & 5 & 4 \\
4 & 5 & 65 & 2 \\
0 & 4 & 2 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
21 \\
32 \\
26 \\
24
\end{array}\right] \quad \sim \frac{1}{9} R_{1} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 4 / 9 & 4 / 9 & 0 \\
0 & 4 & 2 & 8 \\
4 & 5 & 65 & 2 \\
4 & 10 & 5 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2.3333 \\
24 \\
26 \\
32
\end{array}\right] \sim R_{24} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & \frac{4}{9} & \frac{4}{9} & 0 \\
0 & 4 & 2 & 8 \\
0 & \frac{29}{9} & \frac{85}{18} & 2 \\
0 & \frac{74}{9} & \frac{29}{9} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2.3333 \\
24 \\
16.6668 \\
22.668
\end{array}\right] \quad \sim R_{3}-4 R_{1} \quad \text { and } \quad \sim R_{4}-4 R_{1} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 4 / 9 & 4 / 9 & 0 \\
0 & 1 & 1 / 2 & 2 \\
0 & 29 / 9 & 85 / 18 & 2 \\
0 & 74 / 9 & 29 / 9 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2.3333 \\
6 \\
16.6668 \\
22.668
\end{array}\right] \quad \sim \frac{1}{4} R_{2}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow\left[\begin{array}{cccc}
1 & 4 / 9 & 4 / 9 & 0 \\
0 & 1 & 1 / 2 & 2 \\
0 & 0 & 1 & -1.428 \\
0 & 0 & 0 & 15.175
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2.3333 \\
6 \\
-0.857 \\
-27.427
\end{array}\right] \quad \sim \frac{R_{3}}{3.111} \text { and } \sim R_{4}+0.889 R_{3} \\
\Rightarrow \begin{array}{c}
15.175 x_{4}=-27.427 \quad \Rightarrow x_{4}=-1.8074 \\
\Rightarrow x_{3}-1.428 x_{4}=-0.857 \quad \Rightarrow x_{3}=-3.438 \quad \therefore x_{4}=-1.8074 \\
\Rightarrow x_{2}+\frac{1}{2} x_{3}+2 x_{4}=6 \Rightarrow x_{2}=11.3338 \quad \therefore x_{4}=-1.8074 \quad, x_{3}=-3.438 \\
\Rightarrow x_{1}+\frac{4}{9} x_{2}+\frac{4}{9} x_{3}=2.333 \Rightarrow x_{1}=-1.1762 \quad \therefore x_{2}=11.3338 \quad, \quad x_{3}=-3.438
\end{array}
\end{gathered}
$$

Hence required $x_{1}=-1.1762, x_{2}=11.3338, x_{3}=-3.438, x_{4}=-1.8074$

EXERCISE:

1) Solve by using Gauss's Elimination method
i. $2 x+3 y-z=5$

$$
\begin{aligned}
& 4 x+4 y-3 z=3 \\
& -2 x+3 y-z=1
\end{aligned}
$$

ii. $\quad x_{1}+\frac{1}{2} x_{2}+\frac{1}{3} x_{3}=1$
$\frac{1}{2} x_{1}+\frac{1}{3} x_{2}+\frac{1}{4} x_{3}=0$
$\frac{1}{3} x_{1}+\frac{1}{4} x_{2}+\frac{1}{5} x_{3}=0$
iii. $4 x_{1}+x_{2}+x_{3}=4$
$x_{1}+4 x_{2}-2 x_{3}=4$
$3 x_{1}+2 x_{2}-4 x_{3}=6$
iv. $\quad 10 x-7 y+3 z+5 w=6$
$-6 x+8 y-z-4 w=5$
$3 x+y+4 z+11 w=2$
$5 x-9 y-2 z+4 w=7$
2) Solve by using Gauss's Elimination method with partial pivoting
i. $\quad 2.5 x-3 y+4.6 z=-1.05$
$-3.5 x+2.6 y+1.5 z=-14.46$
$-6.5 x-3.5 y+7.3 z=-17.735$
ii. $\quad x_{1}+x_{2}-2 x_{3}=3$
$4 x_{1}-2 x_{2}+x_{3}=5$
$3 x_{1}-1 x_{2}+3 x_{3}=8$

GAUSS JORDAN ELIMINATION METHOD

The method is based on the idea of reducing the given system of equations " $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ " to a diagonal system of equations " $\boldsymbol{I} \boldsymbol{x}=\boldsymbol{b}$ " where " \boldsymbol{I} " is the identity matrix, using row operation. It is the verification of Gauss's Elimination Method.

ALGORITHM

1) Make the elements below the first pivot in the augmented matrix as zeros, using the elementary row transformation.
2) Secondly make the elements below and above the pivot as zeros using elementary row transformation.
3) Lastly divide each row by its pivot so that the final matrix is of the form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & d_{1} \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 1 & d_{3}
\end{array}\right]
$$

Then it is easy to get the solution of the system as $\boldsymbol{x}_{\mathbf{1}}=\boldsymbol{d}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}=\boldsymbol{d}_{\mathbf{2}}, \boldsymbol{x}_{\mathbf{3}}=\boldsymbol{d}_{\mathbf{3}}$
Partial Pivoting can also be used in the solution. We may also make the pivot as " 1 " before performing the elimination.

ADVANTAGE/DISADVANTAGE

The Gauss's Jordan method looks very elegant as the solution is obtained directly. However, it is computationally more expensive than Gauss's Elimination. Hence we do not normally use this method for the solution of the system of equations.

The most important application of this method is to find inverse of a non-singular matrix.

What is Gauss Jordan variation?

In this method Zeroes are generated both below and above each pivot, by further subtractions. The final matrix is thus diagonal rather than triangular and back substitution is eliminated. The idea is attractive but it involves more computing than the original algorithm, so it is little used.

QUESTION: Solve the system of equations using Elimination method

$$
\begin{gathered}
x+2 y+z=8 \\
2 x+3 y+4 z=20 \\
4 x+3 y+2 z=16
\end{gathered}
$$

ANSWER

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 1 & 8 \\
2 & 3 & 4 & \vdots \\
4 & 3 & 2 & 16
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 8 \\
0 & -1 & -2 & \vdots \\
0 & -5 & -2 & -16
\end{array}\right] R_{2}-R_{1} \text { and } R_{3}-4 R_{1} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 8 \\
0 & 1 & -2 & \vdots \\
0 & 1 & -2 / 5 & -4 \\
4
\end{array}\right](-1) R_{2} \text { and }(-1 / 5) R_{3} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 8 \\
0 & 1 & -2 & \vdots \\
0 & 0 & 12 / 5 & -4 \\
0
\end{array}\right] \quad R_{3}-R_{2} \Rightarrow\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1 \\
\hline
\end{array}\right] \quad(5 / 12) R_{3} \\
& \Rightarrow\left[\begin{array}{llll}
1 & 2 & 0 & 5 \\
0 & 1 & 0 & \vdots \\
0 & 0 & 1 & 3
\end{array}\right] \quad R_{1}-R_{3} \text { and } R_{2}+2 R_{3} \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & \vdots \\
0 & 0 & 1 & 3
\end{array}\right] \quad R_{1}-2 R_{2}
\end{aligned}
$$

Hence solutions are $\quad x=1, y=2, z=3$
EXERCISE: Solve by using Gauss's Jordan method.
i. $\quad x+y+z=7$
$3 x+3 y+4 z=24$
$2 x+y+3 z=16$
ii. $\quad 10 x_{1}+x_{2}+x_{3}=12$
$x_{1}+10 x_{2}+x_{3}=12$
$x_{1}+x_{2}+10 x_{3}=12$

MATRIX INVERTION

A " $n \times n$ " matrix " M " is said to be non-singular (or Invertible) if a $n \times n$ " matrix " M^{-1} " exists with $" M M^{-1} "=" M^{-1} M "=I$ then matrix " $M^{-1 "}$ is called the inverse of" $M "$. A matrix without an inverse is called Singular (or Non-invertible)

MATRIX INVERSION THROUGH GUASS ELIMINATION

1. Place an identity matrix, whose order is same as given matrix.
2. Convert matrix in upper triangular form.
3. Take largest value as Pivot.
4. Using back substitution get the result.

NOTE: In order to increase the accuracy of the result, it is essential to employ Partial Pivoting. In the first column use absolutely largest coefficient as the pivotal coefficient (for this we have to interchange rows if necessary). Similarly, for the second column and vice versa.

MATRIX INVERSION THROUGH GUASS JORDAN ELIMINATION

1. Place an identity matrix, whose order is same as given matrix.
2. Convert matrix in upper triangular form.
3. No need to take largest value as Pivot.
4. Using back substitution get the result.

QUESTION : Find inverse using Guass Elimination Method

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{array}\right]
$$

ANSWER

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccccc}
4 & 3 & -1 & 0 & 1 & 0 \\
1 & 1 & 1 & \vdots & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \quad R_{12} \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
1 & 1 & 1 & \vdots & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \frac{1}{4} R_{1}} \\
& \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
0 & \frac{1}{4} & \frac{5}{4} & \vdots & 1 & -\frac{1}{4} \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \quad R_{2}-R_{1} \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
0 & \frac{1}{4} & \frac{5}{4} & \vdots & -\frac{1}{4} & 0 \\
0 & \frac{11}{4} & \frac{15}{4} & 0 & -\frac{3}{4} & 1
\end{array}\right] \quad R_{3}-3 R_{1} \\
& \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
0 & \frac{11}{4} & \frac{15}{4}: 0 & -\frac{3}{4} & 1 \\
0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} & 0
\end{array}\right] \quad R_{23} \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11}: 0 & -\frac{3}{11} & \frac{4}{11} \\
0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} & 0
\end{array}\right] \quad \frac{4}{11} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11}: 0 & -\frac{3}{11} & \frac{4}{11} \\
0 & 0 & \frac{10}{11} & 1 & -\frac{2}{4} & -\frac{1}{11}
\end{array}\right] R_{3}-\frac{1}{4} R_{2} \Longrightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & \frac{-1}{4} & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{15}{11} & 0 & -\frac{3}{11} & \frac{4}{11} \\
0 & 0 & 1 & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right] \quad \frac{11}{10} R_{3} \\
& \Rightarrow\left[\begin{array}{cccccc}
1 & \frac{3}{4} & 0 & \frac{11}{40} & \frac{1}{5} & -\frac{1}{40} \\
0 & 1 & 0 & \vdots-\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right] R_{1}+\frac{1}{4} R_{3} \text { and } R_{2}-\frac{15}{11} R_{3} \\
& \Rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{7}{5} & \frac{1}{5} & -\frac{2}{5} \\
0 & 1 & 0 & \vdots-\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right] \quad R_{1}-\frac{3}{4} R_{2} \text { Hence } A^{-1}=\left[\begin{array}{cccc}
\frac{7}{5} & \frac{1}{5} & -\frac{2}{5} \\
-\frac{3}{2} & 0 & \frac{1}{2} \\
\frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right]
\end{aligned}
$$

QUESTION: Find inverse using Gauss's Jordan Elimination Method $\quad A=\left[\begin{array}{ccc}1 & \mathbf{1} & \mathbf{1} \\ \mathbf{4} & \mathbf{3} & -\mathbf{1} \\ \mathbf{3} & \mathbf{5} & \mathbf{3}\end{array}\right]$

ANSWER

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
3 & 5 & 3 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -5 & -4 & 1 & 0 \\
0 & 2 & 0 & -3 & 0 & 1
\end{array}\right] \quad R_{2}-4 R_{1} \text { and } R_{3}-3 R_{1}} \\
& \Rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 5 & \vdots & 4 & -1 \\
0 & 2 & 0 & -3 & 0 & 1
\end{array}\right] \quad-1 R_{2} \Rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 5 & \vdots & 4 & -1 \\
0 & 0 & -10 & -11 & 2 & 1
\end{array}\right] \quad R_{3}-2 R_{2} \\
& \Rightarrow\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 5 & 4 & -1 & 0 \\
0 & 0 & 1 & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right]-\frac{1}{10} R_{3} \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & 0 & \frac{-1}{10} & \frac{1}{5} \\
0 & 1 & 0 & \frac{1}{10} \\
0 & 0 & 1 & \frac{11}{2} & 0 \\
\frac{1}{2} \\
0 & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right] R_{1}-R_{3}, R_{2}-5 R_{3} \\
& \Rightarrow\left[\begin{array}{llllll}
10 & \frac{7}{5} & -\frac{2}{5} \\
1 & 0 & 0 & \frac{1}{5} & \frac{3}{5} \\
0 & 1 & 0 & -\frac{3}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10}
\end{array}\right]
\end{aligned}
$$

QUESTION: Find A^{-1} if $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1\end{array}\right]$
SOLUTION: we first find the co-factor of the elements of A
$a_{11}=(-1)^{2}(2+1)=3$

$$
\begin{aligned}
& a_{23}=(-1)^{5}(-1-0)=1 \\
& a_{31}=(-1)^{4}(0-4)=-4 \\
& a_{32}=(-1)^{5}(1-0)=-1 \\
& a_{33}=(-1)^{6}(2-0)=2
\end{aligned}
$$

$a_{12}=(-1)^{3}(-1)=1$
$\mathrm{a}_{13}=(-1)^{4}(0-2)=-2$
$\mathrm{a}_{21}=(-1)^{3}(0+2)=-2$
$\mathrm{a}_{22}=(-1)^{4}(1-2)=-1$
Thus $\left[A_{i j}\right]_{3 \times 3}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{ccc}3 & 1 & -2 \\ -2 & -1 & 1 \\ -4 & -1 & 2\end{array}\right]$
$\operatorname{adj} A=\left[A^{\prime}{ }_{i j}\right]_{3 \times 3}=\left[\begin{array}{ccc}3 & -2 & -4 \\ 1 & -1 & -1 \\ -2 & 1 & 2\end{array}\right] \quad$ and $\quad|A|=-1$
So $A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{ccc}-3 & 2 & 4 \\ -1 & 1 & 1 \\ 2 & -1 & -2\end{array}\right]$ after putting the values.

EXERCISE

1) Find inverse using Gauss's Elimination Method $\quad A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
2) Find inverse of the matrix $\quad A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 3 & 2 & 5 \\ 1 & -1 & 0\end{array}\right]$
3) Find inverse using Gauss's Jordan Method

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 4 \\
2 & 4 & 7
\end{array}\right]
$$

POSITIVE DEFINITE MATIRX: A matrix is positive definite matrix if it is symmetric and if $X^{t} A X>0$ for every $\mathrm{n} \quad-\quad$ dimensional vector $X \neq 0$ QUESTION: Show that matrix $\left[\begin{array}{ccc}4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5\end{array}\right] \quad$ is positive definite. SOLUTION: to show the matrix is positive definite we have to show that $X^{t} A X>0$ for any matrix X
$X^{t} A X=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc}4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \Rightarrow X^{t} A X=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{c}4 x_{1}-x_{2}+x_{3} \\ -x_{1}+4.25 x_{2}+2.75 x_{3} \\ x_{1}+2.75 x_{2}+3.5 x_{3}\end{array}\right]$
$X^{\mathrm{t}} \mathrm{AX}=4 \mathrm{x}_{1}{ }^{2}-\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{x}_{3}-\mathrm{x}_{1} \mathrm{x}_{2}+4.25 \mathrm{x}_{2}{ }^{2}+2.75 \mathrm{x}_{2} \mathrm{x}_{3}+\mathrm{x}_{1} \mathrm{x}_{3}+2.75 \mathrm{x}_{2} \mathrm{x}_{3}+3.5 \mathrm{x}_{3}{ }^{2}$
$X^{\mathrm{t}} \mathrm{AX}=4 \mathrm{x}_{1}{ }^{2}-2 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{x}_{1} \mathrm{x}_{3}+4.25 \mathrm{x}_{2}{ }^{2}+7.56 \mathrm{x}_{2} \mathrm{x}_{3}+3.5 \mathrm{x}_{3}{ }^{2}>0$
This show that A is positive definite.
TRIDIAGONAL MATRIX: Those matrices in which mostly elements are zero while diagonal and adjacent elements are non-zero.

HESSENBERG MATRIX: Matrix in which either the upper or lower triangle is zero except for the elements adjacent to the main diagonal.
If the upper triangle has the zeroes, the matrix is the Lower Heisenberg and vice versa.
SPARSE: A coefficient matrix is said to be sparse if many of the matrix entries are known to be zero.

ORTHOGONAL MATRIX: A " $\boldsymbol{n} \times \boldsymbol{n}$ " matrix " M " is called orthogonal if

$$
M M^{t}=I \text { i.e. } M^{t}=M^{-1}
$$

PERMUTATION MATRIX: A " $n \times n$ " matrix $P=\left[P_{i j}\right]$ is a permutation matrix obtained by rearranging the rows of the identity matrix " I_{n} ". This gives a matrix with precisely one non-zero entry in each row and in each column and each non-zero entry is " 1 " For example $\quad P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

CONVERGENT MATRIX: We call a " $n \times n$ " matrix " M " convergent if $\lim _{k \rightarrow \infty}\left(M^{k}\right)_{i j}=0$ for each $\quad i, j=0,1,2 \ldots n ; \quad$ Consider $\quad M=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{2}\end{array}\right] \Rightarrow M^{k}=\left[\begin{array}{cc}\left(\frac{1}{2}\right)^{k} & 0 \\ \frac{k}{2^{k+1}} & \left(\frac{1}{2}\right)^{k}\end{array}\right]$ Then $\lim _{k \rightarrow \infty}\left(\frac{1}{2}\right)^{k}=0 \quad$ and $\quad \lim _{k \rightarrow \infty} \frac{k}{2^{k+1}}=0 \quad \Rightarrow \quad M \quad$ is convergent.

LOWER TRIANGULATION MATRIX: A matrix having only zeros above the diagonal is called Lower Triangular matrix.
(OR) A " $n \times n$ " matrix "L" is lower triangular if its entries satisfy $l_{i j}=0$ for $i<j$
i.e. $\quad\left[\begin{array}{ccc}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right]$

UPPER TRIANGULATION MATRIX: A matrix having only zeros below the diagonal is called Upper Triangular matrix.
(OR) A " $n \times n$ " matrix " U " is upper triangular if its entries satisfy $u_{i j}=0$ for $i>j$
i.e. $\quad\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$

CROUTS REDUCTION METHOD

In linear Algebra this method factorizes a matrix as the product of a Lower Triangular matrix and an Upper Triangular matrix.

Method also named as Cholesky's reduction method, triangulation method, or LU-decomposition (Factorization)

ALGORITHM: For a given system of equations $\sum_{1}^{n} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m} ; \boldsymbol{m} \in \boldsymbol{Z}$

1. Construct the matrix "A"
2. Use "A=LU" (without pivoting) and "PA=LU" (with pivoting) where " P " is the pivoting matrix and find " $\boldsymbol{u}_{i \boldsymbol{j}}, \boldsymbol{l}_{\boldsymbol{i}}$ "
3. Use formula " $A X=B$ " where " X " is the matrix of variables and " B " is the matrix of solution of equations.
4. Replace " $A X=B$ " by "LUX=B" and then put " $U X=Z$ " i.e. " $L Z=B$ "
5. Find the values of " $\boldsymbol{Z}_{\boldsymbol{i} / \boldsymbol{s}}$ " then use " $\mathrm{Z}=\mathrm{UX}$ " find " $\boldsymbol{X}_{\boldsymbol{i} \boldsymbol{\prime},}$ "; $\mathrm{i}=1,2,3, \ldots \ldots$. n

ADVANTAGE/LIMITATION (FAILURE)

1. Cholesky's method widely used in Numerical Solution of Partial Differential Equation.
2. Popular for Computer Programming.
3. This method fails if $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{i}}=\mathbf{0}$ in that case the system is Singular.

QUESTION: Solve the following system of equations using Crout's Reduction Method

$$
\begin{aligned}
5 x_{1}-2 x_{2}+x_{3} & =4 \\
7 x_{1}+x_{2}-5 x_{3} & =8 \\
3 x_{1}+7 x_{2}+4 x_{3} & =10
\end{aligned}
$$

ANSWER

Let

$$
A=\left[\begin{array}{ccc}
5 & -2 & 1 \\
7 & 1 & -5 \\
3 & 7 & 4
\end{array}\right]
$$

Step I....

$$
[A]=[L][U]
$$

$$
\left[\begin{array}{ccc}
5 & -2 & 1 \\
7 & 1 & -5 \\
3 & 7 & 4
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]
$$

After multiplication on R.H.S $\Rightarrow\left[\begin{array}{ccc}5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4\end{array}\right]=\left[\begin{array}{ccc}l_{11} & l_{11} u_{12} & l_{11} u_{13} \\ l_{21} & l_{21} u_{12}+l_{22} & l_{21} u_{13}+l_{22} u_{23} \\ l_{31} & l_{31} u_{12}+l_{32} & l_{31} u_{13}+l_{32} u_{23}+l_{33}\end{array}\right]$
$\Rightarrow l_{11}=5, l_{21}=7, \quad l_{31}=3 \Rightarrow l_{11} u_{12}=-2 \Rightarrow 5 u_{12}=-2 \Rightarrow u_{12}=-2 / 5$
$\Rightarrow l_{11} u_{13}=1 \Rightarrow 5 u_{13}=1 \Rightarrow u_{13}=1 / 5$
$\Rightarrow l_{21} u_{12}+l_{22}=1 \quad \Rightarrow 7(-2 / 5)+l_{22}=1 \Rightarrow l_{22}=19 / 5$
$\Rightarrow l_{31} u_{12}+l_{32}=7 \quad \Rightarrow 3(-2 / 5)+l_{32}=7 \quad \Rightarrow l_{32}=41 / 5$
$\Rightarrow l_{21} u_{13}+l_{22} u_{23}=-5 \Rightarrow 7\left(\frac{1}{5}\right)+\left(\frac{19}{5}\right) u_{23}=-5 \Rightarrow u_{23}=-32 / 19$
$\Rightarrow l_{31} u_{13}+l_{32} u_{23}+l_{33}=4 \quad \Rightarrow 3\left(\frac{1}{5}\right)+\left(\frac{41}{5}\right)\left(\frac{-32}{5}\right)+l_{33}=4 \quad \Rightarrow l_{33}=327 / 19$
Step II.... Put $\quad[A][X]=[B] \quad \Rightarrow \quad[L][U][X]=[B]$

$$
\text { Put }[\mathrm{U}][\mathrm{X}]=[\mathrm{Z}] \quad[L][Z]=[B]
$$

$\Rightarrow\left[\begin{array}{ccc}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]=\left[\begin{array}{c}4 \\ 8 \\ 10\end{array}\right] \Rightarrow\left[\begin{array}{ccc}5 & 0 & 0 \\ 7 & 19 / 5 & 0 \\ 3 & 41 / 5 & 327 / 19\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]=\left[\begin{array}{c}4 \\ 8 \\ 10\end{array}\right]$
$\Rightarrow 5 z_{1}=4 \Rightarrow z_{1}=4 / 5 \Rightarrow 7 z_{1}+\frac{19}{5} z_{2}=8 \Rightarrow 7\left(\frac{4}{5}\right)+\frac{19}{5} z_{2}=8 \Rightarrow z_{2}=12 / 19$
$\Rightarrow 3 z_{1}+\frac{41}{5} z_{2}+\frac{327}{19} z_{3}=10 \quad \Rightarrow \quad 3\left(\frac{4}{5}\right)+\frac{41}{5}\left(\frac{12}{19}\right)+\frac{327}{19} z_{3}=10 \quad \Rightarrow z_{3}=46 / 327$
Step III.... Since $\quad[\mathrm{U}][\mathrm{X}]=[\mathrm{Z}]$

$$
\begin{array}{r}
\Rightarrow\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & -2 / 5 & 1 / 5 \\
0 & 1 & -32 / 19 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 / 5 \\
12 / 19 \\
46 / 327
\end{array}\right] \\
\Rightarrow x_{3}=46 / 327 \Rightarrow x_{2}-\frac{32}{19} x_{3}=\frac{12}{19} \Rightarrow x_{2}-\frac{32}{19}\left(\frac{46}{327}\right)=\frac{12}{19} \quad \Rightarrow x_{2}=284 / 327 \\
\Rightarrow x_{1}-\left(\frac{2}{5}\right) x_{2}+\frac{1}{5} x_{3}=\frac{4}{5} \Rightarrow x_{1}-\left(\frac{2}{5}\right)\left(\frac{284}{327}\right)+\frac{1}{5}\left(\frac{46}{327}\right)=\frac{4}{5} \quad \Rightarrow x_{1}=366 / 327
\end{array}
$$

Hence required solutions are $\Rightarrow x_{1}=366 / 327, \quad x_{2}=284 / 327, \quad x_{3}=46 / 327$

1) Solve using Crout's Reduction method.
i. $\quad 6 x_{1}-x_{2}=3$

$$
\begin{aligned}
& -x_{1}+6 x_{2}-x_{3}=4 \\
& -x_{2}+6 x_{3}=3
\end{aligned}
$$

ii. $\quad x+y+z=3$
$2 x-y+3 z=16$
$3 x+y-z=-3$
2) Solve using Cholesky's Reduction method.

$$
4 x_{1}-3 x_{2}+2 x_{3}=11,2 x_{1}+x_{2}+7 x_{3}=2,, 3 x_{1}-x_{2}+5 x_{3}=8
$$

3) Using Crout's Reduction method decompose the matrix $A=\left[\begin{array}{ccc}5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4\end{array}\right]$ in LU form and hence solve the system of equations

$$
5 x-2 y+z=4, \quad 7 x+y-5 z=8,, \quad 3 x+7 y+4 z=10
$$

- EXAMPLE 2.9 Prove that $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ does not have an $L U$ factorization.

The factorization must have the form

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right]\left[\begin{array}{ll}
b & c \\
0 & d
\end{array}\right]=\left[\begin{array}{cc}
b & c \\
a b & a c+d
\end{array}\right]
$$

Equating coefficients yields $b=0$ and $a b=1$, a contradiction.
The fact that not all matrices have an $L U$ factorization means that more work is required before we can declare the $L U$ factorization a general Gaussian elimination algorithm. The related problem of swarnping is described in the next section. In Section 2.4, the PA = LU factorization is introduced, which will overcome both problems.

MUHAMMAD USMAN HAMID (0323-6032785)

DIAGONALLY DOMINANT SYSTEM:

Consider a square matrix "A $=\left\{\boldsymbol{a}_{i j}\right\}$ " then system is said to be Diagonally Dominant if $\left|a_{i i}\right| \geq \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right| \quad ; i=1,2,3, \ldots \ldots \ldots \ldots n$

If we remove equality sign, then " A " is called strictly diagonally dominant and ' A ' has the following properties

- ' A ' is regular, invertible, its inverse exist and $\mathrm{Ax}=\mathrm{b}$ has a unique solution.
- $\mathrm{Ax}=\mathrm{b}$ can be solved by Gaussian Elimination without Pivoting.

For example $\quad A=\left[\begin{array}{ccc}7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6\end{array}\right]$ and $B=\left[\begin{array}{ccc}6 & 4 & -3 \\ 4 & -2 & 0 \\ 3 & 0 & 1\end{array}\right]$
Then non- symmetric matrix ' A ' is strictly diagonally dominant because
$|7|>|2|+|0| \quad ; \quad|5|>|3|+|-1| \quad ; \quad|-6|=|6|>|0|+|5|$
But ' B ' and ' A ' are not strictly diagonally dominant (Check!)
NORM:
A norm measures the size of a matrix.
Let " $x \in R^{n}$ or $x \in R^{n \times n}$ " then $\|x\|$ satisfies

- $\|x\| \geq 0$
- Iff $\mathrm{x}=0$ then $\|x\|=0$
- $\|a x\|=|a|\|x\| \quad$ Where ' a ' is constant.
- $\|x+y\| \leq\|x\|+\|y\|$. i.e. Triangular inequality

INFINITY NORM $\|X\|_{\infty}$:
The infinity (maximum) norm of a matrix ' X ' is
$\|X\|_{\infty}=$ maximum of absolut values of components of $" X "=\max _{1 \leq i \leq n}\left|x_{i}\right|$
Consider $X=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 1 & 2\end{array}\right]$
$\|X\|_{\infty}=$ maximum of absolute row sum $=\max \left[\begin{array}{l}1+2+3 \\ 4+5+6 \\ 7+1+2\end{array}\right]=15$

EUCLIDEAN NORM $\|X\|_{2}$:

The Euclidean norm for the matrix ' X ' is

$$
\|X\|_{2}=\left[\sum_{i=1}^{n} x_{i}^{2}\right]^{\frac{1}{2}}
$$

We name it Euclidean norm because it represents the usual notation of distance from the origin in case x is in $R=R^{1}, R^{2}$ or R^{3}

Consider

$\|X\|_{2}=(1+4+9+16+25+36+49+1+4)^{1 / 2}=12^{\circ}$

Theorem:-
Rn then form is a vector norm

$$
\|A\|=\max _{\|A x\|} \|(1)
$$

Corollary 0 - For any is a matrix norm. For arb vector $\vec{x} \neq 0$ matrix A. and an $\frac{1}{\text { natural tor }-\vec{x}} \neq 0$ matrix
Proof:-
$\vec{x} / i \vec{x} / l$ Fer any actor $\vec{x} \neq 0$, the vector
using the result (1), it can be
written $\left\|A\left(\frac{\vec{x}}{n \dot{x} \|}\right)\right\| \leqslant\|A\|(2)$
But $\| \vec{x} l \mid$ is a non zero real number, which

$$
\begin{aligned}
& \text { implies. that } \\
& A\left(\frac{x}{\|\vec{x}\|}\right)=\frac{1}{\|\vec{x}\|} \cdot A \vec{x} .
\end{aligned}
$$

$$
\quad \frac{1\|\vec{x}\|\|A \vec{x}\|=\left\|\frac{1}{\|x\|} \cdot A \vec{x}\right\|=\left\|A\left(\frac{\vec{x}}{\|x\|}\right)\right\|}{\|\|A \cdot \vec{x}\| \quad\| A \|_{-} \quad \text { (fro m_(2)) }}
$$

$$
\begin{aligned}
& \|\vec{x}\| \\
& \frac{1}{\|\dot{x}\|}\|A \vec{x}\| \leq\|A\| \quad \text { (from_(2)) }
\end{aligned}
$$

$$
\Rightarrow \quad\|\vec{x}\|\|A \vec{x}\| \leq\|A\|\|\bar{x}\|
$$

Similarly, $\|A\|_{\infty}=\max _{n \times 1 \|_{\infty}=1}\|A \vec{x}\|_{\infty}$
$V A\left\|_{2}=\max _{\vec{x} \|_{2}=i}\right\| A \vec{x} \|_{2}$.

$$
\|A\|_{1}=\max _{\|x\|_{1}}|A \vec{x}|
$$

Note :-

$$
\begin{aligned}
& \|A\|_{\infty}=\operatorname{Max}_{1 \leqslant 1} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \|A\|_{1}=\operatorname{Max} \sum_{1 \leq j \leq n}^{n} \sum_{i=1}^{n}\left|a_{i j}\right| \\
& \|A\|_{2}=\left[\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

Example:- Find all three norms $\| \cdot l_{s}$, $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ of the following matrix
Sols-

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 3 & -1 \\
5 & -1 & 5+1
\end{array}\right] \\
\|A\|_{\infty} & =\operatorname{Max}_{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& =\operatorname{Max}_{1 \leq i \leq n}[1+2+1 \quad 3+1 \quad s+1+1] \\
& =\frac{\operatorname{Max}}{1 \leq i \leq n}[4
\end{array} \quad 4 \cdots 7\right]
$$

USEFUL DEFINATIONS

Let " x_{a} " be an approximate solution of the linear system " $\mathrm{Ax}=\mathrm{b}$ " then
The residual is the vector $r=b-A x_{a}$
The backward error is the norm of residual $\left\|r=b-A x_{a}\right\|$
The forward error is $\left\|x-x_{a}\right\|_{\infty}$ and The relative backward error is $\frac{\|r\|_{\infty}}{\|b\|_{\infty}}$
The relative forward error is $\frac{\left\|x-x_{a}\right\|_{\infty}}{\|x\|_{\infty}}$
And error magnification factor is equals to $\frac{\text { Relative forward error }}{\text { Relative backward error }}$
CONDITION NUMBER: For a square matrix ' A ' condition number is the maximum possible error magnification factor for solving $\mathrm{Ax}=\mathrm{b}$

Or The condition number of the " $\boldsymbol{n} \times \boldsymbol{n}$ " matrix is defined as

$$
k(A)=\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

Remember: Identity matrix has the lowest condition number.
THEOREM: Condition number is always at least one.
PROOF: Since $A A^{-1}=I \Rightarrow\left\|A A^{-1}\right\|=\|I\| \Rightarrow\|I\| \leq\|A\|\left\|A^{-1}\right\| \Rightarrow 1 \leq \operatorname{cond}(A)$
Remember: $\|I\|=\max _{\|x\|=1}\left|I x^{-1}\right|=1 \Rightarrow\|I\|=1$

UNSTABLE OR ILL CONDITION LINEAR SYSTEM

In practical application small change in the coefficient of the system of equations sometime gives the large change in the solutions of system. This type of system is called ill-condition linear system otherwise it is well-condition.

PROCEDURE (TEST, MEASURE OF CONDITION NUMBER)

* Find determinant. If system is ill condition, then determinant will be very small.
* Find condition number.
* If condition number is very large then system of condition is ill-condition rather it is well-condition. Also determinant will be small.

EXAMPLE: Consider $A=\left[\begin{array}{cc}2 & 1 \\ 2 & 0.1\end{array}\right] \Rightarrow|A|=0.02$ and $\Rightarrow\|A\|_{2}=3.165$

$$
\begin{aligned}
& \Rightarrow A^{-1}=\frac{a d j A}{|A|}=\frac{1}{0.02}\left[\begin{array}{cc}
1.01 & -1 \\
-2 & 2
\end{array}\right]=\left[\begin{array}{cc}
50.5 & -50 \\
-100 & 100
\end{array}\right] \\
& \text { and }\left\|A^{-1}\right\|_{2}=\left((50.5)^{2}+(-50)^{2}+(-100)^{2}+(100)^{2}\right)^{\frac{1}{2}}=158.273
\end{aligned}
$$

Now condition number $=\|A\| \cdot\left\|A^{\mathbf{1}}\right\|=500.93$ (very large)
Since condition Number is very large therefore system will be ill-condition.
Example:- mine solution vector correipon-
 ending. 0

GrMiriun..
Example:-
Determine whether the system coresporiding to the follorning matrix is ill-Conditioned or well-conditioned.

$$
A=\left[\begin{array}{ccc}
1 & 0.5 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 2 & 1 / 4 & -1 / 5
\end{array}\right]
$$

$$
\left.\begin{array}{rlrl}
A A_{1} & =\operatorname{Max}_{i=1} \sum_{i=1}^{j}\left|\alpha_{i j}\right| & & ; 0 \\
& =\operatorname{Max}_{i \leq 1}[2 & 083 & 0.83
\end{array}\right]
$$

IIAll, find $^{2} A^{-1}$ by Gajuess Flimination
molinoct

Now
from (3)
put ines)

$$
\begin{gathered}
x_{3}=0.0835(-14.93)=-0.5 \\
\operatorname{inc}_{2}^{2)}=0.02 x_{21}+0.996
\end{gathered}
$$

$$
\ldots .08371 .996
$$

$$
\begin{aligned}
& A \left\lvert\, I=\left[\begin{array}{ccc|ccc}
1 & 0.5 & 0 & 333 & 1 & 0 \\
05 & 0-333 & 0 & 25 & 0 & 1 \\
0 & 0.25 & 0.2 & 0 & 0 & 1
\end{array}\right]\right. \\
& \begin{array}{l}
R_{r}-m_{1}, R_{1}, \\
R_{3}-m_{3}, R_{1}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 0.5 & 0.333 & 1 & 0 & 0 \\
0 & 0.063 & -0.0035 & -0.5 & 1 & 0 \\
0 & 0 & 0.0335 & 0.5 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put these in (1) } \\
& x_{11}+0.5(8.996)+0.333(-14.93)=1 \\
& x_{11}=1.47 \\
& {\left[\begin{array}{cc}
1 & 0.5 \\
0 & 0.083 \\
0 & 0.0835 \\
0 & 0.0335
\end{array}\right]\left[\begin{array}{l}
x_{12} \\
x_{22} \\
x_{32}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& \Rightarrow \quad \begin{aligned}
x_{12}+0.5 x_{22}+0.333 x_{32} & =0 \rightarrow(4) \\
0.083 x_{222}+0.08 .35 x_{32} & =1 \rightarrow(5) \\
0.0335 x_{32} & =0 \rightarrow(6)
\end{aligned}
\end{aligned}
$$

from (6) $x_{32}=0$
put in (s)

$$
\begin{aligned}
0.083 x_{22} & +0=1 \\
x_{22} & =12.05
\end{aligned}
$$

put these in (4)

$$
\begin{gathered}
x_{12}+0.5(12.05)+0.333(0)=0 \\
x_{12}=-6.025
\end{gathered}
$$

Now

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0.5 & 0.333 \\
0 & 0.083 & 0.0835 \\
0 & 0 & 0.0 .335
\end{array}\right]\left[\begin{array}{l}
x_{13} \\
x_{23} \\
x_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& \Rightarrow \quad x_{13}+0.5 x_{23}+0.333 x_{33}=0 \rightarrow \text { (7) } \\
& 0.083 x_{2.3}+0.0835 x_{33}=0 \rightarrow(8) \\
& 0.0335 x_{33}=1 \rightarrow \text { (9) }
\end{aligned}
$$

From (9)

$$
x_{33}=29.85
$$

put in . (8).

$$
\begin{gathered}
0.083 x_{23}+0.0835(2.9 .85)=0 \\
x_{23}=-30.03
\end{gathered}
$$

put thex in (z)

So, the system is ${ }^{2} L_{\text {s }}$. Conditioned.
Example - E
$x \rightarrow\left[\begin{array}{lll}A & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1\end{array}\right]$
$\int^{*} \operatorname{cond}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty} \rightarrow(d)$

$$
\begin{aligned}
\|A\|_{\infty} & =\operatorname{Max}_{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& =\operatorname{Max}_{1 \leq i \leq n}[4-4 \quad 7]
\end{aligned}
$$

$$
\begin{aligned}
& \text { HAllow }=\text { find } A^{-1} \text { and } \\
& \text { Now, }
\end{aligned}
$$

$$
\text { Now, find } A^{-1} \text { and }|A| \neq 0
$$

$$
\begin{aligned}
& \text { [. } x_{13}+0.5(-30.03)+0.333(29.85)=0 \\
& \text { So. } \\
& A^{-1}=\left[\begin{array}{lll}
x_{11}, & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1.47 & -6.025 & 5.075 \\
8.996 & 12.05 & -30.03 \\
-14.93 & 0 & 29.85
\end{array}\right] \\
& \left\|A^{-1}\right\|_{1}=\operatorname{Max}_{1 \leq j \leq n}^{33 n}\left|x_{i j}\right| \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Max}_{1 \leqslant j \leq n}[25: 396.18 .05 \quad 64.96]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
|\vec{A}| & =\left|\begin{array}{ccc}
1 & \cdots & -2 \\
0 & -1 \\
5 & -1 & -1 \\
5 & 1
\end{array}\right| \\
& =1(3-10-2(0+5)
\end{aligned} \\
& =1(3-1)-2(0+5)-1(0-15) \\
& =2-10+15 \\
& |A|=7 \text { キ0 } \\
& |A|=\operatorname{adj} A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right] \text {. } \\
& \operatorname{adj} A \equiv \left\lvert\, \begin{array}{ccc}
1\left|\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right| & -1\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right| & 1 \left\lvert\, \begin{array}{cc}
2 & -1 \\
3 & -1
\end{array}\right. \\
-1\left|\begin{array}{cc}
0 & -1 \\
5 & 1
\end{array}\right| & \left.\left|\begin{array}{cc}
1 & -1 \\
5 & \\
1 & -1
\end{array}\right| \begin{array}{cc}
1 & -1 \\
0 & -1
\end{array} \right\rvert\, \\
1\left|\begin{array}{cc}
0 & 3 \\
5 & -1
\end{array}\right| & -1\left|\begin{array}{cc}
1 & 2 \\
5 & -1
\end{array}\right| & 1\left|\begin{array}{cc}
1 & 2 \\
0 & 3
\end{array}\right|
\end{array}\right. \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
1(3-1) & -1(2-1) & 1(-2+3) \\
-1(0+5) & 1(1+5) & -1(-1+0) \\
1(0-15) & -1(-1-10) & 1(3-0)
\end{array}\right] \text {. } \\
& \operatorname{adj} A=\left[\begin{array}{cccc}
2 & -1 & 1 \\
-5 & \frac{6}{11} & 1 \\
-15 & & & 2
\end{array}\right]
\end{aligned}
$$

Now,

$$
A^{-1}=\frac{\operatorname{adj} A}{|A|} \quad \text { if }|A| \neq 0
$$

Put in (1)
Cold $(A)=7 \times 4: 114$
lond $(A)=29.01$
So, The system is ill -conditioned or' unstable because Lond (A) is greater than " 1 ".
Condition number f...
The condition number of the non-singular matrix A relative to a norm $\|\|$ is $k,(A)=\operatorname{Cond}(A)=\| A\left\|\left\|A^{-1}\right\|\right.$

Note:-
can usually be expected a matrix in the .. system $A \vec{x}=\bar{b}$ is. small Consider the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 1 \\
2 & 1.01
\end{array}\right] \\
& |A|=\left[\left.\begin{array}{ll}
2 & 1 \\
2 & 1.01
\end{array} \right\rvert\,=2.02-2\right.
\end{aligned}
$$

$$
|\vec{A}|=0.02 \neq 0
$$

$$
A^{-1}=\operatorname{adj}|A|
$$

$$
\begin{aligned}
& \operatorname{adj} A=\left[\begin{array}{cc}
1.01 & -1 \\
-2 & -2 \\
\hline
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{ll}
50.5 & -50 \\
-100 & 100
\end{array}\right]
\end{aligned}
$$

Now
for A^{-1}

$$
\begin{aligned}
\left\|A^{-1}\right\|_{2} & =\left[\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i j}\right|^{2}\right]^{y_{2}} \\
& =[25050: 25]^{y_{2}} \\
\| \vec{A}_{2}^{-1} & =158.3
\end{aligned}
$$

$$
\begin{aligned}
& \|A\|_{2}=[10.0201]^{1 / 2} \\
& \|A\|_{2}=3.165
\end{aligned}
$$

Now.

$$
\begin{aligned}
\text { Gond }(A) & =\|A\|_{2}\left\|A^{-1}\right\|_{2} \\
\text { cong }(A) & =5.165 \times 158.3 \\
& =501.0
\end{aligned}
$$

Since, the condition number is very large, so the system correrponding to the matrix is illconditioned

III Conditioning Example (Just Read)

Here is a simple example of ill conditioning. Suppose that $\mathrm{Ax}=\mathrm{b}$ is supposed to be

$$
2 \mathrm{x}+6 \mathrm{y}=8 \quad \text { and } \quad 2 \mathrm{x}+6.00001 \mathrm{y}=8.00001
$$

The actual solution is $x=1, y=1$. Suppose further that due to representation error, the system on the machine is changed slightly to
$2 x+6 y=8$ and $2 x+5.99999 y=8.00002$
The solution to this system is $\mathrm{x}=10, \mathrm{y}=-2$, so you think the answer is $(10,-2)$. When you check the answer by plugging these values into the actual system, you get
$2(10)+6(-2)=8$ and $2(10)+5.99999(-2)=7.99998$
This seems to be acceptable, but of course $(10,-2)$ is very far from the actual solution $(1,1)$. This indicates that the system is badly ill conditioned.

Here are some things to consider if you have an ill conditioned system:

- To identify if the matrix is ill conditioned, you can try 2 things. First, compute cond(A). This is relatively expensive and sometimes hard to interpret because the value may be in an intermediate range. Second, you can introduce deliberate "representation errors" by slightly perturbing one or more elements in A. Call the new matrix A^{0}, and solve $A^{0} x^{0}=b$. If $\mathrm{x} \approx \mathrm{x}^{0}$, then there is probably no ill conditioning. The danger here is that you might be unlucky, and chose the wrong element to perturb. But if you try this several times with different elements and all the solutions are about the same, then you have confidence that the matrix is well conditioned.

EXAMPLE (Just Read)

If the system really is ill conditioned, there is no simple fix. Consider using Singular Value Decomposition (SVD Ill-Conditioned Matrices

$$
\text { Consider systems } \quad x+y=2 \quad \text { THEN } \quad x+1.001 y=2 \quad x+1.001 y=2.001
$$

The system on the left has solution $x=2, y=0$ while the one on the right has solution $x=1, \quad y=1$. The coefficient matrix is called ill-conditioned because a small change in the constant coefficients results in a large change in the solution. A condition number, defined in more advanced courses, is used to measure the degree of ill-conditioning of a matrix (≈ 4004 for the above).

In the presence of rounding errors, ill-conditioned systems are inherently difficult to handle. When solving systems where round-off errors occur, one must avoid ill-conditioned systems whenever possible; this means that the usual row reduction algorithm must be modified.
Consider the system: $.001 \mathrm{x}+\mathrm{y}=1$ AND $\mathrm{x}+\mathrm{y}=2$
We see that the solution is $\mathrm{x}=1000 / 999 \approx 1, \mathrm{y}=998 / 999 \approx 1$ which does not change much if the coefficients are altered slightly (condition number ≈ 4).

The usual row reduction algorithm, however, gives an ill-conditioned system. Adding a multiple of the first to the second row gives the system on the left below, then dividing by -999 and rounding to 3 places on $998 / 999=.99899 \approx 1.00$ gives the system on the right:

$$
\left.\begin{array}{rrr}
.001 \mathrm{x}+\mathrm{y}=1 & .001 \mathrm{x}+\mathrm{y} & =1 \\
-999 \mathrm{y} & =-998 & y
\end{array}\right)=1.00 \text { 百 }
$$

The solution for the last system is $\mathrm{x}=0, \mathrm{y}=1$ which is wildly inaccurate (and the condition number is ≈ 2002).

This problem can be avoided using partial pivoting. Instead of pivoting on the first non-zero element, pivot on the largest pivot (in absolute value) among those available in the column.

In the example above, pivot on the x , which will require a permute first:

$$
\begin{aligned}
x+y=2 \\
.001 x+y=1
\end{aligned} \quad \begin{aligned}
x+y & =2 \\
.999 y & =.998
\end{aligned} \quad \begin{array}{r}
x+y=2 \\
y
\end{array} \quad 1.00
$$

where the third system is the one obtained after rounding. The solution is a fairly accurate $\mathrm{x}=1.00, \mathrm{y}=1.00$ (and the condition number is 4).

7.5 Error Bounds and Iterative Refinement

It scems intuitively reasonnble that if $\overline{\mathbf{x}}$ is an approximation to the solution \mathbf{x} of $A x=b$ and the resijdual vector $\mathbf{r}=\mathbf{b}-$ A $\overline{\mathbf{X}}$ has the property that $\|\mathbf{r}\|$ is smull, then $\|\mathbf{r}-\overline{\mathbf{r}}\|$ would be small as welt. This is often the case, but certain systems, which ocrur frequently in practice. fail to have this property.
mple 1 The linear system $A x=b$ given by

$$
\left[\begin{array}{ll}
1 & 2 \\
1.000 \mathrm{~L} & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3.000 \mathrm{~L}
\end{array}\right]
$$

fens the unique sotution $\mathbf{x}=\{1-1\}^{r}$. Determine the residual wector for the poor appronimation $\overline{\mathbf{x}}=\{3 .-0.0001\}^{1}$.

Soldrion We have

$$
\mathbf{x}=\mathbf{b}-A \overline{\mathbf{x}}=\left[\begin{array}{l}
3 \\
3.0001
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-0.0001
\end{array}\right]=\left[\begin{array}{l}
0.0002 \\
0
\end{array}\right]
$$

so $\|\mathbf{r}\|_{30}=0.0002$. Although the norm of the residuat vector is small. the appronimation $\overline{\mathbf{x}}=13 .-0.0601)^{\prime}$ is obviously quite poors in fuct. $\|x-\overline{\mathbf{x}}\|_{x=}=2$.

The difficutty in Enample I is exptained quite simply by noting that the solution to the system represents the intersection of the lines

$$
s_{1}: \quad x_{1}+2 x_{2}=3 \text { and } 1_{1} \quad 10001 x_{1}+2 x_{2}=3.0001
$$

The point (3, -0.000]) lies on [2, and the lines are neariy paraltel. This implies that $\{3,-0.0001\}$ also lies close to $\{1$ - eventhough it differs significantly from the solution of the system, given by the intersection poini (1,]\}. (Sce Figure 7.7.)

нe 7.7

Example I wes elearly constructed to stwaw the difficulties that cun-and, in fach doarise. Hed the tines nat been nearly coincicient, we would expeck a small residalal vector to imply an accurate approximation.

In the general situation, wic cannor rely on the geametry of the system to give an indication of when problems might occur. We can, however, oblain this information by considering the norms of the matrix A and its inverse.

The approxination for the t-digit condition number $K(A)$ comes from consideration of the linear system

$$
A y=\mathbf{r} .
$$

The solution to this systenn can be readily approximated because the multipliers for the Gaussian elimination method have already been calculated. So A can be factored in the form $P^{\prime} L U$ as described in Section 5 of Chapter 6. In fact \bar{y}, the approximate solution of $A y=r$, satisfies

$$
\begin{equation*}
\bar{y} \approx A^{-1} \mathbf{r}=A^{-1}(\mathbf{b}-A \bar{x})=A^{-1} \mathbf{b}-A^{-1} A \overline{\mathbf{x}}=\mathbf{x}-\overline{\mathbf{x}} \tag{7.22}
\end{equation*}
$$

and

$$
\mathbf{x} \approx \overline{\mathbf{x}}+\overline{\mathbf{y}}
$$

So \bar{y} is an estimate of the error produced when \bar{x} approximates the solution x to the original system. Equations (7.21) and (7.22) imply that

$$
\|\overline{\mathbf{y}}\| \approx\|\mathbf{x}-\overline{\mathbf{x}}\|=\left\|A^{-1} \mathbf{r}\right\| \leq\left\|A^{-1}\right\| \cdot\|\mathbf{r}\| \approx\left\|A^{-1}\right\|\left(10^{-t}\|A\| \cdot\|\overline{\mathbf{x}}\|\right)=10^{-t}\|\overline{\mathbf{x}}\| K(A) .
$$

This gives an approximation for the condition number involved with solving the system $A \mathbf{x}=\mathbf{b}$ using Gaussian elimination and the t-digit type of arithmetic just described:

$$
\begin{equation*}
K(A) \approx \frac{\| \overline{\mathrm{y}} \dot{\|}{ }_{\|} \mathrm{B}^{\prime} .}{\|\mathrm{x}\|} \tag{7.23}
\end{equation*}
$$

Iterative Refinement

In Eq. (7.22), we used the estimate $\bar{y} \approx \mathbf{x}-\overline{\mathbf{x}}$, where $\overline{\mathbf{y}}$ is the approximate solution to the system $A y=r$ I \mathbf{I} general, $\bar{x}+\bar{y}$ is a more accurate approximation to the solution of the linear system $A \mathbf{x}=\mathbf{b}$ than the original approximation $\overline{\mathbf{x}}$. The method using this assumption is called iterative refinement, or itevative improvement, and consisls of performing iterations on the system whose right-hand side is the residutal vector for successive approximations until satisfactory accuracy results.

If the process is applied using t-digit anthmetic and if $K_{\infty}(A) \approx 104$, then after k iterations of iterative refinement the sofution has approximately the snaller of t and $k(t-q)$ correct digits. If the system is well-conditioned, one or two iterations will indicate that the solution is accurate. There is the possibility of significant improvernent on ill-conditioned systems unless the matrix A is so ill-conditioned that $K_{20}(A)>10$. In that situation, increased precision should be used for the calculations.

Iterative Refinement

To approximate the sofution to the kinear system Ax $=\mathbf{b}$:
INPUT the number of equations and unknowns n : the entries $a_{i j}$. $1 \leq i, j \leq n$ of the matrix A : the entries $b_{i}, 1 \leq i \leq r$ of b; the maximum number of iterations N : toferance TOL: number of digits of precision t.
OUTPUT the approximation $x=\left(x x_{i} \ldots \ldots x x_{n}\right)^{\prime}$ or a message that the rumber of iterations was exceeded, and an approximation COND to $K_{o c}(A)$.

Step 0 Solve the systern $A x=b$ for x_{1}, \ldots, x_{n} by Gaussian elimination saving the multjpliers $m m_{j i \neq j}=i+1, i+2 \ldots \ldots, \ldots, i=1,2, \ldots, n-I$ and noting row interchanges.
Step I Set $k=1$.
Step 2 While $(k \leq N$) do Steps 3-9.
Step 3 For $i=1,2, \ldots, n$ (Catcutate r.)
$\operatorname{set} \boldsymbol{r}_{i}=b_{i}-\sum_{j=1}^{\pi} a_{i j} x_{j}$
(Perform she comprtations in doubte-precision arithmetic.)
Step 4 Solve the linear system Ay $=\mathbf{r}$ by using Guussian efimination in the same order as in Step 0.
Step 5 For $i=1, \ldots$, nset $x x_{i}=x_{i}+y_{i}$.
Step 6 If $k=1$ then set $\operatorname{COND}=\frac{\|y\|_{\infty}}{\|x\|_{\infty}} 10^{\prime}$.
Step 7 lf $\|x-x x\|_{\infty}<T O L$ then OUTPUT ($\mathbf{x x}$);
OUTPUT (COND);
(The procedure was successfiaf.) STOP

Step $8 \quad$ Set $k=k+1$
Step 9 For $i=1 \ldots, n$ set $x_{j}=x x_{j}$.

Step 10 OUTPUT ('Maximum number of iterations exceeded'); OUTPUT (COND); (The procedure was unsuccessful.) STOP

If t-digit arithmetic is used, a recommended stopping procedure in Step 7 is to iterate until $\left\{y_{i}^{(k)} \mid \leq 10^{-r}\right.$, for each $i=1,2 \ldots$. .

JACOBI'S METHOD

Method is an iterative method or simultaneous displacement method.
We want to solve ' $\mathrm{Ax}=\mathrm{b}$ ' where " $\boldsymbol{A} \in \boldsymbol{R}^{\boldsymbol{n} \times \boldsymbol{n} "}$ and ' n ' is very large, 'A' is Sparse (with a large percent of zero entries) as well as ' A ' is structured (i.e. the product ' $A x$ ' can be computed efficiently). For this purpose, we can easily use Jacoby's.

ALGORITHM: We want to solve $\mathrm{Ax}=\mathrm{b}$ writes it out

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots \ldots \ldots .+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots \ldots \ldots .+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots+\cdots \ldots \ldots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots \ldots \ldots+a_{n n} x_{n}
\end{array}=b_{n}=\vdots\right.
$$

Rewrite it in another way

$$
\left\{\begin{array}{c}
x_{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}-a_{13} x_{3}-\cdots \ldots \ldots \ldots-a_{1 n} x_{n}\right) \\
x_{2}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}-a_{23} x_{3}-\cdots \ldots \ldots \ldots-a_{2 n} x_{n}\right) \\
\vdots \\
\vdots \\
x_{n}=\frac{1}{a_{n n}}\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots \ldots \ldots \ldots-a_{n(n-1)} x_{n-1}\right)
\end{array}\right.
$$

Or in compact form $x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}\right) i=1,2,3 \ldots \ldots \ldots . n$
This gives the Jacoby's iteration.
Then Choose a start point (initial guess) i.e. $x^{0}=(0,0,0)$
Apply $\quad X^{k+1}=B X^{k}+C \quad$ where $\quad C_{i j}=\frac{b_{i}}{a_{i j}} \quad$ and $\quad B \quad$ can be defined as
$B_{i j}=\left\{\begin{array}{cc}-\frac{a_{i j}}{a_{i i}} & i \neq j \\ 0 & i=j\end{array}\right.$

STOP CRITERIA

X^{k} close enough to X^{k-1} for example $\left\|X^{k}-X^{k-1}\right\| \leq \epsilon$ for certain vector norms.
Residual $r^{k}=A x^{k}-b$ is small for example $\left\|r^{k}\right\| \leq \epsilon$
CONVERGENC CRITERIA: Sufficient condition for the convergence of Jacobi’s is
$\|X\|_{2}<1 \quad$ or $\quad\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right| \quad i=1,2, \ldots \ldots \ldots \ldots n$

Jacobi method also called method of simultaneous displacement why?

Because no element of $\boldsymbol{x}_{\boldsymbol{i}}^{\boldsymbol{k + 1}}$ is in this iteration until every element is computed.

KEEP IN MIND

- Jacobi method is valid only when all " a_{i} 's" are non-zeroes. (OR) the elements can rearrange for measuring the system according to condition. It is only possible if [A] is invertible i.e. inverse of ' A ' exist.
- For fast convergence system should be diagonally dominant.
- Must make two vectors for the computation " $\boldsymbol{X}^{\boldsymbol{k}}$ " and " $\boldsymbol{X}^{\boldsymbol{k + 1}}$ "
- System (method) is important for parallel computing.

QUESTION: Find the solution of the system of equation using Jacobi iterative method for the first five iterations.
$83 x+11 y-4 z=95$
$3 x+52 y+13 z=104$ \qquad
$3 x+8 y+29 z=71$
ANSWER
$(i) \Rightarrow \quad x=\frac{95}{83}-\frac{11}{83} y+\frac{4}{83} z$
(ii) $\Rightarrow \quad y=\frac{104}{52}-\frac{7}{52} x-\frac{13}{52} z$
$(i i i) \Rightarrow \quad z=\frac{71}{29}-\frac{8}{29} y-\frac{3}{29} x$
Taking initial guess as $(0,0,0)$ and using formula $X^{k+1}=B X^{k}+C$
Put $\mathrm{k}=0$ for first iteration
$x^{(1)}=\frac{95}{83}-\frac{11}{83}(0)+\frac{4}{83}(0)=\frac{95}{83}=1.1446$
$y^{(1)}=\frac{104}{52}-\frac{7}{52}(0)-\frac{13}{52}(0)=\frac{104}{52}=2$
$z^{(1)}=\frac{71}{29}-\frac{8}{29}(0)-\frac{3}{29}(0)=\frac{71}{29}=2.4483$
$\Rightarrow \quad\left(x^{(1)}, y^{(1)}, z^{(1)}\right)=(1.1446, \quad 2,2.4483)$
Put $\mathrm{k}=1$ for second iteration $x^{(2)}=\frac{95}{83}-\frac{11}{83}(2)+\frac{4}{83}(2.4483)=0.9976$

$$
\begin{aligned}
& y^{(2)}=\frac{104}{52}-\frac{7}{52}(1.4466)-\frac{13}{52}(2.4483)=1.2339 \\
& z^{(2)}=\frac{71}{29}-\frac{8}{29}(2)-\frac{3}{29}(1.1446)=\frac{71}{29}=1.7781 \\
& \Rightarrow \quad\left(x^{(2)}, y^{(2)}, z^{(2)}\right)=(0.9976, \quad 1.2339,1.7781)
\end{aligned}
$$

Put $\mathrm{k}=2$ for third iteration

$$
\begin{aligned}
& x^{(3)}=\frac{95}{83}-\frac{11}{83}(1.2339)+\frac{4}{83}(1.7781)=1.0668 \\
& y^{(3)}=\frac{104}{52}-\frac{7}{52}(0.9976)-\frac{13}{52}(1.7781)=1.4212 \\
& z^{(3)}=\frac{71}{29}-\frac{8}{29}(1.2339)-\frac{3}{29}(0.9976)=2.0046 \\
& \Rightarrow \quad\left(x^{(3)}, y^{(3)}, z^{(3)}\right)=(1.0668, \quad 1.4212,2.0046)
\end{aligned}
$$

Put $\mathrm{k}=3$ for fourth iteration

$$
\begin{aligned}
& x^{(4)}=\frac{95}{83}-\frac{11}{83}(1.4212)+\frac{4}{83}(2.0046)=1.0529 \\
& y^{(4)}=\frac{104}{52}-\frac{7}{52}(1.0668)-\frac{13}{52}(2.0046)=1.3553 \\
& z^{(4)}=\frac{71}{29}-\frac{8}{29}(1.4212)-\frac{3}{29}(1.0668)=\frac{71}{29}=1.9451 \\
& \Rightarrow \quad\left(x^{(4)}, y^{(4)}, z^{(4)}\right)=(1.0529,1.3553,1.9451)
\end{aligned}
$$

Put $\mathrm{k}=4$ for fifth iteration

$$
\begin{aligned}
& x^{(5)}=\frac{95}{83}-\frac{11}{83}(1.3551)+\frac{4}{83}(1.9451)=1.0587 \\
& y^{(5)}=\frac{104}{52}-\frac{7}{52}(1.0529)-\frac{13}{52}(1.9451)=1.3726 \\
& z^{(5)}=\frac{71}{29}-\frac{8}{29}(1.3553)-\frac{3}{29}(1.0529)=1.9655 \\
& \Rightarrow \quad\left(x^{(5)}, \quad y^{(5)}, z^{(5)}\right)=(1.0587,1.3726,1.9655)
\end{aligned}
$$

GAUSS SEIDEL ITERATION METHOD

Gauss's Seidel method is an improvement of Jacobi's method. This is also known as method of successive displacement.

ALGORITHM:

In this method we can get the value of " x_{1} "from first equation and we get the value of " x_{2} " by using " $\boldsymbol{x}_{\mathbf{1}}$ " in second equation and we get " $\boldsymbol{x}_{\mathbf{3}}$ " by using " $\boldsymbol{x}_{\mathbf{1}}$ " and " $\boldsymbol{x}_{\mathbf{2}}$ " in third equation and so on.

ABOUT THE ALGORITHM

- Need only one vector for both " x^{k} " and " x^{k+1} " save memory space.
- Not good for parallel computing.
- Converge a bit faster than Jacobi’s.

How Jacobi method is accelerated to get Gauss Seidel method for solving system of Linear

 Equations?In Jacobi method the $(\mathrm{r}+1)^{\text {th }}$ approximation to the system $\sum_{j=1, j \neq i}^{n} a_{i j} \boldsymbol{x}_{j}=\boldsymbol{b}_{\boldsymbol{i}}$ is given by $x_{i}^{r+1}=\frac{b_{i}}{a_{i i}}-\sum_{j=1, j \neq i}^{n} \frac{a_{i j}}{a_{i i}} x_{j}^{r} ; r, j=1,2,3, \ldots \ldots \ldots \ldots n$ from which we can observe that no element of $\boldsymbol{x}_{\boldsymbol{i}}^{r+1}$ replaces $\boldsymbol{x}_{\boldsymbol{i}}^{\boldsymbol{r}}$ entirely for next cycle of computations. However, this is done in Gauss Seidel method. Hence called method of Successive displacement.

QUESTION:

Find the solutions of the following system of equations using Gauss Seidel method and perform the first five iterations.

$$
\begin{array}{r}
x_{1}-\frac{1}{4} x_{2}-\frac{1}{4} x_{3}=\frac{1}{2} \\
-\frac{1}{4} x_{1}+x_{2}-\frac{1}{4} x_{4}=\frac{1}{2} \\
-\frac{1}{4} x_{1}+x_{3}-\frac{1}{4} x_{4}=\frac{1}{4} \\
-\frac{1}{4} x_{2}-\frac{1}{4} x_{3}+x_{4}=\frac{1}{4}
\end{array}
$$

ANSWER

$$
\begin{aligned}
& x_{1}=0.5+0.25 x_{2}+0.25 x_{3} \\
& x_{2}=0.5+0.25 x_{1}+0.25 x_{4} \\
& x_{3}=0.25+0.25 x_{1}+0.25 x_{4} \\
& x_{4}=0.25+0.25 x_{2}+0.25 x_{3}
\end{aligned}
$$

For first iteration using $(0,0,0,0)$ we get

$$
\begin{gathered}
x_{1}^{(1)}=0.5+0.25(0)+0.25(0)=0.5 \\
x_{2}^{(1)}=0.5+0.25(0.5)+0.25(0)=0.625 \\
x_{3}^{(1)}=0.25+0.25(0.5)+0.25(0)=0.375 \\
x_{4}^{(1)}=0.25+0.25(0.625)+0.25(0.375)=0.5
\end{gathered}
$$

For second iteration using (0.5, 0.625, 0.375, 0.5) we get

$$
\begin{gathered}
x_{1}^{(2)}=0.5+0.25(0.625)+0.25(0.375)=0.75 \\
x_{2}^{(2)}=0.5+0.25(0.5)+0.25(0.5)=0.8125 \\
x_{3}^{(2)}=0.25+0.25(0.5)+0.25(0.5)=0.5625 \\
x_{4}^{(2)}=0.25+0.25(0.625)+0.25(0.375)=0.59375
\end{gathered}
$$

For third iteration using $(0.75,0.8125,0.5625,0.59375)$ we get

$$
\begin{gathered}
x_{1}^{(3)}=0.5+0.25(0.8125)+0.25(0.5625)=0.84375 \\
x_{2}^{(3)}=0.5+0.25(0.75)+0.25(0.59375)=0.85938 \\
x_{3}^{(3)}=0.25+0.25(0.75)+0.25(0.59375)=0.60938 \\
x_{4}^{(3)}=0.25+0.25(0.8125)+0.25(0.5625)=0.61719
\end{gathered}
$$

For fourth iteration using $(0.84375,0.85938,0.60938,0.61719)$ we get

$$
\begin{aligned}
& x_{1}^{(4)}=0.5+0.25(0.85938)+0.25(0.60938)=0.86719 \\
& x_{2}^{(4)}=0.5+0.25(0.84375)+0.25(0.61719)=0.87110 \\
& x_{3}^{(4)}=0.25+0.25(0.84375)+0.25(0.61719)=0.62110 \\
& x_{4}^{(4)}=0.25+0.25(0.85938)+0.25(0.60938)=0.62305
\end{aligned}
$$

MUHAMMAD USMAN HAMID (0323-6032785)

For fifth iteration using $(0.86719,0.87110,0.62110,0.62305)$ we get

$$
\begin{aligned}
& x_{1}^{(5)}=0.5+0.25(0.87110)+0.25(0.62110)=0.87305 \\
& x_{2}^{(5)}=0.5+0.25(0.86719)+0.25(0.62305)=0.87402 \\
& x_{3}^{(5)}=0.25+0.25(0.86719)+0.25(0.62305)=0.62402 \\
& x_{4}^{(5)}=0.25+0.25(0.87110)+0.25(0.62110)=0.62451
\end{aligned}
$$

1) Solve using Gauss's Seidel method.
i. $\quad 2 x_{1}-x_{2}=7$
$-x_{1}+x_{2}-x_{3}=1$
$-\boldsymbol{x}_{2}+2 \boldsymbol{x}_{\mathbf{3}}=1 \quad$ Perform first five iterations. Ans: $[6,5,3]^{T}=\left[\begin{array}{l}6 \\ 5 \\ 3\end{array}\right]$
ii. $\quad 20 x+y-2 z=17$
$3 x+20 y-z=-18$
$2 x-3 y+20 z=25 \quad$ Perform first three iterations.

7.4 SOR

30R (Sulcessive Over Relaxation) is a more gecrexal iterative method, It is hawed on Galls.5.Scidal.

Note the seound term is the Gatss-seidal literation multiplied with w. u' relaxation pramicter.
Usual walue $0<\psi<2$ (for convergence reson)

- $w=1$: Gaussi-Seidal
- $0<w<1$: under relaxation
- $1<w<2$: over relaxation

Example Try this on the sane example with $w=1.2$. General iteration is now:

$$
\left\{\begin{array}{l}
x_{1}^{k+1}=-0.2 x_{1}^{k}+0.6 x_{2}^{k} \\
x_{2}^{k+1}=-0.2 x_{2}^{k}+0.6 *\left(1+x_{1}^{k+1}+x_{3}^{k}\right) \\
x_{3}^{k+1}=-0.2 x_{3}^{k}+0.6 *\left(2+x_{2}^{k+1}\right)
\end{array}\right.
$$

With $x^{0}=(0,0.5,1)^{t}$, we get

$$
\begin{aligned}
& x^{1}=(0.3,1.28,1.708)^{t} \\
& x_{2}=(0.708,1.8290,1.9442)^{t}
\end{aligned}
$$

Recall the exact solution $x=(1,2,2)^{t}$.
Observation: faster convergence than both Jacolsi and G-S.

EIGENVALUE , EIGNVECTOR: Suppose ' A ' is a square matrix. The number ' $\boldsymbol{\lambda}$ ' is called an Eignvalue of ' A ' if there exist a non-zero vector ' x ' such that

$$
A x=\lambda x \quad(o r) \quad(A-\lambda I) x=0
$$

And corresponding non-zero solution vector " x ' ' is called an Eigenvector.
Largest Eigenvalue is known as Dominant Eigenvalue.
CHARACTERISTIC POLYNOMIAL: The polynomial defined by $" P(\boldsymbol{\lambda})=\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda I})$ " is called characteristics polynomial.

SPECTRUM OF MATRIX: Set of all eignvalues of 'A' is called spectrum of 'A'.
SPECTRAL RADIUS: The Spectral radius $\mathrm{P}(\mathrm{A})$ of a matrix ' A ' is defined by

$$
\boldsymbol{P}(\boldsymbol{A})=\boldsymbol{\operatorname { m a x }}|\lambda| \quad \text { Where ' } \lambda \text { ' is an Eignvalue } \mathrm{f} \text { ' } \mathrm{A} \text { '. }
$$

SPECTRAL NORM: Let " $\lambda_{\boldsymbol{i}}$ " be the largest Eigenvalue of $\boldsymbol{A} \boldsymbol{A}^{*}$ or $\boldsymbol{A}^{*} \boldsymbol{A}$ where \boldsymbol{A}^{*} is the conjugate transpose of " \boldsymbol{A} " then the spectral norm of the matrix " \boldsymbol{A} " is defined as

$$
\sigma(A)=\sqrt{\lambda_{i}}
$$

DETERMINANT OF A MATRIX:

The determinant of " $\boldsymbol{n} \times \boldsymbol{n}$ " matrix is the product of its Eigenvalues.

TRACE OF A MATRIX: The sum of diagonal elements of " $\boldsymbol{n} \times \boldsymbol{n}$ " matrix is called the Trace of matrix "A"
This is also defined as the sum of Eigenvaluse of a matrix is Trace of it

QUESTION:

Write characteristic equation of $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ -2 & 2 & -1 \\ 4 & 0 & -1\end{array}\right]$

SOLUTION:

Let $\lambda I-A=\lambda\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]-\left[\begin{array}{ccc}1 & 3 & 0 \\ -2 & 2 & -1 \\ 4 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}\lambda-1 & 3- & 0 \\ 2 & \lambda-2 & 1 \\ -4 & 0 & \lambda+1\end{array}\right]$
Now $\Delta_{A}(\lambda)=|\lambda I-A|=\left|\begin{array}{ccc}\lambda-1 & 3- & 0 \\ 2 & \lambda-2 & 1 \\ -4 & 0 & \lambda+1\end{array}\right|=\lambda^{3}-\lambda^{2}+2 \lambda+28$
Then $\Delta_{A}(\lambda)=0=\lambda^{3}-\lambda^{2}+2 \lambda+28$ is required characteristic equation.

PRACTICE: Write characteristic equation of $\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5\end{array}\right]$
|A- $1 \mid$ is known as the characteristic polynomial of the matrix. A. Even root of eq d. is called. an eigenvalue of A.

Eigenvalues and eigenvectors are often called characteristic values and characteristic vectors respectively
(Example:-
Find the eigenvalues and
E Corresponding eigenvectors of matrix.

$$
\text { Sol: } A=\left[\begin{array}{ccc}
4 & 1 & -2 \\
-2 & 1 & -1 \\
-2 & 5
\end{array}\right]
$$

First, we find eigenvalues by

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \hline A-\lambda I=\left[\begin{array}{ccc}
4 & 1 & -2 \\
2 & 3 & -1 \\
-2 & 1 & 5
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
&
\end{aligned}
$$

Now
$|A-\lambda I|=\left|\begin{array}{ccc}4-\lambda & 1 & -2 \\ 2 & 3-\lambda & -1 \\ -2 & 5-\lambda\end{array}\right|$
$=(4-\lambda)[(3-\lambda)(5-\lambda)+1]-1[2$

$$
\begin{aligned}
& (5-\lambda)=2]-2[-2+2(3-\lambda)] \\
& \mid A=\lambda I \equiv(4-\lambda)\left[15-3 \lambda-5 \lambda+\lambda^{2}+1\right]= \\
& {[10=2 \lambda-2]-2[2 \pm 6-2 \lambda]} \\
& |A-\lambda I|=(4-\lambda)\left[\frac{\lambda^{2}}{}-8 \lambda+16\right]=\left[\frac{8}{-2 \lambda}\right] \\
& -2(8-2 \lambda-7 \\
& =(4-\lambda)\left[\lambda^{2}-2(4) \lambda+(4)^{2}\right]=3[8-2 \lambda] \\
& =(4-\lambda)(4-\lambda)^{2}-3(8-2 \lambda) \\
& |A-\lambda I|=\quad(4-\lambda)(4-\lambda)^{2}-6(4=\lambda) \\
& \text { put }-|A-A I|=0 \\
& \Rightarrow(4-\lambda)(4-\lambda)^{2}-6(4-\lambda)=0 \\
& \Rightarrow \quad(1-\lambda)\left[(4-\lambda)^{2}-6\right]=0 \\
& \Rightarrow(4-\lambda)\left[16+\lambda^{2}-8 \lambda-6\right]=0 \\
& \Rightarrow \quad(4-\lambda)\left[\lambda^{2}-8 \lambda+10\right]=0 \\
& \Rightarrow(4-\lambda)=0 \quad \therefore \lambda^{2}-8 \lambda+10=0 \\
& \Rightarrow \quad 4-\lambda=0, \lambda=\frac{8+\sqrt{24}}{2} \\
& \Rightarrow \lambda=4, \lambda=1 \cdot 55, \lambda=\frac{2}{2}, 4495
\end{aligned}
$$

So, the eigenvalues are

$$
\lambda_{1}=1.5505 \lambda_{2}=4, \lambda_{3}=6.4495
$$

Now, find. 'eigenvectors corresponding, to eigen values 2 and 4 , $u \operatorname{sing}(A-\lambda I) v=0$
For $\lambda_{1}=1.5505$
$A-\lambda I) V=0 \Rightarrow\left[\begin{array}{ccc}4-1.5505 & 1 & -2 \\ 2 & 3-1.565 & -1 \\ -2 & 1 & 5-1.5005\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$

$$
\begin{array}{r}
2.449 x_{1}+x_{2}-2 x_{3}=0.12 \\
\left.0.6330\left(x_{2}+23\right)=1 x^{2}\right)
\end{array}
$$

cot o x^{3} aivial $\rightarrow(3)$
from (3)

$$
p 6 x^{2} c(p(1)+(a))=0
$$

$$
\Rightarrow \quad-x_{2}=-a
$$

put in ed

$$
\begin{aligned}
& 7_{2} .4495 x+-a-2(a)=0 \\
& x=1.2247
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=1.2247 a \\
& \text { vectox is }
\end{aligned}
$$

The eigen vector i. i-2247, $[1]$

$$
[1.2247,1-1]
$$

For $\lambda=4$

$$
\frac{1}{\frac{1}{1}}\left[\begin{array}{ccc}
0 & 1 & -2 \\
2 & -1 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
-\frac{x_{2}}{x_{3}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$\ldots\left[\begin{array}{ccc}2 & -1 & -1 \\ 0 & 1 & -2 \\ -2 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ -x_{1}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 0\end{array}\right]$
$\cdots R_{3}-m, R_{1}-2,-1$
$\left[\begin{array}{ccc}2 & -1 & -1 \\ 0 & 1 & -2 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 0\end{array}\right]$
is trivial solution $1 \in t \quad x_{3}=a$
where
a is arbitrary constant men

$$
\begin{aligned}
& x_{3}=a \rightarrow x_{2}=0 \rightarrow(i i) \\
& 2 x_{1}-x_{2}=x_{3}=0 \rightarrow(i i i)
\end{aligned}
$$

put $x_{3}=a$ in lib

$$
x_{2}-2 a=0
$$

$$
\therefore x_{2}=2 a
$$

put in (ii)

$$
\begin{gathered}
2 x_{1}-2 a-a=0 \\
\Rightarrow 2 x_{1}=3 a=0 \\
\Rightarrow \quad x_{1}=\frac{3 a}{2}
\end{gathered}
$$

$$
\Rightarrow \quad x_{1}=1.5 \mathrm{a}
$$

So, eigen vector is

and

$$
\begin{aligned}
& \text { put } x_{3}=a \text { in } 1 i, 630 x_{3}=0.630 x_{3}(i i) \\
& \Rightarrow-2.630 x_{2}-2.630 a=0 \\
& \Rightarrow \quad x_{2}=-a
\end{aligned}
$$

$$
\Rightarrow \operatorname{in}_{2}=
$$

$$
-2.4495 x_{1}-a-2 a=0
$$

$$
\Rightarrow-2.4455 x_{1}-3 a=0
$$

$$
\Rightarrow \quad x_{1}=-1-2247 \mathrm{a}
$$

The eigen vector is

$$
[-1.2247,-1,1]^{\top}
$$

Diagonalization of matrices:said to be diagonalizatrix is is similar to a diagonal matrix. That it A is diagonalizarble if there exist an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. The matrix P is said to diagonalize 4.

Example:-
Find the diagonal matrix whose diagonal entries are the tigon values of A

$$
A=\left[\begin{array}{cc}
4 & D=\frac{1}{2} \\
\frac{1}{2} & -2 \\
-2 & -1
\end{array}\right]
$$

- Sol:-

First, we find the eigen values ... and ripen westers of the matrix A For eigdn value $|A=\Delta I|=0$

$$
\begin{aligned}
& A-\lambda I=\left[\begin{array}{lll}
4 & 1 & -2 \\
2 & 3 & -1 \\
-2 & 1 & 5
\end{array}\right]=\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
4
\end{array}\right] \\
& |A-\lambda I| \equiv\left|\begin{array}{ccc}
4-\lambda & 1 & -2 \\
2 & 3-\lambda & -1 \\
-2 & \frac{1}{5-\lambda}
\end{array}\right| \\
& \equiv(4-\lambda)][3-\lambda)(5-\lambda .)+1]-1] 2 \\
& (5-\lambda)-2)]-2[2+2(3-\lambda)] \\
& =(4-\lambda)\left[15-3 \lambda-5 \lambda+\lambda^{2}+1\right]-1[10 \\
& -2-2 \lambda]-2[2+6-2 \lambda] \\
& =(4-\lambda)\left[\lambda^{2}-8 \lambda+16\right]-1[8-2 \lambda] \\
& (4-\lambda)\left[-\frac{2}{2}[8-2 \lambda]\right. \\
& =(4-\lambda)\left[\lambda^{2}-8 \lambda+16\right]-[8-2 \lambda]-2[8-40] \\
& =(4-\lambda)\left\{\lambda^{2}-8 \lambda+167-3(8-2 \lambda)\right. \\
& =(4-\lambda)\left(\lambda^{2}-8 \lambda+16\right)-6(4-\lambda) \\
& =(4-\lambda)\left\{\lambda^{2}-8 \lambda+16-6\right] \\
& =(4-\lambda)\left[\lambda^{2}-8 \lambda+10\right]
\end{aligned}
$$

[1.5 get to normalize these vectors

$$
\left[\frac{1.2249}{3.2249}, \frac{-1}{3.2249}, \frac{1}{3.2249}\right]^{\top}=[0.3798,-0.3101,3106]
$$

$$
\left[\frac{1.8}{6.5},-\frac{2}{6.5}, \frac{1}{6.5}\right]^{T}=[0.2308,0.3078,0.1538]^{\top}
$$

$$
\left[\frac{1.2247}{3.2247}, \frac{-1}{3.2247}, \frac{1}{3.2247}\right]^{\top}=[-0.3798,-.3101, .3101]^{\top}
$$

$$
P=\left[\begin{array}{ccc}
0.3798 & 0.2308 & -0.3798 \\
-0.3101 & 0.3078 & -0.3101 \\
0.3101 & 0.1538 & 0.3101
\end{array}\right]
$$

$$
D=P^{A} A P=P^{\top} A P
$$

$\$$

$$
P^{\top}=\left[\begin{array}{ccc}
0.3798 & -0.3101 & 0.3101 \\
0.2308 & 0.3078 & 0.1538 \\
-0.3798 & -0.3101 & 0.3101
\end{array}\right]
$$

Now solve $P^{\top} A P$.
. First we take $A P$

$$
\begin{aligned}
& \text { 1/ For eigen wales } \quad \text { Numerical Analysis } \\
& \therefore \operatorname{son}^{\Rightarrow}(4-\lambda)\left(\lambda^{2}-8 \lambda+10\right)=\lambda=\lambda \mid=0 \\
& \begin{array}{l}
\lambda^{2}=8 \lambda+10=0 \\
a=1, b=-8, \leq=10
\end{array} \\
& \begin{array}{l}
a=1, b=-8,-5=10 \\
\lambda=-\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array} \\
& 10 \lambda_{1}=1.5505, \lambda_{2}-4, \lambda_{3}=6.4495{ }^{2} \frac{1}{24} \Rightarrow \lambda=1.5505 \\
& \text { so are cigen values and thai. } \frac{1}{2} \text {. } 4495
\end{aligned}
$$

| $A P=\left[\begin{array}{ccc}4 & 1 & -2 \\ 2 & 3 & -1 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{lll}0.3798 & 0.2308 & -0.3780 \\ -0.3101 & 0.3078 & -0.301 \\ 0.3101 & 0.1538 & -0.361\end{array}\right.$ |
| :--- | :--- | :--- | :--- |
| $A P=\left[\begin{array}{ccc}0.5889 & 0.9234 & -2.4498 \\ -0.4808 & 1.2312 & -2 \\ 0.4808 & 0.6152 & 2\end{array}\right]$ |

Nou $\quad P^{-1} A P=P^{\top} A P$

THE POWER METHOD

The power method is an iterative technique used to determine the dominant eigenvalue of a matrix. i.e the eigenvalue with the largest magnitude.

Method also called RELEIGH POWER METHOD

ALGORITHIM

i. Choose initial vector such that largest element is unity.
ii. This normalized vector $\mathrm{V}^{(0)}$ ia premultiplied by 'nxn' matrix $[\boldsymbol{A}]$.
iii. The resultant vector is again normalized.
iv. Continues this process untill required accuracy is obtained.

At this point result looks like $\boldsymbol{U}^{(\boldsymbol{k})}=[\boldsymbol{A}] \boldsymbol{V}^{(\boldsymbol{k}-\mathbf{1})}=\boldsymbol{q}_{\boldsymbol{k}} \boldsymbol{V}^{(\boldsymbol{k})}$
Here ' $\boldsymbol{q}_{\boldsymbol{k}}$ ' is the desired largest Eigen value and ' $\boldsymbol{v}^{(\boldsymbol{k})}$ ' is the corresponding EigenVector.

CONVERGENCE:

Power method Converges linearly, meaning that during convergence, the error decreases by a constant factor on each iteration step.

QUESTION: How to find smallest Eigen value using power method?
Answer: Consider $[A] X=\lambda X \Rightarrow\left[A^{-1}\right][A] X=\lambda\left[A^{-1}\right] X \Rightarrow X=\lambda\left[A^{-1}\right] X$

$$
\Rightarrow\left[A^{-1}\right] X=\frac{1}{\lambda} X \quad \text { Required }
$$

EXAMPLE:

Find the Eigen value of largest modulus and the associated eigenvector of the matrix by power method $[A]=\left[\begin{array}{lll}2 & 3 & 2 \\ 4 & 3 & 5 \\ 3 & 2 & 9\end{array}\right]$

SOLUTION:

Let initial vector $V^{(0)}$ as $(0,0,1)^{T}$
You can take any other instead of $(0,0,0)$ which consist " 0 " and " 1 " like $(1,0,0)$ and $(1,1,1)$
(1). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right] \quad$ for $\mathrm{K}=1$

$$
U^{(1)}=[A]\left[V^{(0)}\right]=\left[\begin{array}{lll}
2 & 3 & 2 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]=9\left[\begin{array}{c}
9 / 9 \\
5 / 9 \\
1
\end{array}\right]=9\left[\begin{array}{c}
0.222 \\
0.556 \\
1
\end{array}\right]=q_{1} V^{(1)}
$$

(2). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right]$ for $\mathrm{K}=2$

$$
U^{(2)}=[A] V^{(1)}=\left[\begin{array}{lll}
2 & 3 & 3 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{c}
0.222 \\
0.556 \\
1
\end{array}\right]=\left[\begin{array}{c}
4.112 \\
7.556 \\
10.778
\end{array}\right]=10.778\left[\begin{array}{c}
0.382 \\
0.701 \\
1
\end{array}\right]=q_{2} V^{(2)}
$$

(3). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right]$ for $\mathrm{K}=3$

$$
U^{(3)}=[A] V^{(2)}=\left[\begin{array}{lll}
2 & 3 & 3 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{c}
0.382 \\
0.701 \\
1
\end{array}\right]=\left[\begin{array}{c}
4.867 \\
8.631 \\
11.548
\end{array}\right]=11.548\left[\begin{array}{c}
0.421 \\
0.747 \\
1
\end{array}\right]=q_{3} V^{(3)}
$$

(4). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right] \quad$ for $K=4$

$$
U^{(4)}=[A] V^{(3)}=\left[\begin{array}{lll}
2 & 3 & 3 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{c}
0.421 \\
0.747 \\
1
\end{array}\right]=\left[\begin{array}{c}
5.083 \\
8.925 \\
11.757
\end{array}\right]=11.757\left[\begin{array}{c}
0.432 \\
0.759 \\
1
\end{array}\right]=q_{4} V^{(4)}
$$

(5). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right]$ for $\mathrm{K}=5$

$$
U^{(5)}=[A] V^{(4)}=\left[\begin{array}{lll}
2 & 3 & 3 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{c}
0.432 \\
0.759 \\
1
\end{array}\right]=\left[\begin{array}{c}
5.141 \\
9.005 \\
11.814
\end{array}\right]=11.814\left[\begin{array}{c}
0.435 \\
0.762 \\
1
\end{array}\right]=q_{5} V^{(5)}
$$

(6). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right] \quad$ for $K=6$

$$
U^{(6)}=[A] V^{(5)}=\left[\begin{array}{lll}
2 & 3 & 3 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{c}
0.435 \\
0.762 \\
1
\end{array}\right]=\left[\begin{array}{c}
5.156 \\
9.026 \\
11.829
\end{array}\right]=11.829\left[\begin{array}{c}
0.436 \\
0.763 \\
1
\end{array}\right]=q_{6} V^{(6)}
$$

(7). Using Formula $U^{(k)}=[A]\left[V^{k-1}\right]$ for $\mathrm{K}=7$

$$
U^{(7)}=[A] V^{(6)}=\left[\begin{array}{lll}
2 & 3 & 3 \\
4 & 3 & 5 \\
3 & 2 & 9
\end{array}\right]\left[\begin{array}{c}
0.436 \\
0.763 \\
1
\end{array}\right]=\left[\begin{array}{c}
5.161 \\
9.033 \\
11.834
\end{array}\right]=11.834\left[\begin{array}{c}
0.436 \\
0.763 \\
1
\end{array}\right]=q_{7} V^{(7)}
$$

So largest Eigen value is $q=11.834$ and corresponding Eigenvector is

$$
\mathrm{V}=\left[\begin{array}{c}
0.436 \\
0.763 \\
1
\end{array}\right] \text { accurate to } 3 \text { decimals. }
$$

QUESTION: Find the smallest Eigen value of the matrix by power method $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right]$ upto seven iterations.

SOLUTION: Put $A^{-1}=B \Rightarrow \quad A^{-1}=\frac{\operatorname{adj} A}{|A|}$
$\mathrm{a}_{11}=(-1)^{2}(20+3)=+23$

$$
a_{13}=(-1)^{4}(12-24)=-12
$$

$$
\begin{align*}
& a_{23}=(-1)^{5}(3+18)=-21 \tag{1}\\
& a_{31}=(-1)^{4}(-8+3)=-5 \\
& a_{32}=(-1)^{5}(-1-8)=9 \\
& a_{33}=(-1)^{6}(4+12)=16
\end{align*}
$$

$a_{12}=(-1)^{3}(20+6)=-26$
$\mathrm{a}_{21}=(-1)^{3}(-15-6)=21$
$\mathrm{a}_{22}=(-1)^{4}(5-12)=-7$
$\operatorname{adj} A=\left[\begin{array}{ccc}23 & 21 & -5 \\ -26 & -7 & 9 \\ -12 & -21 & 16\end{array}\right]$
and $|A|=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right]=1(20+3)+3(20+6)+2(12-24)=77$
$(1) \Rightarrow B=A^{-1}=\left[\begin{array}{ccc}23 / 77 & 21 / 77 & -5 / 77 \\ -26 / 77 & -7 / 77 & 9 / 77 \\ -12 / 77 & -21 / 77 & 16 / 77\end{array}\right]$
Now Taking Initial vector as $V^{(0)}=(0,0,1)^{T}$

$$
\begin{gathered}
U^{(1)}=[B] V^{(0)}=\left[\begin{array}{ccc}
\frac{23}{77} & \frac{21}{77} & -\frac{5}{77} \\
-\frac{26}{77} & -\frac{7}{77} & \frac{9}{77} \\
-\frac{12}{77} & -\frac{21}{77} & \frac{16}{77}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-0.06 \\
0.12 \\
0.21
\end{array}\right]=0.21\left[\begin{array}{c}
-0.29 \\
0.57 \\
1
\end{array}\right]=q_{1} V^{(1)} \\
U^{(2)}=[B] V^{(1)}=\left[\begin{array}{ccc}
0.30 & 0.27 & -0.06 \\
-0.34 & -0.09 & 0.12 \\
-0.16 & -0.27 & 0.21
\end{array}\right]\left[\begin{array}{c}
-0.29 \\
0.57 \\
1
\end{array}\right]=\left[\begin{array}{c}
0.01 \\
0.17 \\
0.10
\end{array}\right]=0.17\left[\begin{array}{c}
0.06 \\
1 \\
0.59
\end{array}\right]=q_{2} V^{2} \\
U^{(3)}=[B] V^{(2)}=\left[\begin{array}{ccc}
0.30 & 0.27 & -0.06 \\
-0.34 & -0.09 & 0.12 \\
-0.16 & -0.27 & -0.21
\end{array}\right]\left[\begin{array}{c}
0.06 \\
1 \\
0.59
\end{array}\right]=\left[\begin{array}{c}
0.25 \\
-0.04 \\
-0.16
\end{array}\right]=0.25\left[\begin{array}{c}
1 \\
0.16 \\
0.59
\end{array}\right]=q_{3} V^{3}
\end{gathered}
$$

$U^{(4)}=[B] V^{(3)}=\left[\begin{array}{ccc}0.30 & 0.27 & -0.06 \\ -0.34 & -0.09 & 0.12 \\ -0.16 & -0.27 & 0.12\end{array}\right]\left[\begin{array}{c}1 \\ 0.16 \\ 0.54\end{array}\right]=\left[\begin{array}{c}0.30 \\ -0.28 \\ -0.07\end{array}\right]=0.30\left[\begin{array}{c}1 \\ -0.93 \\ -0.23\end{array}\right]=q_{4} V^{(4)}$
$U^{(5)}=[B] V^{(4)}=\left[\begin{array}{ccc}0.30 & 0.27 & -0.06 \\ -0.34 & -0.09 & 0.12 \\ -0.16 & -0.27 & 0.12\end{array}\right]\left[\begin{array}{c}1 \\ -0.93 \\ -0.23\end{array}\right]=\left[\begin{array}{c}0.06 \\ -0.28 \\ 0.04\end{array}\right]=0.06\left[\begin{array}{c}1 \\ -4.67 \\ 0.67\end{array}\right]=q_{5} V^{(5)}$
$U^{(6)}=[B] V^{(5)}=\left[\begin{array}{ccc}0.30 & 0.27 & -0.06 \\ -0.34 & -0.09 & 0.12 \\ -0.16 & -0.27 & 0.12\end{array}\right]\left[\begin{array}{c}1 \\ -4.67 \\ 0.67\end{array}\right]=\left[\begin{array}{c}-1.00 \\ 0.16 \\ 1.24\end{array}\right]=1.24\left[\begin{array}{c}-0.81 \\ 0.13 \\ 1\end{array}\right]=q_{6} V^{(6)}$
$U^{(7)}=[B] V^{(6)}=\left[\begin{array}{ccc}0.30 & 0.27 & -0.06 \\ -0.34 & -0.09 & 0.12 \\ -0.16 & -0.27 & 0.12\end{array}\right]\left[\begin{array}{c}-0.81 \\ 0.13 \\ 1\end{array}\right]=\left[\begin{array}{c}-0.27 \\ 0.38 \\ 0.30\end{array}\right]=0.38\left[\begin{array}{c}-0.71 \\ 1 \\ 0.79\end{array}\right]=q_{7} V^{(7)}$
So smallest Eigen value is $\mathrm{q}=0.38$ and corresponding Eigenvector is $\mathrm{V}=\left[\begin{array}{c}-0.71 \\ 1 \\ 0.79\end{array}\right]$
EXERCISE: Find the Eigen value of largest modulus (Or dominant eigenvalue) and the associated eigenvector of the matrix by power method
i. $\quad[A]=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & 1 \\ 6 & 3 & 5\end{array}\right]$ after six iterations.
ii. $\quad[A]=\left[\begin{array}{ccc}4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 0 & 4\end{array}\right]$ after fourth iterations using initial vector as $V^{(0)}=[0,0,1]^{T}$
iii. $\quad[A]=\left[\begin{array}{ccc}8 & 1 & 2 \\ 0 & 10 & -1 \\ 6 & 2 & 15\end{array}\right]$ with unit vector as initial vector.
iv. $[A]=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$ with unit vector as initial vector.

DIFFERENCE OPERATORS

DIFFERENCE EQUATION

Equation involving differences is called Difference Equation.
OR an equation that consist of an independent variable ' t ', a dependent variable ' $y(t)$ ' and one or more several differences of the dependent variable \mathbf{y}_{t} as $\Delta \mathbf{y}_{t}, \Delta^{2} \mathbf{y}_{t}, \ldots \ldots . \Delta^{n} \mathbf{y}_{t}$ is called difference equation.
The functional relationship of the difference equation is $\boldsymbol{F}\left(\boldsymbol{t}, \boldsymbol{y}, \Delta \mathbf{y}_{\mathrm{t}}, \Delta^{2} \mathbf{y}_{\mathrm{t}}, \ldots \ldots . . \Delta^{\boldsymbol{n}} \mathbf{y}_{\mathbf{t}}\right)=\mathbf{0}$
Solution of differential equation will be sequence of $\mathbf{y}_{\mathbf{t}}$ values for which the equation is true for some set of consecutive integer ' t '.
Importance: difference equation plays an important role in problem where there is a quantity ' y ' that depends on a continuous independent variable ' t '
In polynomial dynamics, modeling the rate of change of the population or modeling the growth rate yields a differential equation for the population ' y ' as the function of time ' t '
i.e. $\frac{d y}{d t}=f(t, y)$

In differential equation models, usually the population is assumed to vary continuously I time.
Difference equation model arise when the population is modeled only at certain discrete time.

DIFFERENCE OF A POLYNOMIAL

The "nth" difference of a polynomial of degree ' n ' is constant, when the values of the independent variable are given at equal intervals.

EXAMPLES:
i. $\Delta^{3} y_{\mathrm{t}}+3 \Delta^{2} \mathrm{y}_{\mathrm{t}}-6 \Delta \mathrm{y}_{\mathrm{t}}+\mathrm{y}_{\mathrm{t}}=9 t^{2}+6 t$
ii. $\quad \Delta^{2} y_{t}+3 \Delta y_{t}-7 y_{t}=0$

Order of differential equation is the difference between the largest and smallest argument ' t ' appearing in it.
For example; if $y_{t+2}+y_{t+1}-7 y_{t}=0$ then order $=t+2-t=2$
Degree of differential equation is the highest power of ' y '
For example; if $\mathrm{y}_{\mathrm{t}+2}{ }^{3}+\mathrm{y}_{\mathrm{t}+1}{ }^{2}-7 \mathrm{y}_{\mathrm{t}}=0$ then degree $=3$
FINITE DIFFERENCES: Let we have a following linear D. Equation
$y^{\prime \prime}(t)+p(t) y^{\prime}+q(t) y=r(t) \quad ; a \leq t \leq b$
Subject to the boundary conditions $\quad y(a)=\alpha$ and $\quad y(b)=\beta$
Then the finite difference method consists of replacing every derivative in above Equation by finite difference approximations such as the central divided difference approximations
$y^{\prime}\left(t_{i}\right) \approx \frac{1}{2 h}\left[y\left(t_{i}+1\right)-y\left(t_{i}-1\right)\right]$ and $y^{\prime \prime}\left(t_{i}\right) \approx \frac{1}{h^{2}}\left[y\left(t_{i}+1\right)-2 y(t)+y\left(t_{i}-1\right)\right]$
Shooting Method is a finite difference method.
FINITE DIFFERENCES OF DIFFERENT ORDERS: Supposing the argument equally spaced so that $\boldsymbol{x}_{\boldsymbol{k}+\mathbf{1}}-\boldsymbol{x}_{\boldsymbol{k}}=\boldsymbol{h}$ the difference of the ' $\boldsymbol{y}_{\boldsymbol{k}}{ }^{\prime}$ values are denoted as
$\Delta \boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}+\boldsymbol{1}}-\boldsymbol{y}_{\boldsymbol{k}} \quad$ And are called First differences.
Second differences are as follows
$\Delta^{2} y_{k}=\Delta\left(\Delta y_{k}\right)=\Delta y_{k+1}-\Delta y_{k}=y_{k+2}-2 y_{k+1}+y_{k}$
In General: $\quad \Delta^{\boldsymbol{n}} \boldsymbol{y}_{\boldsymbol{k}}=\Delta^{\boldsymbol{n - 1}} \boldsymbol{y}_{\boldsymbol{k}+\boldsymbol{1}}-\Delta^{\boldsymbol{n}-\boldsymbol{1}} \boldsymbol{y}_{\boldsymbol{k}}$ And are called $\mathrm{n}^{\text {th }}$ differences
DIFFERENCE TABLE: The standard format for displaying finite differences is called difference table.

DIFFERENCE FORMULAS: Difference formulas for elementary functions somewhat parallel those of calculus. Example include the following

The differences of a constant function are zero. In symbol " $\Delta \boldsymbol{c}=\mathbf{0}$ " where ' c ' denotes a constant. For a constant time another function we have $\Delta\left(\boldsymbol{c} \boldsymbol{u}_{\boldsymbol{k}}\right)=\boldsymbol{c} \Delta \boldsymbol{u}_{\boldsymbol{k}}$

The difference of a sum of two functions is the sum of their differences
$\Delta\left(\boldsymbol{u}_{\boldsymbol{k}}+\boldsymbol{v}_{\boldsymbol{k}}\right)=\Delta \boldsymbol{u}_{\boldsymbol{k}}+\Delta \boldsymbol{v}_{\boldsymbol{k}}$
The 'linearity property' generalizes the two previous results.
$\Delta\left(\boldsymbol{c}_{1} \boldsymbol{u}_{\boldsymbol{k}}+\boldsymbol{c}_{\mathbf{2}} \boldsymbol{v}_{\boldsymbol{k}}\right)=\boldsymbol{c}_{\mathbf{1}} \Delta \boldsymbol{u}_{\boldsymbol{k}}+\boldsymbol{c}_{\boldsymbol{2}} \Delta \boldsymbol{v}_{\boldsymbol{k}}$ Where $\boldsymbol{c}_{\mathbf{1}}$ and $\boldsymbol{c}_{\boldsymbol{2}}$ are constants.
PROVE THAT $\quad \Delta\left(c y_{k}\right)=c \Delta y_{k}$
$\Delta\left(c y_{k}\right)=c y_{k+1}-c y_{k}=c\left(y_{k+1}-y_{k}\right)=c \Delta y_{k}$

FOR A CONSTANT FUNCTION ALL DIFFERENCES ARE ZERO, PROVE!

Let $\forall \boldsymbol{k} ; \boldsymbol{c}=\boldsymbol{y}$ then for all ' k '
$\Delta y_{k}=y_{k+1}-y_{k}=\boldsymbol{c}-\boldsymbol{c}=\mathbf{0}$ Where $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{c}$ is a constant function.
REMEMBER: The fundamental idea behind finite difference methods is the replace derivatives in the differential equation by discrete approximations, and evaluate on a grid to develop a system of equations.

COLLOCATION : Like the finite difference methods, the idea behind the collocation is to reduce the boundary value problem to a set of solvable algebraic equations.

However, instead of discretizing the differential equation by replacing derivative with finite differences, the solution is given a functional from whose parameters are fit by the method.

CRITERION OF APPROXIMATION: Some methods are as follows
i. collocation
ii. Osculation
iii. Least
square

FORWARD DIFFERENCE OPERATOR ' Δ ' (DELTA)

We define forward difference operator as $\quad \Delta \boldsymbol{y}_{\boldsymbol{i}}=\boldsymbol{y}_{\boldsymbol{i + 1}}-\boldsymbol{y}_{\boldsymbol{i}} \quad \boldsymbol{i}=\mathbf{1}, \mathbf{2}, \ldots \boldsymbol{n}-\mathbf{1}$ Where $\mathrm{y}=\mathrm{f}(\mathrm{x}) \quad(O R) \quad \Delta \mathbf{y}_{\mathrm{x}}=\mathbf{y}_{\mathrm{x}+\mathrm{h}}-\mathbf{y}_{\mathrm{x}}$
For first order: Given function $y=f(x)$ and a value of argument ' x ' as $x=a, a+h . \ldots . . a+n h$ etc. Where ' h ' is the step size (increment) first order Forward Difference Operator is

$$
\Delta f(a)=f(a+h)-f(a) \quad \text { OR } \quad \Delta y_{i}=y_{i+1}-y_{i} \quad \forall i=1,2,3 \ldots n-1
$$

For Second Order

Let $\quad \Delta^{2} \boldsymbol{y}_{0}=\Delta\left(\Delta y_{0}\right)=\Delta\left(y_{1}-y_{0}\right)=\Delta y_{1}-\Delta y_{0}=\left(y_{2}-y_{1}\right)-\left(\boldsymbol{y}_{1}-y_{0}\right)$

$$
=y_{2}-2 y_{1}+y_{0}
$$

For Third Order

$$
\begin{aligned}
\Delta^{3} y_{0}=\Delta & \left(\Delta^{2} y_{0}\right)=\Delta\left(\boldsymbol{y}_{2}-2 \boldsymbol{y}_{1}+y_{0}\right)=\Delta y_{2}-2 \Delta y_{1}+\Delta y_{0} \\
& =\left(y_{3}-\boldsymbol{y}_{2}\right)-2\left(\boldsymbol{y}_{2}-\boldsymbol{y}_{1}\right)+\left(\boldsymbol{y}_{1}-\boldsymbol{y}_{0}\right)=\boldsymbol{y}_{3}-3 \boldsymbol{y}_{2}+3 \boldsymbol{y}_{1}-\boldsymbol{y}_{0}
\end{aligned}
$$

$\Rightarrow \Delta y_{0}, \Delta^{2} \mathbf{y}_{0}, \Delta^{3} y_{0}$ are called leading differences
In General: $\quad \Delta^{n} y_{0}=y_{n}-{ }_{1}^{n} C y_{n-1}+{ }_{2}^{n} C y_{n-2}+\cdots+(-1)^{n} y_{n}$
Remark: $\quad{ }_{r}^{n} C=\frac{\mathrm{n}!}{\mathrm{r}!(\mathrm{n}-\mathrm{r})!} \quad$ and $\quad{ }_{0}^{n} C={ }_{n}^{n} C=1 \quad$ and $\quad{ }_{1}^{n} C={ }_{n-1}^{n} C=n$
QUESTION: Express $\Delta^{2} \boldsymbol{y}_{1}$ and $\Delta^{4} \boldsymbol{y}_{0}$ in terms of the value of function y.
SOLUTION
$(I) \Longrightarrow \quad \Delta^{2} y_{1}=\Delta y_{2}-\Delta y_{1}=\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right)=y_{3}-2 y_{2}+y_{1}$
$(I I) \Rightarrow \quad \Delta^{4} y_{0}=\Delta^{3} y_{1}-\Delta^{3} y_{0}=\Delta^{2} y_{2}-\Delta^{2} y_{1}-\left(\Delta^{2} y_{1}-\Delta^{2} y_{0}\right)$

$$
=\Delta y_{3}-\Delta y_{2}-\left(\Delta y_{2}-\Delta y_{1}\right)-\left(\Delta y_{2}-\Delta y_{1}\right)+\left(\Delta y_{1}-\Delta y_{0}\right)=y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}
$$

QUESTION: Compute the missing values of $\boldsymbol{y}_{\boldsymbol{n}}$ and $\Delta \boldsymbol{y}_{\boldsymbol{n}}$ in the following table.

$\boldsymbol{y}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\mathbf{0}}$	$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{2}}$	$\boldsymbol{y}_{3}=6$	$\boldsymbol{y}_{\mathbf{4}}$	\boldsymbol{y}_{5}	$\boldsymbol{y}_{\mathbf{6}}$
$\Delta \boldsymbol{y}_{\boldsymbol{n}}$	$\Delta \boldsymbol{y}_{\mathbf{0}}$	$\Delta \boldsymbol{y}_{\mathbf{1}}$	$\Delta \boldsymbol{y}_{\mathbf{2}}=5$	$\Delta \boldsymbol{y}_{\mathbf{3}}$	$\Delta \boldsymbol{y}_{\mathbf{4}}$	$\Delta \boldsymbol{y}_{5}$	
$\Delta^{2} \boldsymbol{y}_{\boldsymbol{n}}$	$\Delta^{2} \boldsymbol{y}_{\mathbf{0}}=1$	$\Delta^{2} \boldsymbol{y}_{\mathbf{1}}=4$	$\Delta^{2} \boldsymbol{y}_{\mathbf{2}}=13$	$\Delta^{2} \boldsymbol{y}_{\mathbf{3}}=18$	$\Delta^{2} \boldsymbol{y}_{\mathbf{4}}=24$		

SOLUTION

$$
\begin{align*}
& \Delta^{2} y_{0}=1 \quad \Rightarrow \Delta y_{1}-\Delta y_{0}=1 \tag{1}\\
& \Delta^{2} y_{1}=4 \quad \Rightarrow \Delta y_{2}-\Delta y_{1}=4 \tag{2}\\
& \Delta^{2} y_{2}=13 \quad \Rightarrow \Delta y_{3}-\Delta y_{2}=13 \tag{3}\\
& \Delta^{2} y_{3}=18 \quad \Rightarrow \Delta y_{4}-\Delta y_{3}=18 \tag{4}\\
& \Delta^{2} y_{4}=24 \quad \Rightarrow \Delta y_{5}-\Delta y_{4}=24 \\
& (2) \Rightarrow \Delta y_{2}-\Delta y_{1}=4 \text { and } \Delta y_{2}=5 \Rightarrow 5-\Delta y_{1}=4 \Rightarrow \Delta y_{1}=1 \\
& (1) \Rightarrow \Delta y_{1}-\Delta y_{0}=1 \Rightarrow 1-\Delta y_{0}=1 \Rightarrow \Delta y_{0}=0 \\
& (3) \Rightarrow \quad \Delta y_{3}-\Delta y_{2}=13 \text { And } \quad \Delta y_{2}=5 \Rightarrow \Delta y_{3}-5=13 \Rightarrow \Delta y_{3}=18 \\
& \text { (4) } \Rightarrow \Delta y_{4}-\Delta y_{3}=18 \Rightarrow \Delta y_{4}-18=18 \Rightarrow \Delta y_{4}=36 \\
& \text { (5) } \Rightarrow \Delta y_{5}-\Delta y_{4}-=18 \Rightarrow \Delta y_{5}-36=24 \Longrightarrow \Delta y_{5}=60
\end{align*}
$$

Now since we know that
$\Delta y_{0}=y_{1}-y_{0}$
$\Delta y_{3}=y_{4}-y_{3}$
$\Delta y_{1}=y_{2}-y_{1}$
$\Delta y_{4}=y_{5}-y_{4}$

$$
\begin{equation*}
\Delta y_{5}=y_{6}-y_{5} \tag{7}
\end{equation*}
$$

$\Delta y_{2}=y_{3}-y_{2}$

Since By table $y_{3}=6$ and $\Delta y_{2}=5$
(8) $\Rightarrow 5=6-y_{2} \Rightarrow y_{2}=1$ and (7) $\Rightarrow \Delta y_{1}=y_{2}-y_{1} \Rightarrow 1=1-y_{1} \Rightarrow y_{1}=0$
(6) $\Rightarrow \Delta y_{0}=y_{1}-y_{0} \Rightarrow 0=0-y_{0} \Rightarrow y_{0}=0$
$(9) \Rightarrow \Delta y_{3}=y_{4}-y_{3} \Rightarrow 18=y_{4}-6 \Rightarrow y_{4}=24$
$(10) \Rightarrow \Delta y_{4}=y_{5}-y_{4} \Rightarrow 36=y_{5}-24 \Rightarrow y_{5}=60$
$(11) \Rightarrow \Delta y_{5}=y_{6}-y_{5} \Rightarrow 60=y_{6}-60 \quad \Rightarrow y_{6}=120$
QUESTION : Show that the value of ' y_{n} ' can be expressed in terms of the leading value' $\boldsymbol{y}_{\mathbf{0}}$ 'and the Binomial leading differences $\Delta \boldsymbol{y}_{0}, \Delta^{2} \boldsymbol{y}_{0} \ldots . . \Delta^{n} \boldsymbol{y}_{\mathbf{0}}$

SOLUTION

(1) $\ldots \ldots \ldots \ldots \ldots \cdot\left\{\begin{array}{c}\Delta y_{0}=y_{1}-y_{0} \quad \text { OR } \\ \Delta y_{1}=y_{0}+\Delta y_{0} \\ \Delta y_{1}=y_{2}-y_{1} \\ \text { OR }\end{array} y_{2}=y_{1}+\Delta y_{1}\right.$.

Similarly

$$
\ldots \ldots \ldots \ldots \ldots\left\{\begin{array}{c}
\Delta^{2} y_{0}=\Delta\left(\Delta y_{0}\right)=\Delta y_{1}-\Delta y_{0} \text { OR } \quad \Delta y_{1}=\Delta y_{0}+\Delta^{2} y_{0} \tag{2}\\
\Delta^{2} y_{1}=\Delta\left(\Delta y_{1}\right)=\Delta y_{2}-\Delta y_{1} \text { OR } \quad \Delta y_{2}=\Delta y_{1}+\Delta^{2} y_{1} \\
\text { and so on } \ldots \ldots \ldots \ldots
\end{array}\right.
$$

Similarly

$$
\text { 3) } \ldots \ldots \ldots \ldots \ldots .\left\{\begin{array}{c}
\Delta^{3} y_{0}=\Delta^{2} y_{1}-\Delta^{2} y_{0} \text { OR } \quad \Delta^{2} \Delta y_{1}=\Delta^{2} y_{0}+\Delta^{3} y_{0} \tag{3}\\
\Delta^{3} y_{1}=\Delta^{2} y_{2}-\Delta^{2} y_{1} \text { OR } \quad \Delta^{2} y_{2}=\Delta^{2} y_{0}+\Delta^{3} y_{0} \\
\text { and so on } \ldots \ldots \ldots \ldots
\end{array}\right.
$$

Also from (2) and (3) we can write Δy_{2} as

$$
\begin{equation*}
\Delta y_{2}=\left(\Delta y_{0}+\Delta^{2} y_{0}\right)+\left(\Delta^{2} y_{0}+\Delta^{3} y_{0}\right)=\Delta y_{0}+2 \Delta^{2} y_{0}+\Delta^{3} y_{0} \tag{4}
\end{equation*}
$$

From (1) and (4) we can write y_{3} as

$$
\begin{gathered}
y_{3}=y_{2}+\Delta y_{2}=\left(y_{1}+\Delta y_{1}\right)+\left(\Delta y_{1}+\Delta^{2} y_{1}\right) \\
=\left(y_{0}+\Delta y_{0}\right)+2\left(\Delta y_{0}+\Delta^{2} y_{0}\right)+\left(\Delta^{2} y_{0}+\Delta^{3} y_{0}\right) \\
=y_{0}+3 \Delta y_{0}+3 \Delta^{2} y_{0}+\Delta^{3} y_{0}=(1+\Delta)^{3} y_{0}
\end{gathered}
$$

Similarly, we can symbolically write
$y_{1}=(1+\Delta) y_{0}, y_{2}=(1+\Delta)^{2} y_{0}, y_{3}=(1+\Delta)^{3} y_{0}$ In general $y_{n}=(1+\Delta)^{n} y_{0}$
Hence

$$
y_{n}=y_{0}+c_{1}^{n} \Delta y_{0}+c_{2}^{n} \Delta^{2} y_{0}+----+c_{n}^{n} \Delta^{n} y_{0}=\Sigma_{i=o}^{n} C_{i}^{n} \Delta^{i} y_{0}
$$

BACKWARD DIFFERENCE OPERATOR " ∇ " (NEBLA)

We Define Backward Difference Operator as

$$
\nabla \mathrm{y}_{\mathrm{n}}=y_{n}-y_{n-1} \quad \forall n=1,2, \ldots \ldots i \quad(\mathrm{OR}) \quad \nabla f(x)=f(x)-f(x-h)
$$

(OR)

$$
\nabla y_{x}=y_{x}-y_{x-h}
$$

QUESTION: Show that any value of ' y ' can be expressed in terms of ' $\boldsymbol{y}_{\boldsymbol{n}}{ }^{\prime}$ and its backward differences.

SOLUTION: Since $y_{n-1}=y_{n}-\nabla y_{n}$ And $\quad y_{n-2}=y_{n-1}-\nabla y_{n-1}$
Also $\nabla y_{n-1}=\nabla y_{n}-\nabla^{2} y_{n}$

Thus

$$
\nabla y_{n-1}=y_{n-1}-y_{n-2} \quad(\text { Rearranging Above })
$$

(1) $\Rightarrow y_{n-2}=y_{n-1}-\nabla y_{n}+\Delta^{2} y_{n}=y_{n}-\nabla y_{n}-\nabla y_{n}+\nabla^{2} y_{n}$

$$
y_{n-2}=y_{n}-2 \nabla y_{n}+\Delta^{2} y_{n}=\left(1-2 \nabla+\nabla^{2}\right) y_{n}
$$

Similarly We Can Show That $\quad y_{n-3}=y_{n}-3 \nabla y_{n}+3 \nabla^{2} y_{n}-\nabla^{3} y_{n}$
Symbolically above results can be written as $y_{n-1}=(1-\nabla) y_{n}, y_{n-2}=(1-\nabla)^{2} y_{n} \ldots \ldots \ldots$
In General $\quad y_{n-r}=(1-\nabla)^{r}$
i.e. $\quad y_{n-r}=y_{n}-{ }_{1}^{r} C \nabla y_{n}+{ }_{2}^{r} C \nabla^{2} y_{n}-\ldots \ldots+(-1)^{r} \nabla^{r} y_{n}$

SHIFT OPERATOR "E": Shift Operator defined as for $\quad y=f(x)$
$E^{n} y_{i}=y_{i+n} \quad \forall i=1,2, \ldots \ldots, n=1,2,3, \ldots \ldots$
OR $\quad E^{n} f(x)=f(x+n h) \quad$ OR $\quad E^{n} y_{x}=y_{x+n h}$

" δ " CENTRAL DIFFERENT OPERATOR (DELTA INLOWER CASE)

Central Different Operator for $\mathrm{y}=\mathrm{f}(\mathrm{x})$ defined as
$\delta y_{i}=y_{i+\frac{1}{2}}-y_{i-\frac{1}{2}} \quad \forall i=1,2, \ldots . n$
(OR) $\delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right) \quad(\mathrm{OR}) \quad \delta y_{x}=y_{x+\frac{h}{2}}-y_{x-\frac{h}{2}}$

AVERAGE OPERATOR " μ "

For $\mathrm{y}=\mathrm{f}(\mathrm{x})$ Differential Operator defined as
$\mu y_{i}=\frac{1}{2}\left[y_{i+\frac{1}{2}}+y_{i-\frac{1}{2}}\right] \quad \forall i=1,2, \ldots \ldots \ldots n$
(OR) $\quad \mu f(x)=\frac{1}{2}\left[f\left(x+\frac{\mathrm{h}}{2}\right)+f\left(x-\frac{\mathrm{h}}{2}\right)\right] \quad$ (OR) $\quad \mu y_{x}=\frac{1}{2}\left[y_{x+\frac{h}{2}}+y_{x-\frac{h}{2}}\right]$

DIFFERENTIAL OPERATOR "D": For $y=f(x)$ Differential Operator defined as

$$
D^{n} f(x)=\frac{d^{n}}{d x^{n}} f(x) \quad \forall n
$$

SOME USEFUL RELATIONS

From the Definition of " Δ " and "E" we have

$$
\Delta y_{x}=y_{x+h}-y_{x}=E y_{x}-y_{x}=(E-1) y_{x} \quad \Rightarrow \quad \Delta=\boldsymbol{E}-\mathbf{1}
$$

Now by definitions of ∇ and E^{-1} we have

$$
\nabla y_{x}=y_{x}-y_{x-h}=y_{x}-E^{-1} y_{x}=\left(1-E^{-1}\right) y_{x} \quad \Rightarrow \quad \boldsymbol{\nabla}=\mathbf{1}-\boldsymbol{E}^{-\mathbf{1}}=\frac{\boldsymbol{E}-\mathbf{1}}{\boldsymbol{E}}
$$

The definition of Operators ' δ 'and ' E ' gives

$$
\delta y_{x}=y_{x+\frac{h}{2}}-y_{x-\frac{h}{2}}=E^{\frac{1}{2}} y_{x}-E^{\frac{-1}{2}} y_{x}=\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right) y_{x} \quad \Rightarrow \boldsymbol{\delta}=\boldsymbol{E}^{\frac{1}{2}}-\boldsymbol{E}^{\frac{-1}{2}}
$$

The definition of ' μ ' and ' E ' Yields
$\mu y_{x}=\frac{1}{2}\left[y_{x+\frac{h}{2}}+y_{x-\frac{h}{2}}\right]=\frac{1}{2}\left[E^{\frac{1}{2}}+E^{\frac{-1}{2}}\right] y_{x} \quad \Rightarrow \quad \boldsymbol{\mu}=\frac{\mathbf{1}}{2}\left(\boldsymbol{E}^{\frac{1}{2}}+\boldsymbol{E}^{\frac{-\mathbf{1}}{2}}\right)$
Now Relation between ' D ' and ' E ' is as follows
Since $E y_{x}=y_{x+h}=f(x+h)$
Using Taylor series expansion, we have
$E y_{x}=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\cdots \ldots \ldots \ldots=f(x)+h D f(x)+\frac{h^{2}}{2!} D^{2} f(x)+\cdots \ldots$.
$E y_{x}=\left[1+\frac{h D}{1!}+\frac{h^{2} D^{2}}{2!}+\cdots\right.$.
$\boldsymbol{E} \boldsymbol{y}_{\boldsymbol{x}}=\boldsymbol{e}^{\boldsymbol{h} \boldsymbol{D}} \boldsymbol{y}_{\boldsymbol{x}} \quad \therefore e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \ldots \ldots \ldots$
Taking 'Log' on both sides we get
$\boldsymbol{\operatorname { L o g }} \boldsymbol{E}=\boldsymbol{h} \boldsymbol{D}$

Hence, all the operators are expressed in terms of ' E '

PROVE THAT EV $=\Delta=\delta E^{\frac{1}{2}}$
$E \nabla=E\left(1-E^{-1}\right) \quad \therefore \nabla=1-E^{-1} \Rightarrow E \nabla=E-E E^{-1}=E-1=\Delta$
And $\delta E^{1 / 2}=\left(E^{\frac{1}{2}}-E^{-1 / 2}\right) E^{1 / 2} \quad \because \delta=E^{1 / 2}-E^{-1 / 2} \Rightarrow \delta E^{1 / 2}=E-1=\Delta$
PROVE THAT $\delta=2 \sinh \left(\frac{h D}{2}\right)$
Since $\delta=\left(E^{1 / 2}-E^{-1 / 2}\right) \quad \because \log E=h D \Rightarrow E=e^{h D}$

$$
=2\left(\frac{E^{1 / 2}-E^{-1 / 2}}{2}\right)=2\left(\frac{e^{h D / 2}-e^{-h D / 2}}{2}\right)=2 \operatorname{Sinh}\left(\frac{h D}{2}\right)
$$

PROVETHAT $\mu=2 \cosh \left(\frac{h D}{2}\right)$
Since $\quad \mu=\frac{1}{2}\left[E^{1 / 2}+E^{-1 / 2}\right]=\frac{1}{2}\left[e^{\frac{h D}{2}}+e^{\frac{-h D}{2}}\right]=\cosh \left(\frac{h D}{2}\right)$
Show that $\delta, \mu, E, \Delta, \nabla$ Commute

$$
\begin{aligned}
& \delta E f(x)=\delta f(x+h)=f(x+h+h)-f(x+h-h)=f(x+2 h)-f(x) \\
& \quad E \delta f(x)=E[f(x+h)-f(x-h)]=E f(x+h)-E f(x-h) \\
& =f(x+h+h)-f(x-h+x)=f(x+2 h)-f(x) \\
& \Rightarrow \\
& \delta E f(x)=E \delta f(x) \quad \text { Commute }
\end{aligned}
$$

PROVE THAT $\quad \Delta \nabla=\nabla \Delta=\Delta-\nabla$

$$
\begin{aligned}
& \Delta \nabla\left(y_{x}\right)=\Delta\left(y_{x}-y_{x-h}\right)=\Delta y_{x}-\Delta y_{x-h} \\
= & \left(y_{x+h}-y_{x}\right)-\left(y_{x-h+h}-y_{x-h}\right)=y_{x+h}-y_{x}-y_{x}-y_{x-h}=y_{x+h}-y_{x}-\left(y_{x}+y_{x-h}\right) \\
= & \Delta y_{x}-\nabla y_{x}=\Delta-\nabla
\end{aligned}
$$

$$
\text { And } \nabla \Delta\left(y_{x}\right)=\nabla\left(y_{x+h}-y_{x}\right)=\nabla y_{x+h}-\nabla y_{x}=\left(y_{x+h}-y_{x+h-h}\right)-\left(y_{x}-y_{x-h}\right)
$$

$$
=y_{x+h}-y_{x}-y_{x}+y_{x-h}=\Delta-\nabla \Rightarrow \Delta y_{x}-\nabla y_{x}=\Delta-\nabla
$$

PROVE THAT $\quad \Delta \nabla=\nabla \Delta$

$$
\begin{aligned}
& \Delta \nabla\left(y_{x}\right)=\Delta\left(y_{x}-y_{x-h}\right)=\Delta y_{x}-\Delta y_{x-h} \\
= & \left(y_{x+h}-y_{x}\right)-\left(y_{x-h+h}-y_{x-h}\right)=y_{x+h}-y_{x}-y_{x}-y_{x-h} \\
= & y_{x+h}-2 y_{x}+y_{x-h}
\end{aligned}
$$

And $\quad \nabla \Delta\left(y_{x}\right)=\nabla\left(y_{x+h}-y_{x}\right)=\nabla y_{x+h}-\nabla y_{x}=\left(y_{x+h}-y_{x+h-h}\right)-\left(y_{x}-y_{x-h}\right)$
$=y_{x+h}-y_{x}-y_{x}+y_{x-h}=y_{x+h}-2 y_{x}+y_{x-h} \Rightarrow \Delta \nabla\left(y_{x}\right)=\nabla \Delta\left(y_{x}\right)$ Commute

PROVE THAT $\quad \delta^{2}=\Delta-\nabla$

$$
\begin{aligned}
& \delta^{2}\left(y_{x}\right)=\left(E^{1 / 2}-E^{-1 / 2}\right)^{2}\left(y_{x}\right)=\left(E+E^{-1}-2\right)\left(y_{x}\right)=E\left(y_{x}\right)+E^{-1}\left(y_{x}\right)-2\left(y_{x}\right) \\
& \delta^{2}\left(y_{x}\right)=y_{x+h}+y_{x-h}-2\left(y_{x}\right)=\left(y_{x+h}-y_{x}\right)-\left(y_{x}-y_{x-h}\right)=\Delta-\nabla
\end{aligned}
$$

PROVE THAT $\quad \Delta+\nabla=\frac{\Delta}{\nabla}+\frac{\nabla}{\Delta}$
R.H.S $=\frac{\Delta}{\nabla}+\frac{\nabla}{\Delta}=\frac{\Delta^{2}-\nabla^{2}}{\nabla \Delta}=\frac{(\Delta-\nabla)(\Delta+\nabla)}{\nabla \Delta}=\frac{\nabla \Delta(\Delta+\nabla)}{\nabla \Delta}=(\Delta+\nabla)=$ L.H.S

PROVE THAT $h D=\log (1+\Delta)=-\log (1-\nabla)=\sinh ^{-1}(\mu \delta)$
Since $h D=\log E=\log (1+\Delta) \quad \because E=1+\Delta$

$$
=-\log E^{-1}=-\log (1-\nabla)
$$

Also $\quad \mu \delta=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)=\frac{1}{2}\left(E-E^{-1}\right)$
$=\frac{1}{2}\left(e^{h D}-e^{-h D}\right) \quad \because E=e^{h D}, E^{-1}=e^{-h D}$
$\mu \delta=\sinh (h D) \quad \Rightarrow h D=\sin ^{-1}(\mu \delta)$
PROVE THAT $\quad E=(1-\nabla)^{-1}$
Since $\quad \nabla=1-E^{-1} \quad$ therefore
R.H.S. $=\left[1-\left(1-E^{-1}\right)\right]^{-1}=\left[1-1+E^{-1}\right]^{-1}=\left[E^{-1}\right]^{-1}=E=$ L.H.S

PROVE THAT $1+\delta^{2} \mu^{2}=\left(1+\frac{\delta^{2}}{2}\right)^{2}$
Since $\mu \delta=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)=\frac{1}{2}\left(E-E^{-1}\right)$
$\mu^{2} \delta^{2}=\frac{1}{4}\left(E-E^{-1}\right)^{2} \quad \because$ Squqring both sides
$\mu^{2} \delta^{2}=\frac{1}{4}\left(E^{2}+E^{-2}-2\right)$
$1+\mu^{2} \delta^{2}=\frac{1}{4}\left(E^{2}+E^{-2}-2\right)+1 \quad \because$ Adding '1' on both sides
$1+\mu^{2} \delta^{2}=\frac{E^{2}+E^{-2}-2+4}{4}=\frac{E^{2}+E^{-2}+2}{4}=\frac{\left(E+E^{-1}\right)^{2}}{4}$
$1+\mu^{2} \delta^{2}=\left(\frac{E+E^{-1}}{2}\right)^{2}$
Also $\quad \delta=\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)$ then $\delta^{2}=\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2} \quad \because$ Squaring Both sides. $\frac{\delta^{2}}{2}=\frac{1}{2}\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2} \because$ deviding 2 on Both sides
$1+\frac{\delta^{2}}{2}=\frac{E+E^{-1}-2}{2}+1 \because$ Adding 1 on Both sides
$1+\frac{\delta^{2}}{2}=\frac{E+E^{-1}-2+2}{2}=\frac{1}{2}\left(E+E^{-1}\right)$
Combining (i) and (ii) we get the result.
PROVE THAT $\quad E^{\frac{1}{2}}=\mu+\frac{\delta}{2}$
since $\quad \mu+\frac{\delta}{2}=\left(\frac{E^{\frac{1}{2}}+E^{\frac{-1}{2}}}{2}\right)+\frac{1}{2}\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)=\frac{1}{2}\left[E^{\frac{1}{2}}+E^{\frac{-1}{2}}+E^{\frac{1}{2}}-E^{\frac{-1}{2}}=\frac{1}{2}\left(2 E^{\frac{1}{2}}\right)=E^{\frac{1}{2}}\right.$
PROVETHAT $\quad \Delta=\frac{\delta^{2}}{2}+\delta . \sqrt{1+\frac{\delta^{2}}{4}}$
since $\delta=E^{\frac{1}{2}}-E^{\frac{-1}{2}} \quad \Rightarrow \delta^{2}=\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2} \because$ Squaring
$\frac{\delta^{2}}{2}=\frac{1}{2}\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2} \because$ deviding by (2)
Also $\frac{\delta^{2}}{4}=\frac{1}{4}\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2} \Rightarrow 1+\frac{\delta^{2}}{4}=1+\frac{1}{4}\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2} \quad \therefore$ adding one on side
$\sqrt{1+\frac{\delta^{2}}{4}}=\sqrt{\left(\frac{4+E+E^{-1}-2}{4}\right)^{2}} \quad \because$ taking squre root on both sides
$\sqrt{1+\frac{\delta^{2}}{4}}=\sqrt{\left(\frac{E^{1 / 2}+E^{-1 / 2}}{4}\right)^{2}} \Rightarrow \sqrt{1+\frac{\delta^{2}}{4}}=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{\frac{1}{2}}\right)$
Now $\delta . \sqrt{1+\frac{\delta^{2}}{4}}=\delta \frac{\left(E^{\frac{1}{2}}+E^{\frac{-1}{2}}\right)}{2}=\frac{\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)\left(E^{\frac{1}{2}}+E^{\frac{-1}{2}}\right)}{2}=\frac{E-E^{-1}}{2}$..
$(i)+(i i) \Rightarrow \frac{\delta^{2}}{2}+\delta . \sqrt{1+\frac{\delta^{2}}{4}}=\frac{\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)^{2}}{2}+\frac{\left(E-E^{-1}\right)}{2}=\frac{E+E^{-1}-2+E-E^{-1}}{2}=\frac{2 E-2}{2}=\frac{2(E-1)}{2}$
$=E-1=\Delta$ forward difference operator

PROVE THAT $\frac{\mu}{\sqrt{1+\frac{\delta^{2}}{4}}}=1$
$\Rightarrow \frac{\mu}{\sqrt{1+\frac{\delta^{2}}{4}}}=\mu\left[1+\frac{\delta^{2}}{4}\right]^{-\frac{1}{2}}=\mu\left[1+\frac{E^{\frac{1}{2}}-E^{-\frac{1}{2}}}{4}\right]^{-\frac{1}{2}}=\mu\left[\frac{4+\left(E^{\frac{1}{2}}\right)^{2}+\left(E^{-\frac{1}{2}}\right)^{2}-2}{4}\right]=\mu\left[\left(\frac{E^{\frac{1}{2}}+E^{-\frac{1}{2}}}{2}\right)^{2}\right]^{-\frac{1}{2}}$
$\Rightarrow \mu \cdot \mu^{-1}=1$

PROVETHAT $\quad \boldsymbol{\mu} \delta=\frac{\Delta E^{-1}}{2}+\frac{\Delta}{2}$
$\mu \delta=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{\frac{-1}{2}}\right)\left(E^{\frac{1}{2}}-E^{\frac{-1}{2}}\right)=\frac{1}{2}\left(E-E^{-1}\right)$
Now since $\quad \Delta=E-1 \quad$ therefore $E=1+\Delta$
$\mu \delta=\frac{1}{2}\left[1+\Delta-E^{-1}\right]=\frac{\Delta}{2}+\frac{1}{2}\left(1-E^{-1}\right)=\frac{\Delta}{2}+\frac{1}{2}\left(\frac{E-1}{E}\right)=\frac{\Delta}{2}+\frac{\Delta}{2 E}=\frac{\Delta E^{-1}}{2}+\frac{\Delta}{2} \quad \because E-1=\Delta$

PROVE THAT $\mu \sigma=\frac{\Delta+\nabla}{2}$
$\mu \sigma=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{\frac{1}{2}}\right)\left(E^{\frac{1}{2}}-E^{\frac{1}{2}}\right)=\frac{1}{2}\left(E-E^{-1}\right) \Rightarrow$ Since $\Delta=E-1$ and $\nabla=1-E^{-1}=\frac{E-1}{E}$ therefore $\quad \mu \sigma=\frac{1}{2}(1+\Delta-1+\nabla)=\frac{\Delta+\nabla}{2}$

Show that operators " μ " and " E " commute

From the definition of " μ " and " E " $\Rightarrow \mu E y_{0}^{\prime}=\mu y_{1}=\frac{1}{2}\left(y_{\frac{3}{2}}+y_{\frac{1}{2}}\right)$
While $E \mu y_{0}=\mu y_{1}=\frac{1}{2} E\left(y_{\frac{1}{2}}+y_{\frac{-1}{2}}\right)=\frac{1}{2}\left(y_{\frac{3}{2}}+y_{\frac{1}{2}}\right) \Rightarrow \mu E=E \mu$
$\Rightarrow " \mu$ " and " E " commute

Questions:-
Show that forward difference operator is linear operator:
Sol $0-$
d.

$$
\begin{aligned}
\Delta(c f(x)) & =\Delta(c f(x)) \\
& =c[c f(x+b)-c f(x)] \\
& =c \Delta f(x)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\Delta[f(x)+g(x)] & =[f(x+b-g(x)]-[f(x)-g(x) \\
\Delta[f(x)+g(x)] & =f(x+h)=f(x)+g(x) \\
& =\Delta f(x)+\Delta g(x)
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\Delta[c f(x)+g(x)]=\Delta[c f(x)]+\Delta g(x) \\
-c \Delta f(x)+\Delta g(x)
\end{gathered}
$$

Hence,. Δ is. a linear operator.
Question t-
Show that backivard diff operator in linear operator
Sol:-
(i) $\nabla(c f(x))=[c f(x)-c f(x-h)]$
(iii)

$$
=c[f(x)-f(x-h)]=c \nabla f(x)
$$

$$
\begin{aligned}
\nabla[f(x)+g(x)] & =f(x)-f(x-h)+g(x)-g(x-h) \\
& =\nabla f(x)+\nabla g(x)
\end{aligned}
$$

There tore, $\nabla[c f(x)+g(x)]=\nabla[c f(x)]+\nabla g(x)$
Hence, ∇ is a linear operator.
 formenerd then shews th et its. min order $(n+1)$ order difference is constant and

- Sols

$$
\text { let } y_{x}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

M.Sc. Math Part 11

Polynomial of degree $n-n=0$, which
\therefore in a constant \quad a , which

$$
\begin{aligned}
\Delta^{n} y_{x} & =a_{n} n \frac{1}{r} h^{n} \\
\Delta^{n+1} y_{x} & =a_{n} n h^{n}-a_{n} n_{1} n^{n}
\end{aligned}
$$

EXTRAPOLATION

The method of computing the values of ' y ' for a given value of ' x ' lying outside the table of values of ' x ' is called Extrapolation.

REMEMBER THAT

RATE OF CONVERGENCE OF AN ITERATIVE METHOD: Suppose that the sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ converges to " r " then the sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ is said to converge to " r " with order of convergence "a" if there exist a positive constant " p " such that

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-r\right|}{\left|x_{n}-r\right|^{a}}=\lim _{n \rightarrow \infty} \frac{\epsilon_{n+1}}{\epsilon_{n}^{\alpha}}=p(\text { error constant })
$$

AITKIN'S EXTRAPOLATION (no need) : Since we have rate of convergence of an iterative method $\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-r\right|}{\left|x_{n}-r\right|^{a}}=\lim _{n \rightarrow \infty} \frac{\epsilon_{n+1}}{\epsilon_{n}^{\alpha}}=p$ (error constant)

Now suppose that $n>1$ then it approximately yields;

$$
x_{n}-r \approx p\left(x_{n-1}-r\right) \quad \text { also } \quad x_{n+1}-r \approx p\left(x_{n}-r\right)
$$

Dividing both we get $\frac{x_{n}-r}{x_{n+1}-r} \approx \frac{p\left(x_{n-1}-r\right)}{p\left(x_{n}-r\right)}$

$$
\begin{aligned}
& \Rightarrow \frac{x_{n}-r}{x_{n+1}-r} \approx \frac{\left(x_{n-1}-r\right)}{\left(x_{n}-r\right)} \Rightarrow\left(x_{n}-r\right)^{2} \approx\left(x_{n-1}-r\right)\left(x_{n+1}-r\right) \\
& \Rightarrow x_{n}^{2}+r^{2}-2 x_{n} r \approx x_{n+1} x_{n-1}-r\left(x_{n+1}+x_{n-1}\right)+r^{2} \\
& \Rightarrow x_{n}^{2}-x_{n+1} x_{n-1} \approx-r\left(x_{n+1}+x_{n-1}-2 x_{n}\right) \\
& \Rightarrow r \approx \frac{x_{n+1} x_{n-1}-x_{n}^{2}}{x_{n+1}+x_{n-1}-2 x_{n}}=x_{n-1}-\frac{\left(x_{n}-x_{n-1}\right)^{2}}{x_{n+1}+x_{n-1}-2 x_{n}} \Rightarrow x_{n}=x_{n-1}-\frac{\left(x_{n}-x_{n-1}\right)^{2}}{x_{n+1}+x_{n-1}-2 x_{n}} \\
& \boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}-\frac{\left(x_{n+1}-x_{n}\right)^{2}}{x_{n+2}+x_{n}-2 x_{n+1}}=\boldsymbol{x}_{n+2}-\frac{\left(x_{n+2}-x_{n+1}\right)^{2}}{x_{n+2}+x_{n}-2 x_{n+1}}=\boldsymbol{x}_{\boldsymbol{n}}-\frac{\left(\Delta x_{n}\right)^{2}}{\Delta^{2} x_{n}}
\end{aligned}
$$

NOTE: This method is used to accelerate convergence of sequence. i.e. sequence obtained from iterative method.

INTERPOLATION

For a given table of values $\left(\boldsymbol{x}_{\boldsymbol{k}}, \boldsymbol{y}_{\boldsymbol{k}}\right) \forall \boldsymbol{K}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots \ldots \boldsymbol{n}$. the process of estimating the values of " $\mathrm{y}=\mathrm{f}(\mathrm{x})$ " for any intermediate values of " $\mathrm{x}=\mathrm{g}(\mathrm{x})$ " is called "interpolation".

If $\mathrm{g}(\mathrm{x})$ is a Polynomial, Then the process is called "Polynomial" Interpolation.

ERROR OF APPROXIMATION

The deviation of $g(x)$ from $f(x)$ i.e. $|f(x)-g(x)|$ is called Error of Approximation.
REMARK: A function is said to interpolate a set of data points if it passes through those points.
INVERSE INTERPOLATION
Suppose $f \in C[a, b], f^{\prime}(x) \neq o$ on $[\mathrm{a}, \mathrm{b}]$ and f has non- zero ' p ' in $[\mathrm{a}, \mathrm{b}]$
Let " $x_{0}, x_{1} \ldots \ldots \ldots x_{n}$ " be ' $\mathrm{n}+1$ ' distinct numbers in $[\mathrm{a}, \mathrm{b}]$ with $f\left(x_{k}\right)=y_{k}$ for each $k=0,1,2 \ldots . n$.
To approximate ' p ' construct the interpolating polynomial of degree ' n ' on the nodes " $\mathrm{y}_{0}, \mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{n}}$ " for " f^{-1} "
Since " $\mathrm{y}_{\mathrm{k}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)$ " and $\mathrm{f}(\mathrm{p})=0$, it follows that $f^{-1}\left(\mathrm{y}_{\mathrm{k}}\right)=\mathrm{X}_{\mathrm{k}}$ and $\mathrm{p}=f^{-1}(0)$.
"Using iterated interpolation to approximate $f^{-1}(0)$ is called iterated Inverse interpolation"
OR for given the set of values of x and y, the process of finding the values of x for certain values of y is called inverse interpolation.

LINEAR INTERPOLATION FORMULA

$f(x)=p_{1}(x)=f_{0}+p\left(f_{1}-f_{0}\right)=f_{0}+p \Delta f_{0}$
Where $x=x_{0}+p h \quad \Rightarrow p=\frac{x-x_{0}}{h} \quad 0 \leq P \leq 1$

QUADRATIC INTERPOLATION FORMULA

$f(x)=p_{2}(x)=f_{0}+p \Delta f_{0}+\frac{P(P-1)}{2} \Delta^{2} f_{0}$
Where $x=x_{0}+p h \quad \Rightarrow p=\frac{x-x_{0}}{h} \quad 0 \leq P \leq 2$

ERRORS IN POLYNOMIAL INTERPOLATION

Given a function $\mathrm{f}(\mathrm{x})$ and $a \leq x \leq b$, a set of distinct points $x_{i} i=1,2, \ldots \ldots . n$ and $\mathrm{x}_{\mathrm{i}} \in[\mathrm{a}, \mathrm{b}]$
Let $P_{n}(x)$ be a polynomial of degree $\leq \mathrm{n}$ that interpolates $\mathrm{f}(\mathrm{x})$ at x_{i}

$$
\text { i.e. } \quad P_{n}\left(x_{i}\right)=f\left(x_{i}\right) ; i=1,2,3, \ldots \ldots \ldots . . n
$$

Then Error define as $" \in(x)=f(x)-P_{n}(x) "$

REMARK

Sometime when a function is given as a data of some experiments in the form of tabular values corresponding to the values of independent variable ' X ' then

1. Either we interpolate the data and obtain the function " $\mathrm{f}(\mathrm{x})$ " as a polynomial in ' x ' and then differentiate according to the usual calculus formulas.
2. Or we use Numerical Differentiation which is easier to perform in case of Tabular form of the data.

DISADVANTAGES OF POLYNOMIAL INTERPOLATION

- n-time differentiable
- big error in certain intervals (especially near the ends)
- No convergence result
- Heavy to compute for large " n "

EXISTENCE AND UNIQUENESS THEOREM FOR POLYNOMIAL INTERPOLATION

Given $\left(x_{i}, y_{i}\right)_{i=0}^{n}$ with Xi's distinct there exists one and only one Polynomial $P_{n}(x)$ of degree $\leq n$ such that $P_{n}\left(x_{i}\right)=y_{i} ; i=1,2, \ldots \ldots \ldots . n$

PROOF

Existence Ok from construction.
For Uniqueness:
Assume we have two polynomials $\mathrm{P}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ of degree $\leq \mathrm{n}$ both interpolate the data i.e.
$p\left(x_{i}\right)=y_{i}=q\left(x_{i}\right) ; i=1,2, \ldots \ldots \ldots n$
Now let $g(x)=P(x)-q(x)$ which will be a polynomial of degree $\leq \mathrm{n}$
Furthermore, we have $\quad g\left(x_{i}\right)=p\left(x_{i}\right)-q\left(x_{i}\right)=y_{i}-y_{i}=0 \quad ; i=0,1,2, \ldots \ldots \ldots n$
So $\mathrm{g}(\mathrm{x})$ has ' $\mathrm{n}+1$ ' Zeros. We must have $\mathrm{g}(\mathrm{x}) \equiv 0$. Therefor $\mathrm{p}(\mathrm{x}) \equiv \mathrm{g}(\mathrm{x})$.

REMEMBER:

Using Newton's Forward difference interpolation formula we find the n -degree polynomial ' $P_{n}{ }^{\prime}$ which approximate the function $f(x)$ in such a way that ' P_{n} ' and ' f ' agrees at ' $\mathrm{n}+1$ ' equally Spaced ' X ' Values. So that
$P_{n}\left(x_{0}\right)=f_{0}, P_{n}\left(x_{1}\right) \cdots \ldots \ldots \ldots \ldots, P_{n}\left(x_{n}\right)=f_{n}$
Where $f_{0}=f\left(x_{0}\right), f_{1}=f\left(x_{1}\right) \ldots \ldots \ldots \ldots f_{n}=f_{\left(x_{n}\right)} \quad$ Are the values of ' f ' in table.

INTERPOLATION BY ITERATION:

Given the $(\mathrm{n}+1)$ points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots \ldots,\left(x_{n}, y_{n}\right)$ where the values of x need not necessarily be equally spaced, then to find the value of ' $y=f(x)$ ' corresponding to any given value of ' x ' we proceed iteratively as follows;

Obtain a first approximation to ' $y=f(x)$ ' by considering the first two points only i.e.
$\Delta_{01}(x)=f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]=\frac{1}{x_{1}-x_{0}}\left|\begin{array}{lll}f_{0} & x_{0} & -x \\ f_{1} & x_{1} & -x\end{array}\right|$
$\Delta_{02}(x)=f_{1}+\left(x-x_{1}\right) f\left[x_{1}, x_{2}\right]=\frac{1}{x_{2}-x_{1}}\left|\begin{array}{lll}f_{1} & x_{1} & -x \\ f_{2} & x_{2} & -x\end{array}\right|$
$\Delta_{03}(x)=f_{2}+\left(x-x_{2}\right) f\left[x_{2}, x_{3}\right]=\frac{1}{x_{3}-x_{2}}\left|\begin{array}{lll}f_{2} & x_{2} & -x \\ f_{3} & x_{3} & -x\end{array}\right|$
And so on \qquad
Then obtain a first approximation to ' $y=f(x)$ ' by considering the first three points only i.e.
$\Delta_{012}(x)=\frac{1}{x_{2}-x_{1}}\left|\begin{array}{lll}\Delta_{01}(x) & x_{1} & -x \\ \Delta_{02}(x) & x_{2} & -x\end{array}\right|$ Similarly $\Delta_{013}(x), \Delta_{014}(x)$ And so on $\ldots \ldots \ldots \ldots \ldots$.
And at the nth stage of approximation we obtain;
$\Delta_{012 \ldots n}(x)=\frac{1}{x_{n}-x_{n-1}}\left|\begin{array}{ccc}\Delta_{012 \ldots(n-1)}(x) & x_{n-1} & -x \\ \Delta_{012 \ldots(n-2 n)}(x) & \partial x_{n} & -x\end{array}\right|$
Then using Table of Aitken's Scheme

QUESTION: Use Aitkin's iteration formula to find the value of $\boldsymbol{\operatorname { l o g }} \boldsymbol{1 0}_{\mathbf{1 0}}(\mathbf{3 0 1})$ as accurately as possible from the data

x	$:$	300	304	305	307
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	$:$	2.4771	2.4829	2.4843	2.4871

Solution:

X	$\mathrm{Y}=\mathrm{f}(\mathrm{x})$			
300	2.4771			
	\rightarrow	2.47855		
304	2.4829	\rightarrow	2.47858	
	\rightarrow	2.47854	\rightarrow	2.47860
305	2.4843	\longrightarrow	2.47857	
307	2.4871	2.47853		

Hence required solution is $\log _{10}(301)=2.47860$
QUESTION: Use Aitkin's iteration formula to find the value of $\boldsymbol{\operatorname { l o g }}(\mathbf{4 . 5})$ as accurately as possible from the data

x	$:$	4	4.2	4.4	4.6
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	$:$	0.60206	0.62325	0.64345	0.66276

And Table of Neville's Scheme

Inverse Interpolation

Given a set of values of x and y, the process of finding the value of x for a certain value of y is called inverse interpolation. When the values of x are at unequal intervals, the most obvious way of performing this process is by interchanging x and y in Lagrange's or Aitken's methods.

Example If $y_{1}=4, y_{3}=12, y_{4}=19$ and $y_{8}=7$, find x. Compare with the actual value.
Solution
Aitken's scheme (see Table 1) is

y	x		
4	1		
12	3	1.750	
19	4	1.600	

whereas Neville's scheme (see Table 2) gives

y	x		
4	1		
12	3	1.750	1.857
19	4	2.286	

In this examples both the schemes give the same result.

" δ " CENTRAL DIFFERENT OPERATOR (DELTA IN LOWER CASE)

Central Different Operator for $\mathrm{y}=\mathrm{f}(\mathrm{x})$ defined as
$\delta y_{i}=y_{i+\frac{1}{2}}-y_{i-\frac{1}{2}} \quad \forall i=1,2, \ldots . n$
(OR) $\quad \delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right) \quad$ (OR)

$$
\delta y_{x}=y_{x+\frac{h}{2}}-y_{x-\frac{h}{2}}
$$

TABLE

\begin{tabular}{|c|c|c|c|c|c|}
\hline X \& Y \& \& δY \& $\delta^{2} Y$ \& $\delta^{3} \boldsymbol{Y}$

\hline \multirow[t]{2}{*}{x_{0}} \& y_{0} \& \& \& \&

\hline \& \& \rightarrow \& $$
\delta y_{\frac{1}{2}}=y_{1}-y_{0}
$$ \& \&

\hline \multirow[t]{3}{*}{x_{1}

x_{2}} \& y_{1} \& \& \rightarrow \& \&

\hline \& \& \rightarrow \& \[
\delta y_{\frac{3}{2}}

\] \& \& \multirow[t]{2}{*}{\[

\delta^{3} y_{\frac{3}{2}}
\]}

\hline \& y_{2} \& \& \rightarrow \& \&

\hline \& \& \rightarrow \& $$
\delta y_{\frac{5}{2}}
$$ \& \&

\hline x_{3} \& y_{3} \& \& \& \&

\hline
\end{tabular}

CONSTRUCTION OF FORWARD DIFFERENCE TABLE (Also called Diagonal difference table)

QUESTION: Construct forward difference Table for the following value of ' X ' and ' Y '

X	0.1	0.3	0.5	0.7	0.9	1.1	1.3
Y	0.003	0.067	0.148	0.248	0.370	0.518	0.697

SOLUTION

X	y	$\Delta \boldsymbol{y}$	$\Delta^{2} \boldsymbol{y}$	$\Delta^{3} \mathbf{y}$	$\Delta^{4} \mathbf{y}$	$\Delta^{5} \mathbf{y}$	$\Delta^{6} \mathbf{y}$
0.1	0.003						
	\rightarrow	0.064					
0.3	0.067	\rightarrow	0.017				
	\rightarrow	0.081	\rightarrow	0.002			
0.5	0.148	\rightarrow	0.019	\rightarrow	0.001		
	\rightarrow	0.100	\rightarrow	0.003	\rightarrow	0	
0.7	0.248	\rightarrow	0.022	\rightarrow	0.001	\rightarrow	0
	\rightarrow	0.122	\rightarrow	0.004	\rightarrow	0	
0.9	0.370	\rightarrow	0.026	\rightarrow	0.001		
	\rightarrow	0.148	\rightarrow	0.005			
1.1	0.518	\rightarrow	0.031				

Example Construct the forward difference table for the data

$$
\begin{array}{rrrrr}
x:-2 & 0 & 2 & 4 \\
y=f(x): & 4 & 9 & 17 & 22
\end{array}
$$

The forward difference table is as follows:

x	$y=f(x)$	Δy	$\Delta^{2} y$	$\Delta^{2} y$
-2	4	$\Delta y_{0}=5$		
0	9	$\Delta y_{1}=8$	$\Delta^{2} y_{0}=3$	
2	17	$\Delta y_{2}=5$	$\Delta y_{1}=-3$	$\Delta^{3} y_{0}=-6$
4	22			

MUHAMMAD USMAN HAMID (0323-6032785)

BACKWARD DIFFERENCE OPERATOR " ∇ " (NEBLA)

We Define Backward Difference Operator as

$$
\nabla \mathrm{y}_{\mathrm{n}}=y_{n}-y_{n-1} \quad \forall n=1,2, \ldots \ldots i \quad(\mathrm{OR}) \quad \nabla f(x)=f(x)-f(x-h)
$$

(OR)

$$
\nabla y_{x}=y_{x}-y_{x-h}
$$

BACKWARD DIFFERENCE TABLE

\mathbf{X}	\mathbf{Y}	$\boldsymbol{\nabla} \mathbf{y}$	$\boldsymbol{\nabla}^{2} \boldsymbol{y}$	$\boldsymbol{\nabla}^{3} \boldsymbol{y}$
x_{0}	y_{0}			

$$
\rightarrow \quad \nabla y_{1}=y_{1}-y_{0}
$$

$x_{1} y_{1} \quad \rightarrow \nabla^{2} y_{2}$

$$
\rightarrow \quad \nabla y_{2}=y_{2}-y_{1} \quad \rightarrow \nabla^{3} y_{3}
$$

$$
x_{2} \quad y_{2} \quad \rightarrow \nabla^{2} y_{3}
$$

$$
\rightarrow \quad \nabla y_{3}=y_{3}-y_{2}
$$

$x_{3} \quad y_{3}$

NEWTON FORWARD DIFFERENCE INTERPOLATION FORMULA

Newton's Forward Difference Interpolation formula is

$$
\begin{aligned}
& f(x)=P_{n}(x) \\
& =f\left(x_{0}\right)+P \Delta f\left(x_{0}\right)+\frac{P(P-1)}{2!} \Delta^{2} f\left(x_{0}\right)+\cdots+\frac{P(P-1) \cdots(P-n+1)}{n!} \Delta^{n} f\left(x_{0}\right)
\end{aligned}
$$

Where $x=x_{0}+p h, \quad P=\frac{x-x_{0}}{h}$ And $0 \leq p \leq n$

DERIVATION:
Let $\quad y=f(x), \quad x_{0}=f\left(x_{0}\right)$ And $\quad x_{n}=x_{0}+n h \quad \Rightarrow x=x_{0}+p h$

$$
\begin{aligned}
f(x)= & f\left(x_{0}+p h\right)=E^{p} f\left(x_{0}\right)=(1+\Delta)^{p} f\left(x_{0}\right) \quad \therefore E=1+\Delta \\
& =\left[1+P \Delta+\frac{P(P-1)}{2!}+\cdots+\frac{P(P-1) \cdots(P-n+1)}{n!}\right] f\left(x_{0}\right) \\
& f(x)=f\left(x_{0}\right)+P \Delta f\left(x_{0}\right)+\cdots+\frac{P(P-1) \cdots P-n+1)}{n!} f\left(x_{0}\right)
\end{aligned}
$$

CONDITION FOR THIS METHOD

- Values of ' x ' must have equal distance i.e. equally spaced.
- Value on which we find the function check either it is near to start or end.
- If near to start, then use forward method.
- If near to end, then use backward method.

QUESTION: Evaluate $\boldsymbol{f}(\mathbf{1 5)}$ given the following table of values

X	$:$	10	20	30	40	50
$\mathrm{f}(\mathrm{x})$	$:$	46	66	81	93	101

SOLUTION: Here ' 15 ' nearest to starting point we use Newtown's Forward Difference Interpolation.
X
10

Example 6.9 Find Newtons forward difference interpolating polynomial for the following data:

x	0.1	0.2	0.3	0.4	0.5
$y=f(x)$	1.40	1.56	1.76	2.00	2.28

Solution We shall first construct the forward difference table to the given data as indicated below:

x	$y=f(x)$	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
0.1	1.40	0.16			
0.2	1.56	0.00	0.04	0.00	
0.3	1.76	0.04	0.04	0.00	0.00
0.4	2.00	0.04	0.04		
0.5	2.28				

Since, third and fourth leading differences are 2ero, we have Newton's forward difference interpolating formula as

$$
\begin{equation*}
y=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2} \Delta^{2} y_{0} \tag{1}
\end{equation*}
$$

In this problem, $x_{0}=0.1, y_{0}=1.40, \Delta y_{0}=0.16, \Delta^{2} y_{0}=0.04$, and

$$
p=\frac{x-0.1}{0.1}=10 x-1
$$

Substiating these values in Eq. (1), we obtain

$3 y=f(x)=140+(10 x-1)(0.16)+\frac{(10 x-1)(10 x-2)}{2}(0.04)$

That is, $y=2 x^{2}+x+1.28$. This is the required Newton's interpolating polynomial. Example 6.10 Estimate the missing figure in the following table:

x	1	2	3	4	5
$y=f(x)$	2	5	7	-	32

Solution Since we are given four entries in the table, the function $y=f(x)$ can be represented by a polynomial of degree three. Using Theorem 6.1, we have

$$
\Delta^{3} f(x)=\text { Constant and } \quad \Delta^{4} f(x)=0
$$

for all x. In particular, $\Delta^{4} f\left(x_{0}\right)=0$. Equivalently, $(E-1)^{4} f\left(x_{0}\right)=0$. Expanding, we have

$$
\left(E^{4}-4 E^{3}+6 E^{2}-4 E+1\right) f\left(x_{0}\right)=0
$$

That is,

$$
f\left(x_{4}\right)-4 f\left(x_{3}\right)+6 f\left(x_{2}\right)-4 f\left(x_{1}\right)+f\left(x_{0}\right)=0
$$

Using the values given in the table, we obtain

$$
32-4 f\left(x_{3}\right)+6 \times 7-4 \times 5+2=0
$$

which gives $f\left(x_{3}\right)$, the missing value equal to 14 .
Example 6.11 Find a cubic polynomial in x which takes on the values $\mathbf{- 3}, 3,11$, 27,57 and 107, when $x=0,1,2,3,4$ and 5 respectively.

Solution Here, the observations are given at equal intervals of unit width. To determine the required polynomial, we first construct the difference table as follows:

x	$f(x)$	$\Delta f(x)$	$\Delta^{3} f(x)$	
0	-3	6		
1	3	8	2	6
2	11	30	14	6
3	27	50	20	6
4	57			
5	107			

Since the fourth and higher order differences are zero, we have the required

$$
\begin{align*}
& \text { Newton's interpolation formula in the form } \\
& \qquad \begin{aligned}
f\left(x_{0}+p h\right)= & f\left(x_{0}\right)+p \Delta f\left(x_{0} ;+\frac{p(p-1)}{2} \Delta^{2} f\left(x_{0}\right)\right. \\
& +\frac{p(p-1)(p-2)}{6} \Delta^{3} f\left(x_{0}\right)
\end{aligned}
\end{align*}
$$

Here,
Here,

$$
p=\frac{x-x_{0}}{h}=\frac{x-0}{1}=x, \quad \Delta f\left(x_{0}\right)=6, \quad \Delta^{2} f\left(x_{0}\right)=2, \quad \Delta^{3} f\left(x_{0}\right)=6
$$

Substituting these values into Eq. (1), we have

$$
f(x)=-3+6 x+\frac{x(x-1)}{2}(2)+\frac{x(x-1)(x-2)}{6}(6)
$$

i.e. $f(x)=x^{3}-2 x^{2}+7 x-3$ is the required cubic polynomial.

NEWTONS'S BACKWARD DIFFERENCE INTERPOLATION FORMULA

Newton's Backward Difference Interpolation formula is
$y_{x}=f(x) \approx P_{n}(x)$
$=f\left(x_{n}\right)+P \nabla f\left(x_{n}\right)+\frac{P(P+1)}{2!} \nabla^{2} f\left(x_{n}\right)+\cdots \cdots+\frac{P(P+1)(P+2) \cdots \cdots(P+n-1)}{n!} \nabla^{n} f\left(x_{n}\right)$
Where $x=x_{n}+p h, p=\frac{x-x_{n}}{h} ;-n \leq P \leq 0$
DERIVATION: Let $y=f(x), x_{n}=f\left(x_{n}\right)$ and $x=x_{n}+P h \quad$ Then

$$
f\left(x_{n}+P h\right)=E^{P} f\left(x_{n}\right)=\left(E^{-1}\right)^{-P} f\left(x_{n}\right)=(1-\nabla)^{-P} f\left(x_{n}\right) \quad \therefore E^{-1}=1-\nabla
$$

Using binomial expansion $f(x)=\left[1+P \nabla+\frac{P(P+1)}{2!} \nabla^{2}+\frac{P(P+1)(P+2)}{3!} \nabla^{3}+\cdots\right] f\left(x_{n}\right)$

$$
f(x)=f\left(x_{n}\right)+P \nabla f\left(x_{n}\right)+\frac{P(P+1)}{2!} \nabla^{2} f\left(x_{n}\right)+\cdots \cdots
$$

This is required Newton's Gregory Backward Difference Interpolation formula.
QUESTION: For the following table of values estimate $f(7.5)$

X	1	2	3	4	5	6	7	8
$\mathrm{f}(\mathrm{x})$	1	8	27	64	125	216	343	512

SOLUTION

Since ' 7.5 ' is nearest to End of table, So We use Newton's Backward Interpolation.

X	Y	$\nabla \mathrm{Y}$	$\nabla^{2} \mathrm{Y}$	$\nabla^{3} \mathrm{Y}$	$\nabla^{4} \mathrm{Y}$
1	1	19	12		
2	8	7	18	6	0
3	64	37	24	6	0
4	125	61	30	6	0
5	216	127	36	6	0
7	243	169	42		
7					

Since $P=\frac{x-x_{n}}{h} \Rightarrow P=\frac{7.5-8}{1} \Rightarrow P=-0.5$
Now $\quad y=y_{n}+P \nabla y_{n}+\frac{P(P+1)}{2!} \nabla^{2} y_{\boldsymbol{n}}+\frac{P(P+1)(P+2)}{3!} \nabla^{3} y_{\boldsymbol{n}}$
$y=512+(-0.5)(169)+\frac{(-0.5)(-0.5+1)}{2!}(42)+\frac{(-0.5)(-0.5+1)(-0.5+2)}{3!}(6)$
$y=512-84.5-5.26-0.375=f(x)=421.875$

Example 6.13 The sales in a particular department store for the last five years is given in the following table:

Solurion At the outset, we shall construct Newton's backward difference table for the given data as

x	y	∇y	$\nabla^{2} y$	$V^{3} y$	$\nabla^{4} y$
1974	40	3			
1976	43	58	2	-1	2
1978	52	5	1	5	5
1980	57				
1982					

In this example,

$$
\ldots \quad . \quad p=\frac{1979-1982}{2}=-1.5
$$

and

$$
\nabla y_{n}=5, \quad \nabla^{2} y_{n}=1, \quad \nabla^{3} y_{n}=2, \quad \nabla^{4} y_{n}=5
$$

Newton's mterpolation formula gives

$$
\begin{aligned}
y_{1979}= & 57+(-1.5) 5+\frac{(-1.5)(-0.5)}{2}(1) \\
& +\frac{(-1.5)(-0.5)(0.5)}{6}(2)+\frac{(-1.5)(-0.5)(0.5)(1.5)}{24}(5) \\
= & 57-7.5+0.375+0.125+0.1172
\end{aligned}
$$

Therefore,

$$
y_{1979}=50.1172
$$

LAGRANGE'S INTERPOLATION FORMULA

For points $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}} \ldots \ldots \ldots \ldots . \boldsymbol{x}_{\boldsymbol{n}}$ define the cardinal Function
$\boldsymbol{l}_{0}, \boldsymbol{l}_{\mathbf{1}} \ldots \ldots \ldots . . \boldsymbol{l}_{\boldsymbol{n}} \in \boldsymbol{P}^{\boldsymbol{n}}$ (polynomial of n-degree)
$l_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array} \quad i=0,1,2, \ldots . n\right.$
The Lagrange form of interpolation Polynomial is $\boldsymbol{p}_{\boldsymbol{n}}(\boldsymbol{x})=\sum_{i=0}^{\boldsymbol{n}} \boldsymbol{l}_{\boldsymbol{i}}(\boldsymbol{x}) \boldsymbol{y}_{\boldsymbol{i}}$

DERIVATION OF FORMULA

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a function which takes the values $y_{0,} y_{1}, y_{2} \ldots \ldots \ldots y_{n}$ so we will obtain an n -degree polynomial

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots \ldots \ldots \ldots . .+a_{n}
$$

Now $\quad(i) \cdots \cdots \cdots \cdots .\left\{\begin{array}{c}y=f(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots \cdots\left(x-x_{n}\right) \\ +a_{1}\left(x-x_{0}\right)\left(x-x_{2}\right) \cdots \cdots\left(x-x_{n}\right) \\ +a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right) \cdots \cdots\left(x-x_{n}\right) \\ \vdots \\ \vdots \\ +a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots \cdots\left(x-x_{n-1}\right)\end{array}\right.$
Now we find the constants $a_{0}, a_{1}, \cdots \cdots a_{n}$

$$
\begin{align*}
& \text { Put } \tag{i}\\
& (i) \Rightarrow\left\{\begin{array}{c}
\mathrm{x}= \\
y= \\
f(x)=a_{0}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots \cdots\left(x_{0}-x_{n}\right) \\
+a_{1}\left(x_{0}-x_{0}\right)\left(x_{0}-x_{2}\right) \cdots \cdots\left(x_{0}-x_{n}\right) \\
+a_{2}\left(x_{0}-x_{0}\right)\left(x_{0}-x_{1}\right)\left(x_{0}-x_{3}\right) \cdots \cdots\left(x_{0}-x_{n}\right) \\
\vdots \\
\vdots \\
+a_{n}\left(x_{0}-x_{0}\right)\left(x_{0}-x_{1}\right) \cdots \cdots\left(x_{0}-x_{n-1}\right) \\
\Rightarrow \quad \\
\Rightarrow \quad y_{o}=a_{o}\left(x_{o}-x_{1}\right)\left(x_{o}-x_{2}\right) \cdots \cdots\left(x_{o}-x_{n}\right) \\
a_{0}=y_{1} \div\left[\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots \cdots\left(x_{0}-x_{1}\right)\right]
\end{array}\right.
\end{align*}
$$

Now Put $\mathrm{x}=x_{1}$ in

$$
\begin{aligned}
& y_{1}=f\left(x_{1}\right)=a_{1}\left(x_{1}-x_{o}\right)\left(x_{1}-x_{2}\right) \cdots \cdots\left(x_{1}-x_{n}\right) \\
& \Rightarrow \quad a_{1}=y_{1} \div\left[\left(x_{n}-x_{0}\right)\left(x_{n}-x_{2}\right) \cdots \cdots\left(x_{n}-x_{n-1}\right)\right]
\end{aligned}
$$

Similarly $a_{n}=y_{n} \div\left[\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots \cdots\left(x_{n}-x_{n-1}\right)\right]$
Putting all the values in (i) we get

$$
\begin{aligned}
& y=f(x)=y_{0} \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots \ldots\left(x_{0}-x_{n}\right)}+y_{1} \frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots \ldots\left(x_{1}-x_{n}\right)}+\ldots \\
& \ldots \ldots \ldots \ldots+y_{n} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots \ldots .\left(x_{n}-x_{n-1}\right)}+\ldots \\
& \Rightarrow y=f(x)=l_{0} y_{0}+l_{1} y_{1}+l_{2} y_{2}+\cdots \cdots+l_{n} y_{n}=\sum_{k=0}^{n} l_{k} y_{k} \\
& \text { Where } \quad l_{k}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \ldots \ldots . .\left(x_{k}-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots \ldots \ldots\left(x_{k}-x_{n}\right)}
\end{aligned}
$$

ALTERNATIVELY DEFINE

$$
\pi(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots\left(x-x_{n}\right)
$$

Then $\quad \pi^{\prime}(x)=(1-0)\left[\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots . .\left(x-x_{n}\right)\right]$
$+(1-0)\left[\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots .\left(x-x_{n}\right)\right]$
$+(1-0)\left[\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots . .\left(x-x_{n-1}\right)\right]$
$\pi^{\prime}\left(x_{k}\right)=\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \ldots \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots \ldots\left(x_{k}-x_{n}\right)$
$l_{k}(x)=\frac{\left(x-x_{k}\right)}{\left(x-x_{k}\right)} \cdot \frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots \ldots . .\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \ldots \ldots . .\left(x_{k}-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots \ldots \ldots\left(x_{k}-x_{n}\right)}$
Then

$$
l_{k}(x)=\frac{\pi(x)}{\left(x-x_{k}\right) \pi^{\prime}(x)}
$$

CONVERGENCE CRITERIA

Assume a triangular array of interpolation nodes $x_{i}=x_{i}^{(n)}$ exactly ' $n+1$ ' distinct nodes for " $n=0,1,2 \ldots \ldots \ldots i "$
$x_{0}^{(0)}$
$x_{0}^{(1)} x_{1}^{(1)}$
$x_{0}^{(2)} x_{1}^{(2)} x_{2}^{(2)}$
$x_{0}^{(n)} \quad x_{1}^{(n)} \quad x_{2}^{(n)} \ldots \ldots \ldots x_{n}^{(n)}$
Further assume that all nodes $x_{i}^{(n)}$ are contained in finite interval $[a, b]$ then for each ' n ' we define
$P_{n}(x)=P_{n}\left(f ; x_{0}^{(n)}, x_{1}^{(n)},, \ldots,,, x_{n}^{(n)}\right), x \in[a, b]$
Then we say method "converges" if $P_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ uniformly for $x \in[a, b]$
(OR)
Lagrange's interpolation converges uniformly on [a, b] for on arbitrary triangular ret if nodes of 'f' is analytic in the circular disk ' $\boldsymbol{C}_{\boldsymbol{r}}$ ' centered at $\frac{\boldsymbol{a}+\boldsymbol{b}}{\mathbf{2}}$ and having radius 'r' sufficiently large. So that $\boldsymbol{r}>\frac{3}{2}(\boldsymbol{b}-\boldsymbol{a})$ holds.

$$
\text { PROVE THAT } \quad \int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]
$$

PROOF: Using Lagrange's formula for $n=1 \quad f(x)=\sum_{k=0}^{1} l_{k}(x) f\left(x_{k}\right) \quad k=0,1$
$f(x)=l_{0}(x) f\left(x_{0}\right)+l_{1}(x) f\left(x_{1}\right)$
Integrating over $[a, b]$ when $x_{o}=a, x_{1}=b$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{a}^{b} l_{o}(x) f\left(x_{0}\right) d x+\int_{a}^{b} l_{1}(x) f\left(x_{1}\right) d x \\
& \int_{a}^{b} f(x) d x=f\left(x_{0}\right) \int_{x_{0}}^{x_{1}} l_{0}(x) d x+f\left(x_{1}\right) \int_{x_{0}}^{x_{1}} l_{1}(x) d x
\end{aligned}
$$

Now $\quad l_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \quad l_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}$
$\int_{a}^{b} f(x) d x=f\left(x_{0}\right) \int_{x_{0}}^{x_{1}} \frac{x-x_{1}}{x_{0}-x_{1}} d x+f\left(x_{1}\right) \int_{x_{0}}^{x_{1}} \frac{x-x_{0}}{x_{1}-x_{0}} d x$
Let $x=x_{0}+p h \Rightarrow d x=h d p$ as $x \rightarrow x_{0}$ then $p \rightarrow 0$ also $x \rightarrow x_{1}$ then $p \rightarrow 1$
$\int_{a}^{b} f(x) d x=\int_{0}^{1} \frac{x_{0}+p h-x_{1}}{a-b} h d p . f\left(x_{0}\right)+f\left(x_{1}\right) \int_{0}^{1} \frac{x_{0}+p h-x_{0}}{b-a} h d p$
$\int_{a}^{b} f(x) d x=\int_{0}^{1} \frac{a+p h-b}{a-b} h d p . f\left(x_{0}\right)+f\left(x_{1}\right) \int_{0}^{1 \frac{x_{0}+p h-x_{0}}{b-a}} h d p$

$$
f(x)=f\left(x_{0}\right) \int_{0}^{1} \frac{a-b+p h}{-h} h d p+f\left(x_{1}\right) \int_{0}^{1} \frac{p h \cdot h d p}{h} \quad \therefore x_{0}=a_{1} \quad x_{1}=b
$$

$$
f(x)=f\left(x_{0}\right) \int_{0}^{1} \frac{-h+p h}{-1} d p+f\left(x_{1}\right) \int_{0}^{1} p h d p=-h f\left(x_{0}\right) \int_{0}^{1}(p-1) d p+f\left(x_{1}\right) h \int_{0}^{1} p d p
$$

$$
f(x)=-h f\left(x_{0}\right)\left[\left|\frac{p^{2}}{2}\right|_{0}^{1}-|p|_{0}^{1}\right]+h f\left(x_{1}\right)\left|\frac{p^{2}}{2}\right|_{0}^{1}
$$

$$
f(x)=-h f\left(x_{0}\right)\left(\frac{1}{2}-1\right)+h f\left(x_{1}\right)\left(\frac{1}{2}\right)=-\frac{h}{2} f\left(x_{0}\right)+h f\left(x_{0}\right)+\frac{h}{2} f\left(x_{1}\right)
$$

$$
f(x)=\frac{h}{2} f\left(x_{0}\right)+\frac{h}{2} f\left(x_{1}\right)=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]=\frac{b-a}{2}[f(a)+f(b)]
$$

Since $h=\frac{b-a}{n}=b-a$ for $n=1 \quad x_{0}=a \quad$ and $x_{1}=b \quad$ Hence the result.

PROS AND CONS OF LAGRANGE'S POLYNOMIAL

- Elegant formula (+)
- Slow to compute, each $\boldsymbol{l}_{\boldsymbol{i}}(\boldsymbol{x})$ is different (-)
- Not flexible; if one change a point x_{j}, or add an additional point $\mathrm{x}_{\mathrm{n}+1}$ one must re-compute all $\boldsymbol{l}_{\boldsymbol{i} / \boldsymbol{s}}(-)$

INVERSE LAGRANGIAN INTERPOLATION : Interchanging ' x ' and ' y ' in Lagrange's interpolation formula we obtain the inverse given by $\quad x \approx \boldsymbol{l}_{\boldsymbol{n}}(\boldsymbol{y})=\sum_{i=0}^{n} \frac{\boldsymbol{l}_{\boldsymbol{k}}(\boldsymbol{y})}{\boldsymbol{l}_{\boldsymbol{k}}\left(y_{k}\right)} \boldsymbol{x}_{\boldsymbol{k}}$

QUESTION: Find langrage's Interpolation polynomial fitting the points $\boldsymbol{y}(\mathbf{1})=-\mathbf{3}$, $y(3)=0, y(4)=30, y(6)=132$, Hence find $y(5)=$?
X: $\quad \boldsymbol{x}_{\mathbf{0}}=1$
$\boldsymbol{x}_{1}=3$
$x_{2}=4$
$x_{3}=6$
$\mathrm{Y}: \quad-3$
0
30
132

ANSWER: Since

$$
y(x)=l_{o} y_{o}+l_{1} y_{1}+l_{2} y_{2}+l_{3} y_{3}
$$

$y(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} y_{0}+\frac{\left(x-x_{o}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} y_{2}+$ $\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}$

By putting values, we get
$y(x)$
$=\frac{(x-3)(x-4)(x-6)}{(1-3)(1-4)(1-6)}(-3)+\frac{(x-1)(x-4)(x-6)}{(3-1)(3-4)(3-6)}(0)+\frac{(x-1)(x-3)(x-6)}{(4-1)(4-3)(4-6)}(30)+\frac{(x-1)(x-3)(x-4)}{(6-1)(6-3)(6-4)}$
$y(x)=\frac{1}{2}\left[-x^{3}+27 x^{2}-92 x+60\right]$
Put $x=5$ to get $\quad y(5)=\frac{1}{2}\left[-5^{3}+27\left(5^{2}\right)-92(5)+60\right] \Rightarrow Y(5)=75$
Example 6.15 Given the following data, evaluate $f(3)$ using Lagrange's interpolating polynomial.

x	1	2	5
$f(x)$	1	4	10

Solution Using Lagrange's interpolation formula given by E4. (6.37), we have

$$
\begin{aligned}
f(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
\end{aligned}
$$

Therefore,

$$
f(3)=\frac{(3-2)(3-5)}{(1-2)(1-5)}(1)+\frac{(3-1)(3-5)}{(2-1)(2-5)}(4)+\frac{(3-1)(3-2)}{(5-1)(5-2)}(10)=6.4999
$$

DIVIDED DIFFRENCE: Assume that for a given value of $\left(\boldsymbol{x}_{1}, y_{1}\right)\left(\boldsymbol{x}_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$

$$
y\left[x_{0}\right]=y\left(x_{0}\right)=y_{0} \rightarrow y \text { at } x_{0}
$$

Then the first order divided Difference is defined as $y\left[x_{0}, x_{1}\right]=\frac{y_{1-}-y_{0}}{x_{1}-x_{0}}, y\left[x_{1}, x_{2}\right]=\frac{y_{2-} y_{1}}{x_{2}-x_{1}}=a_{1}$
The $2^{\text {nd }}$ Order Difference is $\boldsymbol{y}\left[x_{0}, x_{1}, x_{2}\right]=\frac{y\left[x_{1}, x_{2}\right]-y\left[x_{0}, x_{1}\right]}{x_{2}, x_{0}}=\boldsymbol{a}_{\mathbf{2}}$
Similarly

$$
y\left[x_{0}, x_{1}, x_{2} \ldots \ldots x_{n}\right]=\frac{y\left[x_{1}, x_{2}, x_{3} \ldots \ldots x_{n}\right]-y\left[x_{0}, x_{1} \ldots \ldots x_{n-1}\right]}{x_{n}-x_{o}}=a_{n}
$$

DIVIDED DIFFERENCE IS SYMMETRIC

$$
y\left[x_{0}, x_{1}\right]=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{-\left(y_{o}-y_{1}\right)}{-\left(x_{0}-x_{1}\right)}=y\left[x_{1}, x_{0}\right]
$$

() Also Newton Divided Difference is Symmetric NEWTON'S DIVIDED DIFFRENCE INTERPOLATION FORMULA

If $x_{0}, \boldsymbol{x}_{\mathbf{1}} \ldots \boldsymbol{x}_{\boldsymbol{n}}$ are arbitrarily Spaced (unequal spaced) Then the polynomial of degree ' n ' through $\left(\boldsymbol{x}_{\boldsymbol{o}}, \boldsymbol{f}_{\mathbf{0}}\right)\left(\boldsymbol{x}_{1}, \boldsymbol{f}_{1}\right) \ldots \ldots .\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{f}_{\boldsymbol{n}}\right)$ where $\boldsymbol{f}_{\boldsymbol{j}}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)$ is given by the newton's Devided difference Interpolation formula (Also known as Newton's General Interpolation formula) given by.

$$
\begin{aligned}
& f(x)=\left(f_{0}\right)+\left(x-x_{0}\right) f\left[x_{0,}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{o}, x_{1}, x_{2}\right]+\ldots \ldots \ldots \ldots . . \\
& \ldots+\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) f\left[x_{0}, x_{1} \ldots x_{n}\right]
\end{aligned}
$$

DERIVATION OF FORMULA

Let
$\ldots .+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)$
Put $x=x_{0} \Rightarrow y_{1}=f\left(x_{0}\right)=a_{0}+a_{1}\left(x_{0}-x_{0}\right)+0+0 \ldots+0 \Rightarrow a_{0}=y_{0}=y\left[x_{o}\right]$
Put $x=x_{1} \quad \Rightarrow y_{1}=f\left(x_{1}\right)=a_{0}+a_{1}\left(x_{1}-x_{0}\right)+0+0 \ldots+0$
$\Rightarrow a_{1}=\frac{y_{1}-a_{0}}{x_{1}-x_{0}}=y\left[x_{0}, x_{1}\right]=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{y\left[x_{1}\right]-y\left[x_{0}\right]}{x_{1}-x_{0}} \quad \therefore a_{0}=y_{0}$
Put $x=x_{2} \quad y_{2}=f\left(x_{2}\right)=a_{0}+a_{1}\left(x_{2}-x_{0}\right)+a_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)+0+0 \ldots+0$
$\Rightarrow y_{2}-a_{0}-a_{1}\left(x_{2}-x_{0}\right)=a_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)$
$y_{2}-y_{0}-\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)\left(x_{2}-x_{0}\right)=a_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \quad \therefore$ using above values
$\Rightarrow a_{2}=\frac{y_{2}-y_{0}-\left(x_{2}-x_{0}\right) y\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{\left(y_{2}-y_{1}+y_{1}-y_{0}\right)-\left(x_{2}-x_{0}\right) y\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}$

$$
\begin{aligned}
& a_{2}=\frac{\left(y_{2}-y_{1}\right)+\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x_{1}-x_{0}\right)-\left(x_{2}-x_{0}\right) y\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{\left(y_{2}-y_{1}\right)+y\left[x_{0}, x_{1}\right]\left(x_{1}-x_{0}\right)-\left(x_{2}-x_{0}\right) y\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
& a_{2}=\frac{\left(y_{2}-y_{1}\right)+y\left[x_{0}, x_{1}\right]\left\{x_{1}-x_{0}-x_{2}+x_{0}\right\}}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{\left(y_{2}-y_{1}\right)+y\left[x_{0}, x_{1}\right]\left(x_{1}-x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
& a_{2}=\frac{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}+\frac{y\left[x_{0}, x_{1}\right]\left(x_{1}-x_{2}\right)}{x_{2}-x_{1}}}{\left(x_{2}-x_{0}\right)}=\frac{y\left[x_{1}, x_{2}\right]-\frac{y\left[x_{0}, x_{1}\right]}{\left(x_{1}-x_{2}\right)}\left(x_{1}-x_{2}\right)}{\left(x_{2}-x_{0}\right)}=\frac{y\left[x_{1}-x_{2}\right]-y\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)}=y\left[x_{0}, x_{1}, x_{2}\right]
\end{aligned}
$$

Similarly $a_{3}=y\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \ldots \ldots \ldots \ldots \ldots a_{n}=y\left[x_{0}, x_{1}, x_{2} \ldots a_{n}\right]$

$$
(i) \Longrightarrow y=y\left[x_{0}\right]+\left(x-x_{0}\right) y\left[x_{0}, x_{1}\right]+. .+\left(x-x_{0}\right)\left(x-x_{1}\right) . .\left(x-x_{n-1}\right) y\left[x_{o}, x_{1} . . x_{n}\right]
$$

TABLE

X	Y	$1^{\text {st }}$ Order	$2^{\text {nd }}$ Order	$3^{\text {nd }}$ Order
x_{0}	y_{0}			
	\rightarrow	$y\left[x_{0}\right.$		
x_{1}	y_{1}		$y\left[x_{0}, x\right.$	
	\rightarrow	$y\left[x_{1}\right.$,	S	$y\left[x_{o}, x_{1}, x_{2}, x_{3}\right]$
x_{2}	y_{2}		$y\left[x_{1}, x\right.$	
	\rightarrow			
x_{3}	y_{3}		:	!
!	!	:	:	:
\vdots	:		:	:
x_{n}	y_{n}		:	!

EXAMPLE:

X
2

5

7

10
Y

$$
Y\left[x_{o}, x_{1}, x_{2}\right]
$$

$$
Y\left[x_{o}, x_{1}, x_{2}, x_{3}\right]
$$

25
40

$$
\begin{gathered}
Y\left[x_{o}, x_{1}\right] \\
\frac{40-25}{5-2}=5
\end{gathered}
$$

$$
\begin{equation*}
10 \tag{10}
\end{equation*}
$$

60

$$
\frac{10-5}{7-2}=1
$$

$$
\frac{10-10}{10-5}=0 \quad \frac{0-1}{10-2}=-\frac{1}{8}
$$

10

90

A RELATIONSHIP BETWEEN $\mathbf{n}^{\text {th }}$ DIVIDED DIFFERENCE AND THE $\mathbf{n}^{\text {th }}$ DARIVATIVE

Suppose " f " is n -time continuously differentiable and $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}} \ldots \boldsymbol{x}_{\boldsymbol{n}}$ are $(\mathrm{n}+1)$ distinct numbers in $[\mathrm{a}, \mathrm{b}]$ then there exist a number "§" in (a, b) such that $\quad \boldsymbol{f}\left[\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}} \ldots \boldsymbol{x}_{\boldsymbol{n}}\right]=\frac{f^{n}(\S)}{n!}$

THEOREM : nth differences of a polynomial of degree ' n ' are constant.
PROOF Let us consider a polynomial of degree ' n ' in the form

$$
y_{x}=a_{o} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
$$

Then $y_{x+h}=a_{0}(x+h)^{n}+a_{1}(x+h)^{n-1}+\cdots+a_{n-1}(x+n)+a_{n}$
We now examine the difference of polynomial $\Delta y_{x}=y_{x+h}-y_{x}$

$$
\Delta y_{x}=a_{0}\left[(x+h)^{n}-x^{n}\right]+a_{1}\left[(x+h)^{n-1}-x^{n-1}\right]+\cdots \ldots \ldots+a_{n-1}[x+h-x]
$$

Binomial expansion yields

$$
\begin{aligned}
& \Delta y_{x}=a_{0}\left(x^{n}+{ }^{n} C_{1} x^{n-1} h+{ }^{n} C_{2} x^{n-2} h^{2}+\cdots+h^{n}-x^{n}\right) \\
& +a_{1}\left(x^{n-1}+{ }^{n-1} C_{1} x^{n-2} h+{ }^{n-2} C_{2} x^{n-3} h^{2}+\cdots+h^{n-1}-x^{n}\right)+\cdots+a_{n-1} h \\
& \Delta y_{x}=a_{0} n h x^{n-1}+\left[a_{0}{ }_{2}^{n} C h^{2}+a_{1}{ }_{1}^{n-1} C h\right] x^{n-2}+\cdots \ldots \ldots .+a_{n-1} h
\end{aligned}
$$

Therefore $\quad \Delta y_{x}=a_{0} n h x^{n-1}+b^{\prime} x^{n-2}+c^{\prime} x^{n-3}+\cdots+k^{\prime} x+l^{\prime}$
Where $\boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}, \boldsymbol{k}^{\prime}, \boldsymbol{l}^{\prime}$ are constants involving ' h ' but not ' x '
Thus the first difference of a polynomial of degree ' n ' is another polynomial of degree $(\boldsymbol{n} \boldsymbol{- 1})$
Similarly $\quad \Delta^{2} y_{x}=\Delta\left(\Delta y_{x}\right)=\Delta y_{x+h}-\Delta y_{x}$

$$
\begin{aligned}
& =a_{0} n h\left[(x+h)^{n-1}-x^{n-1}\right]+b^{\prime}\left[(x+h)^{n-2}-x^{n-2}\right]+\cdots \ldots .+k^{\prime}(x+h-x) \\
& \Delta^{2} y_{x}=a_{0} n(n-1) h^{2} x^{n-2}+b^{\prime \prime} x^{n-2}+C^{\prime \prime} x^{n-4}+\cdots+q^{\prime \prime}
\end{aligned}
$$

Therefore $\Delta^{2} y_{x}$ is a polynomial of degree $(n-2)$ in ' x '
Similarly, we can find the higher order differences and every time we observe that the degree of polynomial is reduced by one.

After differencing n-time we get

$$
\Delta^{n} y_{x}=a_{0}(n-1)(n-2) \ldots(2)(1) h^{n}=a_{0}(n!) h^{n}=\text { constant } .
$$

This constant is independent of ' x ' since $\Delta^{\boldsymbol{n}} \boldsymbol{y}_{\boldsymbol{x}}$ is constant,$\Delta^{\boldsymbol{n + 1}} \boldsymbol{y}_{\boldsymbol{x}}=\mathbf{0}$

Hence The $(\boldsymbol{n}+\mathbf{1}) \boldsymbol{t h}$ and higher order differences of a polynomial of degree ' n ' are zero.
NEWTION'S DIVIDED DIFERENCE FORMULA WITH ERROR TERM

$$
\begin{align*}
& \mathrm{y}(\mathrm{x})=y_{0}+\left(x-x_{0}\right) y\left[x, x_{0}\right] \quad \ldots \ldots \ldots \ldots(i) \tag{i}\\
& \mathrm{y}\left[x, x_{0}\right]=y\left[x_{o}, x_{1}\right]+\left(x-x_{1}\right) y\left[x, x_{o}, x_{1}\right] \quad \ldots \ldots \ldots \ldots(i i) \tag{ii}\\
& y\left[x, x_{o}, x_{1}\right]=y\left[x_{o}, x_{1}, x_{2}\right]+\left(x-x_{2}\right) y\left[x, x_{o}, x_{1}, x_{2}\right] \quad \ldots \ldots \ldots \ldots(i i i) \tag{iiii}\\
& \quad y\left[x, x_{0}, x_{1}, x_{2}\right]=y\left[x, x_{o}, x_{1}, x_{2}, x_{3}\right]+\left(x-x_{3}\right) y\left[x, x_{0}, x_{1}, x_{2}, x_{3}\right] . \tag{iv}
\end{align*}
$$

$y\left[x, x_{0}, x_{1} \ldots x_{n-1}\right]=y\left[x_{0}, x_{1} \ldots x_{n}\right]+\left(x, x_{n}\right) y\left[x, x_{o}, x_{1} \ldots x_{n}\right]$
Multiplying (ii) by $\left(x-x_{0}\right)$ (iii) $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots$ (n) By $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots\left(x_{n-1}\right)$ And adding all Equation's

$$
\begin{aligned}
& y(x)=y_{0}+\left(x-x_{0}\right) y\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) y\left[x_{0}, x_{1}\right] \\
& +\cdots \ldots \ldots \ldots+\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) y\left[x_{0}, x_{1}, x_{2} \ldots x_{n}\right] \quad \text { Also last term will be } \in(x)
\end{aligned}
$$

LIMITATIONS OF NEWTON'S INTERPOLATION.

This formula used only when the values of independent variable ' x ' are equally spaced. Also the differences of ' y ' must ultimately become small. Its accuracy same as Lagrange's Formula but has the advantage of being computationally economical in the sense that it involves less numbers of Arithmetic Operations.

ERROR TERM IN INTERPOLATION

As we know that

$$
y(x)=y_{0}+\left(x-x_{0}\right) y\left[x_{0}, x_{1}\right]+\cdots \ldots \ldots \ldots+\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) y\left[x_{0}, x_{1} \ldots x_{n}\right]
$$

Approximated by polynomial $P_{n}(x)$ of degree ' n ' the error term is

$$
\begin{align*}
& \in(x)=y(x)-P_{n}(x) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(i) \tag{i}\\
& \in(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots \ldots \ldots\left(x-x_{n}\right) y\left[x, x_{0}, x_{1} \ldots x_{n}\right]
\end{align*}
$$

Let

$$
\begin{equation*}
\in(x)=\pi(x) y\left[x, x_{0}, x_{1} \ldots x_{n}\right]=k \pi(x) \tag{ii}
\end{equation*}
$$

And

$$
F(x)=y(x)-P_{n}(x)-k \pi(x)
$$

$F(x)$ Vanish for $x_{0}, x_{1} \ldots x_{n}$ Choose arbitrarily \bar{x} from them.
Consider an interval ' I ' which span the points $\bar{x}, x_{0}, x_{1} \ldots x_{n}$. Total number of points $(n+2)$ Then $F(x)$ vanish $(n+2)$ time by Roll's theorem
$F^{\prime}(x)$ Vanish $(n+1)$ time, $F^{\prime \prime}(x)$ vanish n-time. Hence $F^{n+1}(x)$ vanish 1-time choose arbitrarily $x=\S$

$$
\begin{aligned}
& \Rightarrow F^{n+1}(\S)=y^{n+1}(\S)-P_{n}^{n+1}(\S)-k \frac{d^{n+1}}{d x^{n+1}} \pi(\S) \\
& \Rightarrow 0=y^{n+1}(\S)-0-k \pi^{n+1}(\S) \quad \therefore y^{n+1}(\S)=0 \quad \text { and } P^{n+1}(\S)=0 \\
& \Rightarrow y^{n+1}(\S)=k \pi^{n+1}(\S) \quad \Rightarrow k=\frac{y^{n+1}(\S)}{\pi^{n+1}(\S)} \\
& \text { if } \quad \pi^{n+1}(x)=(n+1)!\quad \Rightarrow k=\frac{y^{n+1}(\S)}{(n+1)!} \quad \Rightarrow k=y\left[x_{0}, x_{1} \ldots x_{n}\right] \\
& \text { (ii) } \Rightarrow \quad \in(x)=\frac{y^{n+1}(\S)}{(n+1)!} \pi(x)
\end{aligned}
$$

THEOREM:

NEWTON'S DIVIDED DIFFERENCE AND LAGRANGE'S INTERPOLATION FORMULA ARE IDENTICAL, PROVE!

PROOF: Consider $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is given at the sample points x_{0}, x_{1}, x_{2}
Since by Newton's divided difference interpolation for x_{0}, x_{1}, x_{2} is given as

$$
\begin{aligned}
& y=y_{0}+\left(x-x_{0}\right) y\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) y\left[x_{0}, x_{1}, x_{2}\right] \\
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{y\left[x_{1}, x_{2}\right]-y\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}} \\
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{x_{2}-x_{0}}\right)\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right) \\
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{x_{2}-x_{0}}\right)\left(\frac{y_{2}}{x_{2}-x_{1}}+y_{1}\left\{\frac{-1-1}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}\right\}+\frac{y_{0}}{x_{1}-x_{0}}\right) \\
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{x_{2}-x_{0}}\right)\left(\frac{y_{2}}{x_{2}-x_{1}}+y_{1}\left\{\frac{-\left(x_{1}-x_{0}\right)-\left(x_{2}-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}\right\}+\frac{y_{0}}{x_{1}-x_{0}}\right) \\
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{x_{2}-x_{0}}\right)\left(\frac{y_{2}}{x_{2}-x_{1}}+y_{1}\left\{\frac{x_{0}-x_{2}}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}\right\}+\frac{y_{0}}{x_{1}-x_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(\frac{y_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{y_{1}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}+\frac{y_{0}\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right) x_{1}-x_{0}}\right) \\
& y=y_{0}+\left(x-x_{0}\right)\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)+\left(\frac{y_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{y_{1}\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}+\frac{y_{0}\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right) x_{1}-x_{0}}\right) \\
& y=y_{0}\left[1-\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)}\right]+y_{1}\left[\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)-\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}\right]+y_{2}\left[\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\right] \\
& y=y_{0}\left[\frac{\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)-\left(x-x_{0}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)}\right]+y_{1}\left[\frac{\left(x-x_{0}\right)\left(x_{2}-x_{1}\right)-\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)}\right]+y_{2}\left[\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\right] \\
& y=y_{0}\left[\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}\right]+y_{1}\left[\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}\right]+y_{2}\left[\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\right]
\end{aligned}
$$

This is Lagrange's form of interpolation polynomial.
Hence both Divided Difference and Lagrange's are identical.

SPLINE

A function ' S ' is called a spline of degree ' k ' if it satisfied the following conditions.
(i) $\quad S$ is defined in the interval $[\boldsymbol{a}, \boldsymbol{b}]$
(ii) $\boldsymbol{S}^{\boldsymbol{r}}$ is continuous on $[\boldsymbol{a}, \boldsymbol{b}] \quad ; \mathbf{0} \leq \boldsymbol{r} \leq \boldsymbol{k}-\mathbf{1}$
(iii) S is polynomial of degree lessthanequalsto ${ }^{\prime} \boldsymbol{k}^{\prime}$ on each subinterval $\left[x_{i}, x_{i+1}\right] ; i=1,2, \ldots, n-1$

CUBIC SPLINE INTERPOLATION

A function $\boldsymbol{S}(\boldsymbol{x})$ denoted by $\boldsymbol{S}_{\boldsymbol{j}}(\boldsymbol{x})$ over the interval $\left[\boldsymbol{x}_{\boldsymbol{j}}, \boldsymbol{x}_{\boldsymbol{j}+\mathbf{1}}\right] ; \boldsymbol{j}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}-\mathbf{1}$
Is called a cubic spline interpolant if following conditions hold.

- $s_{j}\left(x_{j}\right)=f_{j} \quad ; j=0,1,2, \ldots \ldots \ldots . n$
- $S_{j+1}\left(x_{j+1}\right)=f_{j+1} \quad ; j=0,1,2, \ldots \ldots \ldots . . n-2$
- $S_{j+1}{ }^{\prime}\left(x_{j+1}\right)=f_{j+1}^{\prime} \quad ; j=0,1,2, \ldots \ldots \ldots . . n-2$
- $S_{j+1}^{\prime \prime}\left(x_{j+1}\right)=f_{j+1}^{\prime \prime} \quad ; j=0,1,2, \ldots \ldots \ldots . . n-2$
* A spline of degree " 3 " is cubic spline.

NATURAL SPLINE

A cubic spline satisfying these two additional conditions

$$
S_{1}^{\prime \prime}\left(x_{1}\right)=0 \quad \text { and } \quad S_{n-1}^{\prime \prime}\left(x_{n}\right)=0
$$

HERMIT INTERPOLATION

In Hermit interpolation we use the expansion involving not only the function values but also its first derivative.

Hermit Interpolation formula is given as follows

$$
P(x)=H_{2 n+1}(x)=\sum_{j=0}^{n} H_{n, j}(x) f\left(x_{j}\right)+\sum_{j=0}^{n} \widehat{H}_{n, j}(x) f^{\prime}\left(x_{j}\right)
$$

Algorithm:

- Make table

| k | x_{k} | $f\left(x_{k}\right)$ | |
| :--- | :--- | :--- | :--- | :--- |
| \ldots. | $\ldots \ldots$ | $\ldots \ldots$ | $f^{\prime}\left(x_{k}\right)$ |
| $\ldots \ldots$ | $\ldots \ldots$ | $\ldots \ldots$ | \ldots |

- Find $L_{n, j}(x) \mathrm{j}^{\text {th }}$ Lagrange's differential polynomial of degree ' n '
- Find $H_{n, j}(x)=\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right]\left[L_{n, j}(x)\right]^{2}$ and $\widehat{H}_{n, j}(x)=\left(x-x_{j}\right)\left[L_{n, j}(x)\right]^{2}$
- Use formula $P(x)=H_{2 n+1}(x)=\sum_{j=0}^{n} H_{n, j}(x) f\left(x_{j}\right)+\sum_{j=0}^{n} \widehat{H}_{n, j}(x) f^{\prime}\left(x_{j}\right)$

EXAMPLE

Estimate the value of $\boldsymbol{f}(\mathbf{1} .5)$ using hermit interpolation formula from the following data

k	x_{k}	$f\left(x_{k}\right)$	$f^{\prime}\left(x_{k}\right)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-005698959
2	1.9	0.2810186	-0.5811571

Solution: we first compute Lagrange's Polynomials and their derivatives.
$L_{2,0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{50}{9} x^{2}-\frac{175}{9} x+\frac{152}{9}$ and $L_{2,0}^{\prime}(x)=\frac{100}{9} x-\frac{175}{9}$
$L_{2,1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=-\frac{100}{9} x^{2}+\frac{320}{9} x-\frac{247}{9}$ and $L^{\prime}{ }_{2,1}(x)=-\frac{200}{9} x+\frac{320}{9}$
$L_{2,2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{50}{9} x^{2}-\frac{145}{9} x+\frac{104}{9}$ and $L^{\prime}{ }_{2,2}(x)=\frac{100}{9} x^{2}-\frac{145}{9}$
Now we will find the Polynomials $H_{n, j}(x)$ and $\widehat{H}_{n, j}(x)$ for $\mathrm{n}=2$ and $\mathrm{j}=0,1,2$
$H_{2,0}(x)=\left[1-2\left(x-x_{0}\right) L_{2,0}^{\prime}\left(x_{0}\right)\right]\left[L_{2,0}(x)\right]^{2}=[1-2(x-1.3)(-1.5)]\left[\frac{50}{9} x^{2}-\frac{175}{9} x+\frac{152}{9}\right]^{2}$
$H_{2,0}(x)=[10 x-12]\left[\frac{50}{9} x^{2}-\frac{175}{9} x+\frac{152}{9}\right]^{2}$
Similarly
$H_{2,1}(x)=\left[-\frac{100}{9} x^{2}+\frac{320}{9} x-\frac{247}{9}\right]^{2}$ and $H_{2,2}(x)=10[2-x]\left[\frac{50}{9} x^{2}-\frac{145}{9} x+\frac{104}{9}\right]^{2}$
Also $\quad \widehat{H}_{2,0}(x)=\left(x-x_{0}\right)\left[L_{2,0}(x)\right]^{2}=(x-1.3)\left[\frac{50}{9} x^{2}-\frac{175}{9} x+\frac{152}{9}\right]^{2}$
Similarly $\quad \widehat{H}_{2,1}(x)=\left(x-x_{1}\right)\left[L_{2,1}(x)\right]^{2}=(x-1.6)\left[-\frac{100}{9} x^{2}+\frac{320}{9} x-\frac{247}{9}\right]^{2}$
And $\widehat{H}_{2,2}(x)=\left(x-x_{2}\right)\left[L_{2,2}(x)\right]^{2}=(x-1.9)\left[\frac{50}{9} x^{2}-\frac{145}{9} x+\frac{104}{9}\right]^{2}$
Finally using the formula

$$
\begin{aligned}
& P(x)=H_{2 n+1}(x)=\sum_{j=0}^{n} H_{n, j}(x) f\left(x_{j}\right)+\sum_{j=0}^{n} \widehat{H}_{n, j}(x) f^{\prime}\left(x_{j}\right) \\
& P(x)=H_{2(2)+1}(x)=H_{5}(x)=\sum_{j=0}^{2} H_{2, j}(x) f\left(x_{j}\right)+\sum_{j=0}^{2} \widehat{H}_{2, j}(x) f^{\prime}\left(x_{j}\right) \\
& \begin{aligned}
P(x) & =H_{5}(x)=H_{2,0}(x) f\left(x_{0}\right)+H_{2,1}(x) f\left(x_{1}\right)+H_{2,2}(x) f\left(x_{2}\right)+\widehat{H}_{2,0}(x) f^{\prime}\left(x_{0}\right) \\
& +\widehat{H}_{2,1}(x) f^{\prime}\left(x_{1}\right)+\widehat{H}_{2,2}(x) f^{\prime}\left(x_{2}\right)
\end{aligned} \\
& P(x)=H_{5}(1.5)=0.5118277
\end{aligned}
$$

EXAMPLE

Estimate the value of $\boldsymbol{y}(\mathbf{1 . 0 5)}$ using hermit interpolation formula from the following data

X	$\mathrm{Y}=f\left(x_{k}\right)$	$\boldsymbol{Y}^{\prime}=f^{\prime}\left(x_{k}\right)$
1.00	1.00000	0.5000
1.10	1.04881	0.47673

Solution:

At first we compute $\quad l_{o}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}=\frac{1.05-1.10}{1.00-1.10}=0.5$ and $l_{0}^{\prime}(x)=\frac{1}{x_{0}-x_{1}}=\frac{1}{1.00-1.10}=-\frac{1}{0.10}$
And

$$
l_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{1.05-1.00}{1.10-1.00}=0.5 \quad \text { and } \quad l_{1}^{\prime}(x)=\frac{1}{x_{1}-x_{0}}=\frac{1}{1.10-1.00}=
$$

$\frac{1}{0.1}$
Now putting the values in Hermit Formula

$$
P(x)=\sum_{i=0}^{n}\left[1-2 L_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right]\left[L_{i}\left(x_{i}\right)\right]^{2} y_{i}+\left(x-x_{i}\right)\left[L_{i}\left(x_{i}\right)\right]^{2} y_{i}^{\prime}
$$

We find
$y(1.05)=$
$\left[1-2\left(-\frac{1}{0.1}\right)(0.05)\right]\left(\frac{1}{2}\right)^{2}(1)+(0.05)\left(\frac{1}{2}\right)^{2}(0.5)+\left[1-2\left(\frac{1}{0.1}\right)(-0.05)\right]\left(\frac{1}{2}\right)^{2}(1.04881)+$
$(-0.05)\left(\frac{1}{2}\right)^{2}(0.47673)$
$y(1.05)=1.0247 \quad$ required answer

NUMARICAL DIFFERENTIATION

The problem of numerical differentiation is the determination of approximate values the derivatives of a function ' \boldsymbol{f} ' at a given point.

FORWARD - BACKWARD DIFFERENCE FORMULAE

The formula given as follows is known as forward difference formula if $h>0$ and backward difference formula if $h<0$
$f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{n}(\xi)$
Where $\frac{h}{2} f^{n}(\xi)$ is error bound.

METHOD:

- Write formula $f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
- Use values in given formula.
- To find error bound write absolute value of $\frac{h}{2} f^{n}(\xi)$ less than to its answer. i.e. $\left|\frac{h}{2} f^{n}(\xi)\right|<$ solution
- Compare actual value of given function at given point if needed and approximated value.

EXAMPLE:

Use forward difference formula to approximate the derivative of $f(x)=\ln x$ at $x_{0}=1.8$ using $h=0.1, h=0.05$ and $h=0.01$ and determine bound for the approximation error.

SOLUTION:

Since we have $x_{0}=1.8, h=0.1, f(x)=\ln x$ and $f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
Then using given values; $\quad f^{\prime}(1.8)=\frac{f(1.8+0.1)-f(1.8)}{0.1}=\frac{\ln (1.8+0.1)-\ln (1.8)}{0.1}=\frac{\ln (1.9)-\ln (1.8)}{0.1}$
$f^{\prime}(1.8)=\frac{0.64185389-0.58778667}{0.1}=0.5406722$
Also for actual value $f^{\prime}(1.8)=\frac{1}{1.8}=0.55 \overline{5}$

DIFFERENTIATION USING DIFFERENCE OPERATORS

We assume that the function $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is given for the equally spaced 'x' values $\boldsymbol{x}_{\boldsymbol{n}}=\boldsymbol{x}_{\mathbf{0}}+\boldsymbol{n} \boldsymbol{h}$ for $\boldsymbol{n}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots \ldots \ldots$... to find the darivatives of such a tabular function, we proceed as follows;

USING FORWARD DIFFERENCE OPERATOR ${ }^{\prime} \Delta^{\prime}$
Since $h D=\log E=\log (1+\Delta) \quad \therefore E=(1+\Delta)$
$\Rightarrow D=\frac{1}{h}[\log (1+\Delta)] \quad$ Where D is differential operator.
$\Rightarrow D=\frac{1}{h}\left[\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4}+\cdots\right]$
(i) using Maclaurin series

Therefore $\quad D f\left(x_{0}\right)=\frac{1}{h}\left[\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4}+\cdots\right] f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$

$$
\begin{aligned}
& D f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=\frac{1}{h}\left[\Delta f\left(x_{0}\right)-\frac{\Delta^{2}}{2} f\left(x_{0}\right)+\frac{\Delta^{3}}{3} f\left(x_{0}\right)-\frac{\Delta^{4}}{4} f\left(x_{0}\right)+\cdots \ldots \ldots \ldots\right] \\
& D y_{0}=y_{0}^{\prime}=\frac{1}{h}\left[\Delta y_{0}-\frac{\Delta^{2}}{2} y_{0}+\frac{\Delta^{3}}{3} y_{0}-\frac{\Delta^{4}}{4} y_{0} \ldots \ldots \ldots\right]
\end{aligned}
$$

Similarly, for second derivative

$$
(i) \Rightarrow \quad D^{2}=\frac{1}{h^{2}}\left[\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4}+\frac{\Delta^{5}}{5} \ldots \ldots \ldots .\right]^{2}
$$

$$
D^{2}=\frac{1}{h^{2}}\left[\Delta^{2}-\Delta^{3}+\frac{11}{12} \Delta^{4}-\frac{5}{6} \Delta^{5}+\cdots \cdots \cdot\right] \quad \text { After solving }
$$

$$
D^{2} y_{0}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\frac{5}{6} \Delta^{5} y_{0}+\cdots \ldots \ldots .\right]=y_{0}^{\prime \prime}
$$

USING BACKWARD DIFFERENCE OPERATOR " $\bar{\square}$

Since $h D=\log E=\log \left(E^{-1}\right)^{-1}=-1 \log E^{-1}=-1 \log (1-\nabla)$
Since $\log (1-\nabla)=-\nabla-\frac{\nabla^{2}}{2}-\frac{\nabla^{3}}{2}-\cdots \ldots \ldots \ldots \ldots \ldots$ therefore

$$
\begin{equation*}
\Rightarrow D=\frac{1}{h}\left[\nabla+\frac{\nabla^{2}}{2}+\frac{\nabla^{3}}{3}-\frac{\nabla^{4}}{4}+\cdots\right] \tag{i}
\end{equation*}
$$

Now

$$
D f\left(x_{n}\right)=\frac{1}{h}\left[\nabla+\frac{\nabla^{2}}{2}+\frac{\nabla^{3}}{3}-\frac{\nabla^{4}}{4}+\cdots\right] f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)
$$

$$
D f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)=\frac{1}{h}\left[\nabla f\left(x_{n}\right)+\frac{\nabla^{2}}{2} f\left(x_{n}\right)+\frac{\nabla^{3}}{3} f\left(x_{n}\right)-\frac{\nabla^{4}}{4} f\left(x_{n}\right)+\cdots\right]
$$

$$
D y_{n}=y_{n}^{\prime}=\frac{1}{h}\left[\nabla y_{n}+\frac{\nabla^{2}}{2} y_{n}+\frac{\nabla^{3}}{3} y_{n}-\frac{\nabla^{4}}{4} y_{n}+\cdots\right]
$$

Similarly, for second derivative squaring (i) we get

$$
\begin{aligned}
(i) \Rightarrow \quad & D^{2}=\frac{1}{h^{2}}\left[\nabla^{2}+\nabla^{3}+\frac{11}{12} \nabla^{4}+\frac{5}{6} \nabla^{5}+\cdots \ldots \ldots \ldots\right] \\
& D^{2} y_{n}=y_{n}^{\prime \prime}=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{n}+\frac{5}{6} \nabla^{5} y_{n}+\cdots \ldots \ldots .\right]
\end{aligned}
$$

TO COMPUTE DARIVATIVE OF A TABULAR FUNCTION AT POINT NOT FOUND IN THE TABLE

Since

$$
\begin{align*}
& y\left(x_{n}+p h\right)= \\
& f\left(x_{n}\right)+P \nabla f\left(x_{n}\right)+\frac{P(P+1)}{2!} \nabla^{2} f\left(x_{n}\right)+\cdots \cdots+\frac{P(P+1)(P+2) \ldots \ldots(P+n-1)}{n!} \nabla^{n} f\left(x_{n}\right) \tag{i}\\
& \text { Where } \quad x=x_{n}+p h \quad \Rightarrow p=\frac{x-x_{n}}{n} ;-n \leq P \leq 0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{ii}\\
& (i) \Rightarrow \quad y=f(x)=f\left(x_{n}\right)+P \nabla f\left(x_{n}\right)+\frac{P(P+1)}{2!} \nabla^{2} f\left(x_{n}\right)+\ldots \ldots \ldots \ldots \ldots . . \tag{iii}
\end{align*}
$$

Differentiate with respect to ' x ' and using (i) \& (ii)

$$
\begin{aligned}
& y^{\prime}=\frac{d y}{d x}=\frac{d y}{d p} \cdot \frac{d p}{d x}=\frac{d}{d p}\left[f\left(x_{n}\right)+P \nabla f\left(x_{n}\right)+\frac{P(P+1)}{2!} \nabla^{2} f\left(x_{n}\right)+\cdots \ldots \ldots \ldots\right] \frac{d}{d x}\left(\frac{x-x_{n}}{h}\right) \\
& y^{\prime}=\frac{d}{d p}\left[0+\nabla f\left(x_{n}\right)+\frac{(2 P+1)}{2} \nabla^{2} f\left(x_{n}\right)+\cdots \cdots \cdots \cdots\left(\frac{1-0}{h}\right)\right. \\
& y^{\prime}= \\
& \frac{1}{h}\left[\nabla f\left(x_{n}\right)+\frac{(2 P+1)}{2} \nabla^{2} f\left(x_{n}\right)+\left(\frac{3 \mathrm{P}^{2}+6 P^{2}+2}{6}\right) \nabla^{3} f\left(x_{n}\right)+\left(\frac{4 \mathrm{P}^{3}+18 \mathrm{P}^{2}+22 P+6}{24}\right) \nabla^{4} f\left(x_{n}\right) \ldots \ldots \ldots . .\right]
\end{aligned}
$$

\qquad
Differentiate y^{\prime} with respect to ' x '

$$
y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime}}{d p} \cdot \frac{d p}{d x}=\frac{1}{h}\left[\nabla^{2} f\left(x_{n}\right)+(P+1) \nabla^{3} f\left(x_{n}\right)+\left(\frac{6 \mathrm{P}^{2}+18 P+11}{12}\right) \nabla^{4} f\left(x_{n}\right) .\right.
$$

Equation $(\boldsymbol{i v}) \&(\boldsymbol{v})$ are Newton's backward interpolation formulae which can be used to compute $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives of a tabular function near the end of table similarly

Expression of Newton's forward interpolation formulae can be derived to compute the $1^{\text {st }}, 2^{\text {nd }}$ and higher order derivatives near the beginning of table of values.

Since $\quad \sigma=E^{\frac{1}{2}}-E^{-\frac{1}{2}}$
Since $h D=\log E$ and $E=e$ therefore $\quad \sigma=e^{\frac{h D}{2}}-e^{-\frac{h D}{2}}$
Also as $\sinh \theta=\frac{e^{\theta}-e^{-\theta}}{2}$ therefore $\sigma=2 \sin \left(\frac{h D}{2}\right)$

$$
\Rightarrow \frac{\sigma}{2}=\sinh \left(\frac{h D}{2}\right) \quad \Rightarrow \sinh ^{-1}\left(\frac{\sigma}{2}\right)=\left(\frac{h D}{2}\right) \Rightarrow D=\frac{2}{h} \sinh ^{-1} \frac{\sigma}{2}
$$

Since by Maclaurin series

$$
\begin{align*}
& \sinh ^{-1}(x)=x-\frac{1}{2}\left(\frac{x^{3}}{3}\right)+\frac{1.3}{2.4} \frac{x^{5}}{5}-\frac{1.3 .5}{2.4 .6} \frac{x^{7}}{7}+\cdots \ldots \ldots \ldots \\
& \Rightarrow D=\frac{2}{h}\left[\frac{\sigma}{2}-\frac{1}{2}\left(\frac{\left(\frac{\sigma}{2}\right)^{3}}{3}\right)+\frac{1.3}{2.4} \frac{\left(\frac{\sigma}{2}\right)^{5}}{5}-\frac{1.3 .5}{2.4 .6} \frac{\left(\frac{\sigma}{2}\right)^{7}}{7}+\cdots\right] \\
& D=\frac{1}{h}\left[\sigma-\frac{\sigma^{3}}{24}+\frac{3 \sigma^{5}}{640} \ldots \ldots \ldots \ldots . . .\right] \quad \ldots \ldots \ldots \ldots \ldots \ldots . \tag{i}
\end{align*}
$$

Similarly, for second derivatives squaring (i) and simplifying
$D^{2}=\frac{1}{h^{2}}\left[\sigma^{2}-\frac{\sigma^{4}}{12}+\frac{\sigma^{6}}{90}-\cdots \ldots \ldots \ldots ..\right]$
$D^{2} y=y^{\prime \prime}=\frac{1}{h^{2}}\left[\sigma^{2} y-\frac{\sigma^{4} y}{12}+\frac{\sigma^{6} y}{90}-\cdots \ldots \ldots \ldots.\right]$.
For calculating first and second derivatiye at an inter tabular form (point) we use (i) and (ii) while $1^{\text {st }}$ derivative can be computed by another convergent form for D_{i} which can derived as follows

Since

$$
D=\frac{1}{h}\left[\sigma-\frac{\sigma^{3}}{24}+\frac{3 \sigma^{5}}{640} \ldots \ldots \ldots \ldots .\right]
$$

Multiplying R.H.S by $\frac{\mu}{\sqrt{1+\frac{\delta^{2}}{4}}}=1$ which is unity and noting the binomial expansion

$$
\left(1+\frac{\delta^{2}}{4}\right)^{-1 / 2}=1-\frac{\sigma^{2}}{8}+\frac{3 \sigma^{4}}{128}-\frac{15 \sigma^{6}}{48 \times 64} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

We get $D=\frac{\mu}{h}\left[1-\frac{\sigma^{2}}{8}+\frac{3 \sigma^{4}}{128} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right]\left[\sigma-\frac{\sigma^{3}}{24}+\frac{3 \sigma^{5}}{640}\right.$.
$\Rightarrow D=\frac{\mu}{h}\left[\sigma-\frac{\sigma^{3}}{68}+\frac{4 \sigma^{5}}{120} \ldots \ldots \ldots \ldots ..\right]$
Therefore $\quad \Rightarrow D^{\prime}=D y=\frac{\mu}{h}\left[\sigma y-\frac{\sigma^{3}}{68} y+\frac{4 \sigma^{5}}{120} y\right.$

Equation (ii) and (iii) are called STERLING FORMULAE for computing the derivative of a tabular function. Equation (iii) can also be written as

$$
D^{\prime}=D y=\frac{\mu}{h}\left[\sigma y-\frac{1^{2}}{3!} \sigma^{3} y+\frac{1^{2} 2^{2}}{5!} \sigma^{5} y-\frac{1^{2} 2^{2} 3^{2}}{7!} \sigma^{7} y+\cdots \ldots \ldots \ldots\right]
$$

STERLING FORMULA

Sterling's formula is
$y=y_{0}+\frac{p}{1!}\left(\frac{\Delta y_{0}+\Delta y_{-1}}{2}\right)+\frac{p^{2}}{2!}\left(\Delta^{2} y_{-1}\right)+\frac{p\left(p^{2}-1^{2}\right)}{3!}\left[\frac{\left(\Delta^{3} y_{-1}-\Delta^{3} y_{-2}\right)}{2}\right]+\frac{p^{2}\left(p^{2}-1^{2}\right)}{4!}\left(\Delta^{4} y_{-2}\right)+\cdots \ldots \ldots$
Where

$$
p=\frac{x-x_{0}}{h}
$$

DERIVATION:

Since by Gauss forward interpolation formula
$y=y_{0}+P \Delta y_{0}+\frac{P(P-1)}{2!} \Delta^{2} y_{-1}+\frac{P(P-1)(P+1)}{3!} \Delta^{3} y_{-1}$.
Also by Gauss backward interpolation formula
$y=y_{0}+P \Delta y_{0}+\frac{P(P-1)}{2!} \Delta^{2} y_{-1}+\frac{P(P-1)(P+1)}{3!} \Delta^{3} y_{-2} \ldots \ldots \ldots$.
Taking mean of both values
$y=y_{0}+\frac{p}{1!}\left(\frac{\Delta y_{0}+\Delta y_{-1}}{2}\right)+\frac{p^{2}}{2!}\left(\Delta^{2} y_{-1}\right)+\frac{\boldsymbol{p}\left(\boldsymbol{p}^{2}-1^{2}\right)}{3!}\left[\frac{\left(\Delta^{3} y_{-1}-\Delta^{3} y_{-2}\right)}{2}\right]+\frac{p^{2}\left(\boldsymbol{p}^{2}-1^{2}\right)}{4!}\left(\Delta^{4} y_{-2}\right)+\cdots \ldots \ldots$

TWO AND THREE POINT FORMULAE

Since $\quad y_{i}^{\prime}=\frac{\Delta}{h} y_{i}=\frac{y_{i+1}-y_{i}}{h}=\frac{y\left(x_{i}+h\right)-y\left(x_{i}\right)}{h}$
Similarly $\quad y_{i}^{\prime}=\frac{\nabla}{h} y_{i}=\frac{y_{i}-y_{i-1}}{h}=\frac{y\left(x_{i}\right)-y\left(x_{i}-h\right)}{h}$.
Adding (i) and (ii) we get
$2 y_{i}^{\prime}=\frac{y\left(x_{i}+h\right)-y\left(x_{i}-h\right)}{h} \Rightarrow y_{i}^{\prime}=\frac{1}{2 h}\left[y\left(x_{i}+h\right)-y\left(x_{i}-h\right)\right]$
Subtracting (i) and (iii) we get two point formulae for the first derivative
Similarly, we know that
$y_{i}^{\prime \prime}=\frac{\Delta^{2}}{h^{2}} y_{i}=\frac{y_{i+2}-2 y_{i+1}+y_{i}}{h^{2}}=\frac{1}{h^{2}}\left[y\left(x_{i}+2 h\right)-2 y\left(x_{i}+h\right)+y\left(x_{i}\right)\right]$
And $\quad y^{\prime \prime}{ }_{i}=\frac{\nabla^{2}}{h^{2}} y_{i}=\frac{y_{i}-2 y_{i-1}+y_{-2}}{h^{2}}$
$y^{\prime \prime}{ }_{i}=\frac{1}{h}\left[y\left(x_{i}\right)-2 y\left(x_{i}-h\right)+y\left(x_{i}-2 h\right)\right]$
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.........................
Similarly

$$
\begin{align*}
y^{\prime \prime} & =\frac{\sigma^{2}}{h^{2}} y_{i}=\frac{\sigma y_{i+\frac{1}{2}}-\sigma y_{i-\frac{1}{2}}}{h^{2}}=\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} \\
y^{\prime \prime} & =\frac{y\left(x_{i}-h\right)-2 y\left(x_{i}\right)+y\left(x_{i}-h\right)}{h^{2}} \tag{vi}
\end{align*}
$$

By subtracting (iv) and (vi) we get three point formulae for computing the $2^{\text {nd }}$ derivative.
/y y^{5} ample 7.1 Compute $f^{\prime \prime}(0)$ and $f^{\prime}(0.2)$ from the following tabular daturn
\checkmark

x	0.0	0.2	0.4	0.6	0.8	1.0
$f(x)$	1.00	1.16	3.56	13.96	41.96	101.00

Solution: Since $x=0$ and 0.2 appear at and near beginning of the takt 0 多 it is appropriate to use formulae based on forward differences to find the the derivatives. The difference table for the given data is depicted below:

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$	$\Delta^{4} f(x)$	$\Delta^{5} f(x)$
0.0	1.00	0.16				
0.2	1.16	2.40	8.00	5.76		
0.4	3.56	10.40	17.60	9.60	3.84	0.00
0.6	13.96	28.00	31.04	13.44	3.84	
0.8	41.96	59.04				
1.0	101.00					

Using forvard difference formula (7.5) for $D^{2} f(x)$, i.e.

$$
\left[D^{2} f(x)=\frac{1}{h^{2}}\left[\Delta^{2} f(x)-\Delta^{3} f(x)+\frac{11}{12} \Delta^{4} f(x)-\frac{5}{6} \Delta^{5} f(x)\right]\right]
$$

We obtain

$$
f^{\prime \prime}(0)=\frac{1}{(0.2)^{2}}\left[2.24-5.76+\frac{11}{12}(3.84)-\frac{5}{6}(0)\right]=0.0
$$

Also, using the fommula (7.3) we have

$$
\left\{D f(x)=\frac{1}{h}\left[\Delta f(x)-\frac{\Delta^{2} f(x)}{2}+\frac{\Delta^{3} f(x)}{3}-\frac{\Delta^{4} f(x)}{4}\right]\right\}
$$

Hence,

$$
f^{\prime}(0.2)=\frac{1}{0.2}\left(2.40-\frac{8.00}{2}+\frac{9.60}{3}-\frac{3.84}{4}\right)=3.2
$$

Solution Since $x=2.2$ occurs at the end of the table, it is approprinens. use backward difference formulae for derivatives. The backward diffompang for the given data is shown as follows:

Using backward difference formulae (7.8) and (7.9) for $y^{\prime}(x)$ and y "(x), we have

$$
\left\{y_{n}^{\prime}=\frac{1}{h}\left(\nabla y_{n}+\frac{\nabla^{2} y_{n}}{2}+\frac{\nabla^{3} y_{n}}{3}+\frac{\nabla^{4} y_{n}}{4}\right)\right\}
$$

Therefore,
$y^{\prime}(2.2)=\frac{1}{0.2}\left(1.6359+\frac{0.2964}{2}+\frac{0.0535}{3}+\frac{0.0094}{4}\right)=5(1.8043)=9.0215$
Also

$$
\left(y_{n}^{\prime \prime}=\frac{1}{h^{2}}\left(\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{n}\right)\right)
$$

Therefore.

$$
\begin{aligned}
& \text { Therefore. } \\
& y^{\prime \prime}(2.2)=\frac{1}{(0.2)^{2}}\left[0.2964+0.0535+\frac{11}{12}(0.0094)\right]=25(0.3585)=8.9629
\end{aligned}
$$

Example 7.3 From the following table of values, estimate $y^{\prime}(2)$ and $y^{\prime \prime}(2)$ using appropriate central difference formula:

x	0	1	2	3	4
y	6.9897	7.4036	7.7815	8.1281	8.4510

Solution The central difference table for the given data is given below:

Now, using central difference formula (7.13), we shall compute the first derivative

$$
y^{\prime}=\frac{\mu}{h}\left(\delta y-\frac{1}{6} \delta^{3} y+\frac{1}{30} \delta^{5} y-\cdots\right)
$$

In the present example

$$
y^{\prime}(2)=\frac{1}{1}\left(\frac{0.3779+0.3466}{2}-\frac{1}{6} \frac{0.0047+0.0076}{2}\right)=0.3613
$$

To compute the second derivative, we shall use formula (7.12). Thus,

$$
y^{\prime \prime}==\frac{1}{h^{2}}\left(\delta^{2} y-\frac{1}{12} \delta^{4} y+\frac{1}{90} \delta^{6} y-\cdots\right)
$$

In this example,

$$
y^{\prime \prime}(2)=\frac{1}{1}\left(-0.0313-\frac{0.0029}{12}\right)=-0.0315
$$

Example 7.4 Find $y^{\prime}(0.25)$ and $f^{\prime \prime}(0.25)$ from the following data using based on divided differences:

x	y	1 st divided difference	2nd divided difference	3rd divided	4hthentive
$x_{0}=0.15$	0.1761			difterence	difference
$x_{1}=0.21$	0.3222		-5.7500		
$x_{2}=0.23$	0.3617	.9750	-3.8750	15.6250	
$x_{3}=0.27$	0.4314	1.7425	-2.9833	8.1064	
$x_{4}=0.32$	0.5051	1.4740	-2.1750	6.7358	
$x_{s}=0.35$	0.5441	1.3000			

Using Newton's divided difference formula (7.21), we have

$$
\begin{aligned}
y(x)=p_{5}(x)= & y\left[x_{0}\right]+\left(x-x_{0}\right) y\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) y\left[x_{0}, x_{1}, x_{2}\right] \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) y\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) y\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]
\end{aligned}
$$

Now, using values from the above table of divided differences, we obtain

$$
\begin{align*}
y(x)= & 0.1761+(x-0.15) 2.4350+(x-0.15)(x-0.21)(-5.75) \\
& +(x-0.15)(x-0.21)(x-0.23) 15.625 \\
& +(x-0.15)(x-0.21)(x-0.23)(x-0.27)(-44.23) \\
& +(x-0.15)(x-0.21)(x-0.23)(x-0.27)(x-0.32) 172.2 \tag{1}
\end{align*}
$$

Differentiating Eq. (1) with respect to x, we get

$$
\begin{align*}
y^{\prime}(x)= & 2.4350-(2 x-0.36) 5.75+15.625\left(3 x^{2}-1.18 x+0.1143\right) \\
& -44.23\left(4 x^{3}-2.58 x^{2}+0.5472 x-38.105 \times 10^{-3}\right) \\
& +172.2\left(5 x^{4}-4.72 x^{3}+1.6464 x^{2}-0.2515 x+14.15 \times 10^{-3}\right) \tag{2}
\end{align*}
$$

Which immediately gives
$y^{\prime}(0.25)=2.4350-0.805+0.10625+2.432 \times 10^{-3}-7.5338 \times 10^{-3}=1.7312$ Now, differentiating Eq. (2) once again with respect to x, we sbtain

$$
y^{\prime \prime}(x)=3444 x^{3}-2969.112 x^{2}+888.99696 x-91.700456
$$

which gives at once

$$
\begin{aligned}
& y^{\prime \prime}(x)=3444 x^{3}-2969.112 x^{2}+888.99696 x-91.100450 \\
& \text { gives at once } \\
& y^{\prime \prime}(0.25)=53.8125-185.5695+222.24924-91700456 \rightarrow-1208216
\end{aligned}
$$

NUMERICAL INTEGRATION

The process of producing a numerical value for the defining integral $\int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}$ is called Numerical Integration. Integration is the process of measuring the Area under a function plotted on a graph. Numerical Integration is the study of how the numerical value of an integral can be found.

Also called Numerical Quadrature if $\quad \int_{a}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} \approx \sum_{i=0}^{n} \boldsymbol{c}_{\boldsymbol{i}} \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ which refers to finding a square whose area is the same as the area under the curve.

A GENERAL FORMULA FOR SOLVING NUMERICAL INTEGRATION

This formula is also called a general quadrature formula.
Suppose $f(x)$ is given for equidistant value of ' x ' say $a=x_{0}, x_{0}+h, x_{0}+2 h \ldots x_{0}+n h=b$
Let the range of integration (a, b) is divided into ' n ' equal parts each of width ' h ' so that "b-a=nh".

By using fundamental theorem of numerical analysis It has been proved the general quadrature formula which is as follows
$I=h\left[n f\left(x_{0}\right)+\frac{n^{2}}{2} \Delta f\left(x_{0}\right)+\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \frac{\Delta^{2} f\left(x_{0}\right)}{2!}+\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \frac{\Delta^{3} f\left(x_{0}\right)}{3!}+\left(\frac{n^{5}}{5}-\frac{3 n^{4}}{2}+\frac{11}{3} n^{3}-\right.\right.$
$\left.3 n^{2}\right) \frac{\Delta^{4} f\left(x_{0}\right)}{4!}+\cdots \ldots \ldots \ldots \ldots \ldots+$ up to $(n+1)$ terms $]$
Bu putting n into different values various formulae is used to solve numerical integration.
That are Trapezoidal Rule, Simpson's $1 / 3$, Simpson's $3 / 8$, Boole's, Weddle's etc.
IMPORTANCE: Numerical integration is useful when

- Function cannot be integrated analytically.
- Function is defined by a table of values.
- Function can be integrated analytically but resulting expression is so complicated.

COMPOSITE (MODIFIED) NUMERICAL INTEGRATION

Trapezoidal and Simpson's rules are limited to operating on a single interval. Of course, since definite integrals are additive over subinterval, we can evaluate an integral by dividing the interval up into several subintervals, applying the rule separately on each one and then totaling up. This strategy is called Composite Numerical Integration.

TRAPEZOIDAL RULE

Rule is based on approximating $\boldsymbol{f}(\boldsymbol{x})$ by a piecewise linear polynomial that interpolates $\boldsymbol{f}(\boldsymbol{x})$ at the nodes " $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}}, \ldots \ldots \ldots \boldsymbol{x}_{\boldsymbol{n}}$ "

Trapezoidal Rule defined as follows
$\int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left(y_{0}+y_{1}\right)-\frac{h^{3}}{12} y^{\prime \prime}(a) \quad$ And this is called Elementary Trapezoidal Rule.
Composite form of Trapezoidal Rule is $\int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\cdots \ldots .+y_{n-1}\right)+y_{n}\right]$

DARIVATION ($1^{\text {st }}$ METHOD)

Consider a curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ bounded by $\boldsymbol{x}_{\mathbf{0}}=\boldsymbol{a}$ and $\boldsymbol{x}_{\mathbf{1}}=\boldsymbol{b}$ we have to find $\int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}$ i.e. Area under the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ then for one Trapezium under the area i.e. $\mathrm{n}=1$

$\int_{a}^{b} f(x) d x=$ Area of Trapezium $=\frac{\text { sum of parallel sides }}{2} \times$ perpendicular
$\int_{a}^{b} f(x) d x=\frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2} \times h=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]$
For two trapeziums i. e. $\mathrm{n}=2$
$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]=\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+f\left(x_{2}\right)\right]$
For $\mathrm{n}=3 \quad \int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{h}{2}\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right]$
$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+2\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+f\left(x_{3}\right)\right]$
In general for n - trapezium the points will be " $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}}, \ldots \ldots \ldots \boldsymbol{x}_{\boldsymbol{n}}$ " and function will be $" y_{0}, y_{1}, \ldots \ldots . y_{n} "$
$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+2\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots \ldots \ldots+f\left(x_{n-1}\right)\right]+f\left(x_{n}\right)\right]$
$\int_{a}^{b} f(x) d x=\frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\cdots \ldots \ldots+y_{n-1}\right)+y_{n}\right]$
Trapezium rule is valid for n (number of trapezium) is even or odd.
The accuracy will be increase if number of trapezium will be increased OR step size will be decreased mean number of step size will be increased.

DARIVATION ($\mathbf{2 d ~}^{\text {nd }}$ METHOD)

Define $y=f(x)$ in an interval $[\boldsymbol{a}, \boldsymbol{b}]=\left[\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\boldsymbol{n}}\right]$ then
$\int_{x_{0}}^{x_{0}} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots \ldots \ldots \ldots \ldots .+\int_{x_{n-1}}^{x_{n}} f(x) d x$
$\int_{x_{0}}^{x_{0}} f(x) d x=\left[\frac{h}{2}\left(y_{0}+y_{1}\right)\right]+\left[\frac{h}{2}\left(y_{1}+y_{2}\right)\right]+\cdots \ldots \ldots \ldots+\left[\frac{h}{2}\left(y_{n-1}+y_{n}\right)\right]+\in_{n}$
Where $\epsilon_{n}=-\frac{\boldsymbol{h}^{3}}{12}\left[\boldsymbol{y}^{\prime \prime}\left(a_{1}\right)+\boldsymbol{y}^{\prime \prime}\left(a_{2}\right)+\cdots \ldots \ldots \ldots \ldots \boldsymbol{y}^{\prime \prime}\left(a_{n}\right)\right]$ is global error.
$\Rightarrow E_{n}=-\frac{h^{3}}{12}\left[\boldsymbol{n} \boldsymbol{y}^{\prime \prime}(a)\right]$
Therefore $\quad \int_{a}^{b} f(x) d x=\frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\cdots \ldots \ldots \ldots+y_{n-1}\right)+y_{n}\right]$
Where $a=x_{0}$ and $b=x_{n}$

REMEMBER: The maximum incurred in approximate value obtained by Trapezoidal Rule is nearly equal to $\frac{(b-a)^{3} M}{12 n^{2}}$ where $\boldsymbol{M}=\boldsymbol{m a x}\left|\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})\right|$ on $[\boldsymbol{a}, \boldsymbol{b}]$

EXAMPLE: Evaluate $\boldsymbol{I}=\int_{\mathbf{0}}^{\mathbf{1}} \frac{\mathbf{1}}{\mathbf{1 + \boldsymbol { x } ^ { 2 }}} \mathbf{d x}$ using Trapezoidal Rule when $\boldsymbol{h}=1 / 4$
SOLUTION

X	0	$1 / 4$	$1 / 2$	$3 / 4$	1
$\mathrm{~F}(\mathrm{x})$	1	0.9412	0.8000	0.6400	0.5000

Since by Trapezoidal Rule $\int_{0}^{1} \frac{1}{1+x^{2}} d x=\frac{h}{2}\left[y_{0}+y_{4}+2\left(y_{1}+y_{2}+y_{3}\right)\right]=\mathbf{0 . 7 8 2 8}$

SIMPSON'S ($\frac{1}{3}$) RULE

Rule is based on approximating $\mathrm{f}(\mathrm{x})$ by a Quadratic Polynomial that interpolate $\mathrm{f}(\mathrm{x})$ at x_{i-1}, x_{i} and x_{i+1}

Simpson's Rule is defined as for simple case $\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right]-\frac{h^{5}}{90} y^{i v}(\S)$
While in composite form it is defined as
$\int_{x_{0}}^{x_{2 N}} f(x) d x=\frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3}+\cdots \ldots \ldots .+y_{2 N-1}\right)+2\left(y_{2}+y_{4}+\cdots \ldots \ldots+y_{2 N-2}\right)+y_{N}\right]$
Global error for Simpson's Rule is defined as $\quad \in=-\frac{\boldsymbol{x}_{2 N}-x_{0}}{180} \boldsymbol{h}^{4} \boldsymbol{y}^{i v}(\S)=\boldsymbol{O}\left(\boldsymbol{h}^{4}\right)$

REMARK

In Simpson Rule number of trapezium must of Even and number of points must of Odd.

DERIVATION OF SIMPSON'S ($\frac{1}{3}$) RULE ($1^{\text {st }}$ method)

Consider a curve bounded by $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ and let ' c ' is the mid-point between \boldsymbol{a} and \boldsymbol{b} such that $\boldsymbol{a} \ll \boldsymbol{b}$ we have to find $\int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}$ i.e. Area under the curve.

Consider $X=C+\boldsymbol{Y} \ldots \ldots \ldots \ldots(i) \Rightarrow d x=d y$
Now $\boldsymbol{c}=\boldsymbol{O B}=\boldsymbol{O} \boldsymbol{A}+\boldsymbol{A B} \Rightarrow \boldsymbol{c}=\boldsymbol{a}+\boldsymbol{h} \Rightarrow \boldsymbol{a}=\boldsymbol{c}-\boldsymbol{h}$
$b=O C=O B+B C \Rightarrow b=c+h$
(i) \Rightarrow put $x=$ a then $a=c+y \Rightarrow c-h=c+y \Rightarrow-h=y$
put $x=b$ then $c+h=c+y \Rightarrow h=y$

Now $\quad \int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}=\int_{-\boldsymbol{h}}^{+\boldsymbol{h}} f(\boldsymbol{c}+\boldsymbol{y}) d \boldsymbol{y}$ where y is small change
Using Taylor Series Formula $f(x+h)=f(x)+\boldsymbol{h} f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\cdots \ldots \ldots \ldots \ldots$
$\int_{-h}^{+h} f(c+y) d y=\int_{-h}^{+h}\left[f(c)+y f^{\prime}(c)+\frac{y^{2}}{2!} f^{\prime \prime}(c)+\cdots \ldots \ldots \ldots \ldots.\right] d y$
Neglecting higher derivatives

$$
\begin{align*}
& \int_{-h}^{+h} f(c+y) d y=\int_{-h}^{+h}\left[f(c)+y f^{\prime}(c)+\frac{y^{2}}{2!} f^{\prime \prime}(c)\right] d y \\
& \int_{-h}^{+h} f(c+y) d y=\left|y f(c)+\frac{y^{2}}{2} f^{\prime}(c)+\frac{y^{3}}{2 \cdot 3} f^{\prime \prime}(c)\right|_{-h}^{h}=2 h\left[f(c)+\frac{h^{2}}{6} f^{\prime \prime}(c)\right] \ldots \tag{i}
\end{align*}
$$

$f(a)=f(c-h)=f(c)-h f^{\prime}(c)+\frac{h^{2}}{2!} f^{\prime \prime}(c)+n e g l e c t e d$
$f(b)=f(c+h)=f(c)+h f^{\prime}(c)+\frac{h^{2}}{2!} f^{\prime \prime}(c)+$ neglected
$f(c-h)-f(c+h)=2 f(c)+2 \frac{h^{2}}{2!} f^{\prime \prime}(c)$
$\boldsymbol{f}(\boldsymbol{c}-\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{c}+\boldsymbol{h})-\mathbf{2} \boldsymbol{f}(\boldsymbol{c})=\boldsymbol{h}^{\mathbf{2}} \boldsymbol{f}^{\prime \prime}(\boldsymbol{c})$ Put this value in (i)
$\int_{a}^{b} f(x) d x=2 h\left[f(c)+\frac{1}{6}\{f(c-h)+f(c+h)-2 f(c)\}\right]$
$\int_{a}^{b} f(x) d x=\frac{2 h}{6}[6 f(c)+f(c-h)+f(c+h)-2 f(c)]$
$\int_{a}^{b} f(x) d x=\frac{h}{3}[4 f(c)+f(c-h)+f(c+h)]=\frac{h}{3}[4 f(c)+f(a)+f(b)]$
$\int_{a}^{b} f(x) d x=\frac{h}{3}\left[4 f\left(x_{1}\right)+f\left(x_{0}\right)+f\left(x_{2}\right)\right]=\frac{h}{3}\left[4 y_{1}+y_{0}+y_{2}\right]$
For $\mathrm{n}=4$

$$
\begin{aligned}
\int_{x_{0}}^{x_{4}} f(x) d x & =\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x=\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right]+\frac{h}{3}\left[y_{2}+4 y_{3}+y_{4}\right] \\
\int_{x_{0}}^{x_{4}} f(x) d x & =\frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3}\right)+2 y_{2}+y_{4}\right]
\end{aligned}
$$

In General

$$
\int_{x_{0}}^{x_{2 N}} f(x) d x=\frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3} \ldots \ldots . y_{2 N-1}\right)+2\left(y_{2}+y_{4} \ldots \ldots+y_{2 N-2}\right)+y_{2 N}\right]
$$

DERIVATION OF SIMPSON'S $\left(\frac{1}{3}\right)$ RULE ($2^{\text {nd }}$ method)

$\int_{x_{0}}^{x_{2 N}} f(x) d x=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots \ldots \ldots \ldots \ldots \ldots \ldots+\int_{x_{2 N-2}}^{x_{2 N}} f(x) d x$
$\int_{x_{0}}^{x_{2 N}} f(x) d x=\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right]+\frac{h}{3}\left[y_{2}+4 y_{3}+y_{4}\right]+\cdots \ldots \ldots \ldots \ldots \ldots+\frac{h}{3}\left[y_{2 N-2}+\right.$ $\left.4 y_{2 N-1}+y_{2 N}\right]$
$\int_{x_{0}}^{x_{2 N}} f(x) d x=\frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{3} \ldots \ldots y_{2 N-1}\right)+2\left(y_{2}+y_{4} \ldots+y_{2 N-2}\right)+y_{2 N}\right]$
This is required formula for Simpson's (1/3) Rule

EXAMPLE

Compute $I=\sqrt{\frac{2}{\pi}} \int_{0}^{1} e^{-\frac{x^{2}}{2}} d \mathbf{x}$ using Simpson's (1/3) Rule when $\boldsymbol{h}=\mathbf{0 . 1 2 5}$
SOLUTION

X	0	0.125	0.250	0.375	$0.5 \times$	0.625	0.750	0.875	1
$\mathrm{~F}(\mathrm{x})$	0.798	0.792	0.773	0.744	0.704	0.656	0.602	0.544	0.484

Since by Simpson's Rule

$$
\sqrt{\frac{2}{\pi}} \int_{0}^{1} e^{-\frac{x^{2}}{2}} \mathrm{dx}=\frac{h}{3}\left[y_{0}+y_{8}+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{6}\right)\right]=0.6827
$$

EXERCISE:

i. Compute $\boldsymbol{I}=\int_{1.0}^{1.8} \frac{e^{x}+e^{-x}}{2} \mathbf{d x}$ using Simpson's (1/3) Rule when $\boldsymbol{h}=\mathbf{0 . 2}$
ii. Compute $\boldsymbol{I}=\int_{0}^{\frac{\pi}{2}} \frac{d x}{\sin ^{2} x+\frac{1}{4} \cos ^{2} x}$ using Simpson's (1/3) Rule
iii. Compute $\boldsymbol{I}=\int_{1}^{2} \frac{d x}{x}$ using Simpson's (1/3) Rule and also obtain the error bound by taking $h=0.25$
iv. Compute $\boldsymbol{I}=\int_{0}^{\mathbf{1}} \boldsymbol{e}^{x} d x$ using Simpson's (1/3) Rule by dividing the interval of integration into eight equal parts.

SIMPSON'S $\left(\frac{3}{8}\right)$ RULE

Rule is based on fitting four points by a cubic.
Simpson's Rule is defined as for simple case
$\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]-\frac{3 h^{5}}{80} y^{i v}(\S)$
While in composite form ("n" must be divisible by 3) it is defined as

$$
\int_{x_{0}}^{x_{N}} f(x) d x=\frac{3 h}{8}\left[y_{0}+3\left(y_{1}+y_{2}+\cdots \ldots \ldots . y_{N-1}\right)+2\left(y_{3}+y_{6}+\cdots \ldots \ldots .+y_{N-3}\right)+y_{N}\right]
$$

DERIVATION

$$
\begin{gathered}
\int_{x_{0}}^{x_{N}} f(x) d x=\int_{x_{0}}^{x_{3}} f(x) d x+\int_{x_{3}}^{x_{6}} f(x) d x+\cdots \ldots \ldots \ldots \ldots \ldots \ldots+\int_{x_{N-3}}^{x_{N}} f(x) d x \\
\begin{array}{c}
\int_{x_{0}}^{x_{2 N}} f(x) d x=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]+\frac{3 h}{8}\left[y_{3}+3 y_{4}+3 y_{5}+y_{6}\right] \\
\\
+\cdots \ldots \ldots \ldots \ldots+\frac{3 h}{8}\left[y_{N-3}+3 y_{N-2}+3 y_{N-1}+y_{N}\right] \\
\int_{x_{0}}^{x_{N}} f(x) d x=\frac{3 h}{8}\left[y_{0}+3\left(y_{1}+y_{2}+\cdots \ldots \ldots \ldots+y_{N-1}\right)+2\left(y_{3}+y_{6}+\cdots \ldots \ldots .+y_{N-3}\right)+y_{N}\right]
\end{array}
\end{gathered}
$$

This is required formula for Simpson's (3/8) Rule.
REMARK: Global error in Simpson's $(1 / 3)$ and (3/8) rule are of the same order but if we consider the magnitude of error then Simpson $(1 / 3)$ rule is superior to Simpson's $(3 / 8)$ rule.

IN NUMERICAL INTEGRATION, WHICH METHOD IS BETTER THAN OTHERS?

Simpson $1 / 3$ Rule is sufficiently accurate method. It based on fitting 3 points with a quadratic. It is best because it has low error than others. i.e. $\epsilon=-\frac{h^{5}}{90} y^{i v}(\S)$. The global error of Simpson $1 / 3$ and $3 / 8$ rule is same but if we consider the magnitude of error term we notice that Simpson $1 / 3$ rule is superior than Simpson 3/8 rule.

TRAPEZOIDAL AND SIMPSON'S RULE ARE CONVERGENT

If we assume Truncation error, then in the case of Trapezoidal Rule
$I-A=-\frac{(b-a) h^{2}}{12} y^{2}(\S) \quad$ Where " I " is the exact integral and " A " the approximation. If "lmt $h=0$ " then assuming " y " " bounded
"lmt $(I-A)=0$ " (This the definition of convergence of Trapezoidal Rule)
For Simpson's Rule we have the similar result
$I-A=-\frac{(b-a) h^{4}}{180} y^{4}(\S)$
If " lmt $h=0$ " then assuming " y " bounded
"lmt $(I-A)=0$ " (This the definition of convergence of Simpson's Rule)

ERROR TERMS

Rectangular Rule
Trapezoidal Rule
Simpson's (1/3) Rule

$$
\frac{h^{2}}{2!} y^{\prime}(\S)
$$

$$
x_{0}<\S<x_{1}
$$

$$
-\frac{h^{3}}{12} y^{\prime \prime}(\S)
$$

$$
x_{0}<\S<x_{1}
$$

$$
-\frac{h^{5}}{90} y^{i v}(\S)
$$

$$
x_{0}<\S<x_{1}
$$

Simpson's (3/8) Rule

$$
-\frac{3 h^{5}}{80} y^{i v}(\S)
$$

$$
x_{0}<\S<x_{1}
$$

Example 7.6 Find the approximate value of

$$
y=\int_{0}^{\pi} \sin x d x
$$

using (i) trapezoidal rule, (ii) Simpson's $1 / 3$ rule by dividing the range integration into six equal parts. Calculate the percentage error from its true vatue. in both the cases.

Solution We shall at first divide the range of integration ($0, \pi$) into six equal parts so that each part is of width $\pi / 6$ and write down the table of values:

x	0	$\pi / 6$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$5 \pi / 6$	π
$y=\sin x$	0.0	0.5	0.8660	1.0	0.8660	0.5	0.0

Applying trapezoidal rule, we have

$$
\int_{0}^{\pi} \sin x d x=\frac{h}{2}\left[y_{0}+y_{6}+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}\right)\right]
$$

Here, h, the width of the interval is $\pi / 6$. Therefore.

$$
y=\int_{0}^{\pi} \sin x d x=\frac{\pi}{12}[0+0+2(3.732)]=\frac{3.1415}{6} \times 3.732=1.9540
$$

Applying Simpson's $1 / 3$ rule (7.41), we have

$$
\begin{aligned}
\int_{0}^{\pi} \sin x d x & =\frac{h}{3}\left[y_{0}+y_{6}+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{4}\right)\right] \\
& =\frac{\pi}{18}[0+0+(4 \times 2)+(2)(1.732)]=\frac{3.1415}{18} \times 11464=2.0008
\end{aligned}
$$

But the actual value of the integral is

$$
\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=2
$$

Hence, in the case of trapezoidal rule
The percentage of error $=\frac{2-1.954}{2} \times 100=23$

While in the case of Simpion's rule the percentage error is
 $$
\frac{2-2.0008}{2} \times 100=0.04
$$
 (sign ignored)

Example 7.7 From the following data, estimate the value of

$$
\int_{1}^{5} \log x d x
$$

using Simpson's $1 / 3$ nule. Also, obtain the value of h, so that the value of the integral will be accurate up to five decimal places.

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
$y=\log x$	0.0000	0.4055	0.6931	0.9163	1.0986	1.2528	1.3863	1.5041	1.6094

Solution We have from the data, $n=0,1, \ldots, 8$, and $h=0.5$. Now using Simpson's $1 / 3$ rule,

$$
\begin{aligned}
\int_{1}^{s} \log x d x & =\frac{h}{3}\left[y_{0}+y_{8}+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{6}\right)\right] \\
& =\frac{0.5}{3}[(0+1.6094)+4(4.0787)+2(3.178)] \\
& =\frac{0.5}{3}(1.6094+16.3148+6.356) \\
& =4.0467
\end{aligned}
$$

The error in Simpson's rule is given by

$$
E=\frac{x_{2 N}-x_{0}}{180} h^{4} y^{(\mathrm{iv})}(\xi) \text { (ignoring the sign) }
$$

Since

$$
\begin{gathered}
y=\log x, \quad y^{\prime}=\frac{1}{x}, \quad y^{\prime \prime}=-\frac{1}{x^{2}}, \quad y^{\prime \prime \prime}=\frac{2}{x^{3}}, \quad y^{(\mathrm{iv})}=-\frac{6}{x^{4}} \\
\operatorname{Max}_{1 \leq x \leq 5} y^{(\mathrm{iv})}(x)=6, \quad \operatorname{Min}_{1 \leq x \leq 5} y^{(\mathrm{iv})}(x)=0.0096
\end{gathered}
$$

Therefore, the error bounds are given by

$$
\frac{\left(0.0090(4) h^{4}\right.}{180}<E<\frac{(6)(4) h^{4}}{180}
$$

If the result is to be accurate up to five decimal places, then

$$
\frac{24 h^{4}}{180}<10^{-5}
$$

That is, $h^{4}=0.000075$ or $h<0.09$. 11 mum be noted that the actual value of integral
s

$$
\int_{1}^{5} \log x d x \cdot[x \log x-x]_{1}^{5}=5 \log 5-4
$$

Fixample 7.8 Evaluate the integral

$$
I=\int_{0}^{1} \frac{d x}{1+x^{2}}
$$

using (i) trapezoidal rule, (ii) Simpson's $1 / 3$ rule by taking $h=1 / 4$. Hence, compute the approximate value of π.

using Simpson's $1 / 3$ rule, and taking $h=1 / 4$, we have

$$
I=\frac{h}{3}\left(y_{1}+y_{4}+4\left(y_{1}+y_{3}\right)+2 y_{2}\right)=\frac{1}{\sqrt{2}}(15+4(1.512)+1.6=0.7854
$$

$$
\begin{equation*}
1 \quad \frac{h}{2}\left[r_{1}+y_{1}+2\left(y_{1}+y_{2}+y_{3}\right)\right]=\frac{1}{8}[1.5+2(2.312)]=0.7828 \tag{1}
\end{equation*}
$$

using traperomblal rule, and taking $h=1 / 4$

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{\sqrt{+\sqrt{2}}}+\left(\tan ^{-1} x\right)_{0}^{1}=\frac{\pi}{4} \tag{3}
\end{equation*}
$$

Equating (2) and (3), we get $\pi-3.1416$.
Example 7.9 Compute the integral
using Simpson's $1 / 3$ rule, taking $h=0.125$.
Solution At the outset, we shall construct the table of the function as required.
3)

$$
\int_{0}^{1} \frac{d x}{\sqrt{+\sqrt{2}}}+\left(\tan ^{-1} x\right)_{0}^{1}=\frac{\pi}{4}
$$

But the closed form solution to the given integral is

$$
I=\sqrt{\frac{2}{\pi}} \int_{0}^{1} e^{-x^{2} / 2} d x
$$

using Simpson's $1 / 3$ rule, taking $h=0.125$.
Solution At the outset, we

| x | 0 | 0.125 | 0.250 | 0.375 | 0.5 | 0.625 | 0.750 | 0.875 | 1.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y=\sqrt{\frac{2}{\pi} e^{-t^{2} 2}}$ | 0.7979 | 0.7917 | 0.7733 | 0.7437 | 0.7041 | 0.6563 | 0.6023 | 0.5441 | 0.4837 |

Using Simpson's $1 / 3$ rule, we have

$$
\begin{aligned}
I= & \frac{h}{3}\left[y_{0}+y_{8}+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{6}\right)\right] \\
= & \frac{0.125}{3}[0.7979+0.4839+4(0.7917+0.7437+0.6563+0.5441) \\
& +2(0.7 .733+0.7041+0.6023)] \\
= & \frac{0.125}{3}(1.2818+10.9432+4.1594)=0.6827
\end{aligned}
$$

Hence, $I=0.6827$.
Example 7.10 A missile is launched from a ground station. The acceleration during its first 80 seconds of flight, as recorded, is given in the following table:

$l(\mathrm{~s})$	0	10	20	30	40	50	60	70	80	
$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	30	31	63	33.34	35.47	37.75	40.33	43.25	46.69	50.67
mute the velocity of the missile when $t=$	50	s , using Simpson's	$1 / 3 \mathrm{rule}$							

Solution Since acceteration is defined as the rate of change of velocity, we have

$$
\frac{d v}{d t}=a \gamma \text { or } \quad v=\int_{0}^{80} a d t
$$

Using Simpson's 1/3-ruk, we have

$$
\begin{aligned}
& v=\frac{h}{3}\left[\left(y_{0}+y_{x}\right)+4\left(y_{1}+y_{1}+y_{5}+y_{7}\right)+2\left(y_{2}+y_{4}+y_{0}\right)\right] \\
& =\frac{10}{3}\{(30+50.67)+4(31.63+35.47+40.33+46.69) \\
& +2(33.34+37.75+43.25)] \\
& =3086.1 \mathrm{~m} / \mathrm{s} \\
& \text { Therefore, the requised velocity is given by } v=3.0861 \mathrm{~km} / \mathrm{s} \text {. }
\end{aligned}
$$

Question:-
Find the number M and step size h
sa. Hat the error $E_{T}(f, h)$ for the composite trapezoidal Rule is less than 5×10^{-9}. for the approximation 7

$$
\int_{2}^{n} \frac{d x}{x} \approx T(f, h)
$$

Sol:-

$$
\begin{aligned}
& \left|E_{T}(f, h)\right|=\left|-\frac{(b-a)}{12} f_{(}^{(2)} h^{2}\right| \rightarrow(1) \\
& f(x)=\frac{1}{x}, \quad f^{(1)}(x)=-\frac{1}{x^{2}}, f^{(2)}(x)=\frac{2}{x^{3}}
\end{aligned}
$$ occurs at the end. points $x=2$ and thus we have the bound

$$
\left|f^{(2)}(c)\right| \leqslant\left|f^{(2)}(2)\right|=\frac{1}{4} \quad \text { for } 2 \leqslant c \leqslant 7
$$

Now, put values $\operatorname{ain}(1)^{4}$

$$
\begin{aligned}
& \text { put values in (1) } \\
& \left|E_{T}(f, n)\right|^{(2)}\left|\frac{\left.-(b-a) f_{(}^{2}\right) h^{2} \mid}{12}\right| \\
& \leqslant \frac{(7-2) 1 / 4 h^{2}}{12}=\frac{5 h^{2}}{48} \rightarrow(2)
\end{aligned}
$$

$$
\Rightarrow\left|E_{j}(f, h)\right| \leq \frac{5 h^{2}}{48} \rightarrow(2)
$$

The step size n and number " M "
satisfy the relation $h=\frac{S}{M}=h=\frac{b}{1}$, this is used in
to get the relation $\left|E_{T}(f, h)\right| \leq \frac{125}{48 \mathrm{~m}^{2}}$

$$
\begin{equation*}
\leq 5 \times 10^{-9} \tag{3}
\end{equation*}
$$

Now, re-write eq (3). So that its easier to solve for M :

$$
==\frac{2 s}{118} \times 1 C^{9} \therefore M^{2} \cdot(4)
$$

Solving $c q(4)$, was find that

$$
M>22821.77
$$

Since, M must be an integer.
we nc.
$N=22822$
and the cninsponding size is.

$$
h=\frac{5}{22822}=0 \cdot 00212086
$$

Error Analysis s The significance of the riext two results into understand Hat the error terms $E_{T}(f, h)$ and $E_{s}(t, h)$ for the composite simpsons rule are of the order $\left|0\left(h^{2}\right)\right|$ and $O\left(h^{4}\right)$ repectivily.

This shows that the error for
simpson's rule converges to the tran $\int_{1, i}$ iznoinal rule as the step size fir decicases to zero in cases, where the derivatives at $f(x)$ arc known, the formulas.

$$
\begin{aligned}
& E_{T}(f, h)=\frac{-(b-a) f^{(2)}(c) h^{2}}{12} \text { and } \\
& E_{s}(f, h)=\frac{-(b-a) f^{(4)}(c) h^{4}}{180}
\end{aligned}
$$

can be used to estimate the nombur of sub-intervals required to achieve a specified. Accuracy. Example:Find the number M and step size " h ". So that the, error $E_{s}(f, h)$ for the composite simpson's rule is' less than 5×10^{-9} for the approxmation

$$
\int_{2}^{7} \frac{d x}{x}=S(f, t)
$$

Sol:-
The integrant is $f(x)=\frac{1}{x}$ and

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{1}{x^{2}}, f^{\prime \prime}(x)=\frac{2}{x^{3}}, f^{\prime \prime \prime}(x)=-\frac{6}{x^{4}} \\
& f^{(4)}(x)=\frac{24}{x^{5}}
\end{aligned}
$$

The maximum value of $\left|f^{(4)}(x)\right|$ taken [vive [2,7] occurs at the end point $x=2$ and thus we have the bound

$$
\left|f^{(42)}(c)\right| \leqslant\left|f^{(4)}(2)\right|=\frac{24}{32}=\frac{3}{4}
$$

for $2 \leq c \leq 7$
This is used with formula obtain

$$
\begin{aligned}
\left|E_{s}(f, h)\right| & =\left|-(b-a) f_{(}^{(4)} h^{4}\right| \rightarrow(2) \\
& \leqslant \frac{(7-2)^{3 / 4} h^{4}}{180}=\frac{r^{4}}{48}
\end{aligned}
$$

MUHAMMAD USMAN HAMID (0323-6032785)

The stepsize ' h ' and number M satisfy the relation $h=\frac{S}{2 M}$ and this is used in (1) to get the relation

$$
\left|E_{s}(f, h)\right| \leq \frac{625}{768144 \mathrm{M}^{4}} \leq 10^{-9}
$$

Now rewrite (2) 80 that is easier to solve for M.

$$
\frac{125}{768} \times 10^{9} \leq m^{4} \rightarrow(3)
$$

Solving (3), we find that

$$
M \geqslant 12.9 .5
$$

Since, M must be an integer we choose $M=118$ and the corresponding stepsize is

$$
h=\frac{s}{2.6}=0.022123893
$$

WEDDLE'S

In this method "n" should be the multiple of 6. Rather function will not applicable. This method also called sixth order closed Newton's cotes (or) the first step of Romberg integration.

First and last terms have no coefficients and other move with 5 , then 1 , then 6.
Weddle's Rule is given by formula

$$
\int_{a}^{b} f(x) d x=\frac{3 h}{10}\left[\begin{array}{c}
f\left(x_{0}\right)+5 f\left(x_{1}\right)+f\left(x_{2}\right)+6 f\left(x_{3}\right)+\cdots \ldots \ldots \ldots+ \\
+\cdots \ldots .+5 f\left(x_{n-3}\right)+f\left(x_{n-2}\right)+6 f\left(x_{n-1}\right)+f\left(x_{n}\right)
\end{array}\right]
$$

EXAMPLE: for $\int_{0.25}^{1.75} \frac{1}{1+x^{2}} d x$ at $n=6$

X	0.25	0.5	0.75	1	1.25	1.5	1.75
$\mathrm{~F}(\mathrm{x})$	0.9411	0.8	0.64	0.5	0.4	0.3	0.2

Now using formula $\int_{\mathbf{0 . 2 5}}^{\mathbf{1 . 7 5}} \frac{\mathbf{1}}{\mathbf{1 + x ^ { 2 }}} \mathbf{d x}=\frac{\mathbf{3 (0 . 2 5)}}{\mathbf{1 0}}\left[\boldsymbol{y}_{\mathbf{0}}+\mathbf{5} \boldsymbol{y}_{\mathbf{1}}+\boldsymbol{y}_{\mathbf{2}}+\mathbf{6} \boldsymbol{y}_{\mathbf{3}}+\mathbf{5} \boldsymbol{y}_{\mathbf{4}}+\boldsymbol{y}_{\mathbf{5}}+\boldsymbol{y}_{\mathbf{6}}\right]=\mathbf{0 . 8 3 1 0}$

BOOLE'S RULE

The method approximate $\int_{x_{0}}^{x_{4}} \boldsymbol{f}(\boldsymbol{x}) \mathbf{d x}$ for ' 5 ' equally spaced values. Rule is given by George Bool. Rule is given by following formula
$\int_{a}^{b} f(x) d x=\frac{2 h}{45}\left[7 y_{0}+32 y_{1}+12 y_{2}+32 y_{3}+7 y_{4}\right]$

EXAMPLE: Evaluate $\int_{\mathbf{0 . 2}}^{\mathbf{0 . 6}} \frac{\mathbf{1}}{\mathbf{1 + \boldsymbol { x } ^ { \mathbf { 2 } }}} \mathbf{d x}$ at $\mathrm{n}=4$ and $\mathrm{h}=0.1$

SOLUTION

X	0.2	0.3	0.4	0.5	0.6
$\mathrm{~F}(\mathrm{x})$	0.96	0.92	0.86	0.80	0.74

$$
\int_{0.2}^{0.6} \frac{1}{1+x^{2}} \mathbf{d x}=0.3399 \quad \text { After putting the values. }
$$

RECTANGULAR RULE

Rule is also known as Mid-Point Rule. And is defined as follows for ' $n+1$ ' points.
$\int_{a}^{b} f(x) \mathrm{dx}=\mathrm{h}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots \ldots \ldots \ldots .+f\left(x_{\boldsymbol{n}}\right)\right]$
In general $\int_{a}^{b} f(x) d x=\mathbf{h} \sum_{i=0}^{n} f\left(x_{i}\right)$

REMEMBER

- As we increased ' n ' or decreased ' h ' the accuracy improved and the approximate solution becomes closer and closer to the exact value.
- If ' n ' is given, then use it. If ' h ' is given, then we can easily get ' n '.
- If ' n ' is not given and only 'points' are discussed, then ' 1 ' less that points will be ' n '. For example, if ' 3 ' points are given then ' n ' will be ' 2 '.
- If only table is given, then by counting the points we can tell about ' n '.one point will be greater than ' n ' in table.

EXAMPLE

Evaluate $\int_{1}^{3} \frac{1}{x^{2}} \mathbf{d x}$ for $\mathrm{n}=4$ using Rectangular Rule.

SOLUTION

Here $\mathrm{a}=1, \mathrm{~b}=3$ then $\boldsymbol{h}=\frac{\boldsymbol{b - a}}{\boldsymbol{n}}=\mathbf{0 . 5}$

X	1	$3 / 2$	2	$5 / 2$	3
$\mathrm{~F}(\mathrm{x})$	1	$4 / 9$	$1 / 4$	$4 / 25$	$1 / 5$

Now using formula $\quad \int_{1}^{3} \frac{1}{x^{2}} \mathrm{dx}=\mathrm{h}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{3}\right)\right]=0.925$

DOUBLE INTEGRATION

Double Integral

Trapezoidal Rule

Evaluate $\int^{d} \int^{b} f(x, y) d x d y$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants.

$I=\frac{h k}{4}\{[$ sum of values in] $+2($ sum of values in $\square+4$ [sum of remaining values $]\}$
Simpson's Rule

Problems based on Double integrals

1. Evaluate $\int_{1}^{1.4} \int_{22.4} \frac{1}{x y} d x d y$ using Trapezoidal and Simpson's rule. Verify your result by actual integration.

Solution:

Divide the range of x and y into 4 equal parts
$h=\frac{2.4-2}{4}=0.1$
$k=\frac{1.4-1}{4}=0.1$
Get the values of $f(x, y)=\frac{1}{x y}$ at nodal points

Y / X	2	2.1	2.2	2.3	2.4
1	0.5	0.4762	0.4545	0.4348	0.4167
1.1	0.4545	0.4329	0.4132	0.3953	0.3788
1.2	0.4167	0.3968	0.3788	0.3623	0.3472
1.3	0.3846	0.3663	0.3497	0.3344	0.3205
1.4	0.3571	0.3401	0.3247	0.3106	0.2976

Now using previous formulae we get the required results
FOR TRAPEZOIDAL RULE: $\quad \boldsymbol{I}=\mathbf{0 . 0 6 1 4} \quad$ FOR SIMPSON'S RULE: $\quad \boldsymbol{I}=$
0.0613

Verify actual integration by yourself.

QUESTION: Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}$ by Trapezoidal rule for $\mathrm{h}=0.25=\mathrm{k}$
SOLUTION: $1 \leq x \leq 2 \Rightarrow x_{0}=1, x_{1}=x_{0}+h=1.25, x_{2}=1.50, x_{3}=1.75, x_{4}=2$ And $1 \leq y \leq 2 \Rightarrow y_{0}=1, y_{1}=y_{0}+k=1.25, y_{2}=1.50, y_{3}=1.75, y_{4}=2$

STEP - I: $f(x, y)=\frac{1}{x+y}$

Y / X	1	1.25	1.50	1.75	2
1	$\frac{\mathbf{1}}{\mathbf{1 + 1}}=0.5$	0.4444	0.4	0.3636	0.3333
1.25	0.4444	0.4	0.3636	0.3333	0.3077
1.50	0.4	0.3636	0.3333	0.3077	0.2857
1.75	0.3636	0.3333	0.3077	0.2857	0.2667
2	0.3333	0.3077	0.2857	0.2667	0.25

STEP -I I:
$I_{1}=\int_{1}^{2} f(1, y) d y=\frac{k}{2}\left[f\left(1, y_{0}\right)+f\left(1, y_{4}\right)+2\left[f\left(1, y_{1}\right)+f\left(1, y_{2}\right)+f\left(1, y_{3}\right)\right]=0.4062\right.$
$I_{2}=\int_{1}^{2} f(1.25, y) d y=\frac{k}{2}\left[f\left(1.25, y_{0}\right)+f\left(1.25, y_{4}\right)+2\left[f\left(1.25, y_{1}\right)+f\left(1.25, y_{2}\right)+\right.\right.$ $\left.f\left(1.25, y_{3}\right)\right]=0.3682$
$I_{3}=\int_{1}^{2} f(1.5, y) d y=\frac{k}{2}\left[f\left(1.5, y_{0}\right)+f\left(1.5, y_{4}\right)+2\left[f\left(1.5, y_{1}\right)+f\left(1.5, y_{2}\right)+\right.\right.$ $\left.f\left(1.5, y_{3}\right)\right]=0.3369$
$I_{4}=\int_{1}^{2} f(1.75, y) d y=\frac{k}{2}\left[f\left(1.75, y_{0}\right)+f\left(1.75, y_{4}\right)+2\left[f\left(1.75, y_{1}\right)+f\left(1.75, y_{2}\right)+\right.\right.$ $\left.f\left(1.75, y_{3}\right)\right]=0.3105$
$I_{5}=\int_{1}^{2} f(2, y) d y=\frac{k}{2}\left[f\left(2, y_{0}\right)+f\left(2, y_{4}\right)+2\left[f\left(2, y_{1}\right)+f\left(2, y_{2}\right)+f\left(2, y_{3}\right)\right]=0.2879\right.$
STEP-III:
$I=\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x+y}=\frac{h}{2}\left[I_{1}+I_{5}+2\left(I_{2}+I_{3}+I_{4}\right)\right]=0 . .3407$

QUESTION: Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sqrt{\sin (x+y)} d x d y$
SOLUTION: Take $\mathrm{n}=4$ (by own choice) then $\boldsymbol{h}=\frac{\boldsymbol{b}-\boldsymbol{a}}{\boldsymbol{n}}=\frac{\frac{\pi}{2}-\mathbf{0}}{4}=\frac{\boldsymbol{\pi}}{\mathbf{8}}=\boldsymbol{k}$ (also)
$0 \leq x \leq \frac{\pi}{2} \Rightarrow x_{0}=0, x_{1}=x_{0}+h=\frac{\pi}{8}, x_{2}=\frac{\pi}{4}, x_{3}=\frac{3 \pi}{8}, x_{4}=\frac{\pi}{2}$
And $1 \leq y \leq \frac{\pi}{2} \Rightarrow y_{0}=0, y_{1}=y_{0}+k=\frac{\pi}{8}, y_{2}=\frac{\pi}{4}, y_{3}=\frac{3 \pi}{8}, y_{4}=\frac{\pi}{2}$
$S T E P-I: f(x, y)=\sqrt{\sin (x+y)}$

Y/X	0	$\frac{\pi}{\mathbf{8}}$	$\frac{\boldsymbol{\pi}}{\mathbf{4}}$	$\frac{\mathbf{3 \pi}}{\mathbf{8}}$	$\frac{\boldsymbol{\pi}}{\mathbf{2}}$
0	0	0.6186	0.8409	0.9612	1
$\frac{\boldsymbol{\pi}}{\mathbf{8}}$	0.6186	0.8409	0.9612	1	0.9612
$\frac{\boldsymbol{\pi}}{\mathbf{4}}$	0.8409	0.9612	1	0.9612	0.8409
$\frac{\mathbf{3 \pi}}{\mathbf{8}}$	0.9612	1	0.9612	0.8409	0.6186
$\frac{\pi}{\mathbf{2}}$	1	0.9612	0.8409	0.6186	0

STEP-I I:
$I_{1}=\int_{0}^{\frac{\pi}{2}} f(0, y) d y=\frac{k}{2}\left[f\left(0, y_{0}\right)+f\left(0, y_{4}\right)+2\left[f\left(0, y_{1}\right)+f\left(0, y_{2}\right)+f\left(0, y_{3}\right)\right]=1.1469\right.$
$I_{2}=\int_{0}^{\frac{\pi}{2}} f\left(\frac{\pi}{8}, y\right) d y=\frac{k}{2}\left[f\left(\frac{\pi}{8}, y_{0}\right)+f\left(\frac{\pi}{8}, y_{4}\right)+2\left[f\left(\frac{\pi}{8}, y_{1}\right)+f\left(\frac{\pi}{8}, y_{2}\right)+f\left(\frac{\pi}{8}, y_{3}\right)\right]=\right.$

1. 4106

$I_{3}=\int_{0}^{\frac{\pi}{2}} f\left(\frac{\pi}{4}, y\right) d y=\frac{k}{2}\left[f\left(\frac{\pi}{4}, y_{0}\right)+f\left(\frac{\pi}{4}, y_{4}\right)+2\left[f\left(\frac{\pi}{4}, y_{1}\right)+f\left(\frac{\pi}{4}, y_{2}\right)+f\left(\frac{\pi}{4}, y_{3}\right)\right]=\right.$

1.4778

$I_{4}=\int_{0}^{\frac{\pi}{2}} f\left(\frac{3 \pi}{8}, y\right) d y=\frac{k}{2}\left[f\left(\frac{3 \pi}{8}, y_{0}\right)+f\left(\frac{3 \pi}{8}, y_{4}\right)+2\left[f\left(\frac{3 \pi}{8}, y_{1}\right)+f\left(\frac{3 \pi}{8}, y_{2}\right)+\right.\right.$
$\left.f\left(\frac{3 \pi}{8}, y_{3}\right)\right]=1.4106$
$I_{5}=\int_{0}^{\frac{\pi}{2}} f\left(\frac{\pi}{2}, y\right) d y=\frac{k}{2}\left[f\left(\frac{\pi}{2}, y_{0}\right)+f\left(\frac{\pi}{2}, y_{4}\right)+2\left[f\left(\frac{\pi}{2}, y_{1}\right)+f\left(\frac{\pi}{2}, y_{2}\right)+f\left(\frac{\pi}{2}, y_{3}\right)\right]=\right.$

1. 1469

STEP-III: $\quad I=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sqrt{\sin (x+y)} d x d y=\frac{h}{2}\left[I_{1}+I_{5}+2\left(I_{2}+I_{3}+I_{4}\right)\right]=2.1386$

QUESTION: Evaluate $\iint_{\boldsymbol{D}} \frac{\boldsymbol{d x d y}}{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}$ where D is the square with comes at $(1,1),(2,1),(2,2),(1,2)$ SOLUTION: Take $\mathrm{n}=4$ (by own choice) then $\boldsymbol{h}=\frac{\boldsymbol{b}-\boldsymbol{a}}{\boldsymbol{n}}=\frac{\frac{\pi}{2}-\mathbf{0}}{4}=\frac{\boldsymbol{\pi}}{\mathbf{8}}=\boldsymbol{k}$ (also) $\mathbf{1} \leq \boldsymbol{x} \leq \mathbf{2} \quad$ Also $\mathbf{1} \leq \boldsymbol{y} \leq \mathbf{2}$

STEP-I: $f(x, y)=\frac{1}{x^{2}+y^{2}}$

Y / X	1	1.25	1.50	1.75	2
1	0.5	0.3902	0.3077	0.2462	0.2
1.25	0.3902	0.3200	0.2623	0.2162	0.1798
1.50	0.3077	0.2623	0.2222	0.1882	0.1600
1.75	0.2462	0.2162	0.1882	0.1633	0.1416
2	0.2	0.1798	0.1600	0.1416	0.1250

STEP -I I:
$I_{1}=\int_{1}^{2} f(1, y) d y=\frac{k}{2}\left[f\left(1, y_{0}\right)+f\left(1, y_{4}\right)+2\left[f\left(1, y_{1}\right)+f\left(1, y_{2}\right)+f\left(1, y_{3}\right)\right]=0.3235\right.$
$I_{2}=\int_{1}^{2} f(1.25, y) d y=\frac{k}{2}\left[f\left(1.25, y_{0}\right)+f\left(1.25, y_{4}\right)+2\left[f\left(1.25, y_{1}\right)+f\left(1.25, y_{2}\right)+\right.\right.$ $\left.f\left(1.25, y_{3}\right)\right]=0.2709$
$I_{3}=\int_{1}^{2} f(1.5, y) d y=\frac{k}{2}\left[f\left(1.5, y_{0}\right)+f\left(1.5, y_{4}\right)+2\left[f\left(1.5, y_{1}\right)+f\left(1.5, y_{2}\right)+\right.\right.$
$\left.f\left(1.5, y_{3}\right)\right]=0.2266$
$I_{4}=\int_{1}^{2} f(1.75, y) d y=\frac{k}{2}\left[f\left(1.75, y_{0}\right)+f\left(1.75, y_{4}\right)+2\left[f\left(1.75, y_{1}\right)+f\left(1.75, y_{2}\right)+\right.\right.$ $\left.f\left(1.75, y_{3}\right)\right]=0.1904$
$I_{5}=\int_{1}^{2} f(2, y) d y=\frac{k}{2}\left[f\left(2, y_{0}\right)+f\left(2, y_{4}\right)+2\left[f\left(2, y_{1}\right)+f\left(2, y_{2}\right)+f\left(2, y_{3}\right)\right]=0.1610\right.$
STEP-III:
$I=\int_{1}^{2} \int_{1}^{2} \frac{d x d y}{x^{2}+y^{2}}=\frac{h}{2}\left[I_{1}+I_{5}+2\left(I_{2}+I_{3}+I_{4}\right)\right]=0.2325$

QUESTION: Evaluate $\int_{0}^{1} \int_{1}^{2}\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right) \boldsymbol{d} \boldsymbol{x} \boldsymbol{d} \boldsymbol{y}$ by using Simpson (1/3) rule
SOLUTION: Take $\mathrm{n}=4$ (by own choice) then $\boldsymbol{k}=\frac{\boldsymbol{b}-\boldsymbol{a}}{\boldsymbol{n}}=\frac{\mathbf{1 - 0}}{4}=\mathbf{0 . 2 5}=\boldsymbol{h}$ (also)

$$
\mathbf{1} \leq \boldsymbol{x} \leq \mathbf{2} \quad \text { Also } \quad \mathbf{0} \leq \boldsymbol{y} \leq \mathbf{1}
$$

STEP - I: $f(x, y)=x^{2}+y^{2}$

Y / X	0	0.25	0.50	0.75	1
1	1	1.6250	1.25	1.5625	2
1.25	1.5625	1.6250	1.8125	2.1250	2.5625
1.50	2.25	2.3125	2.5	2.8125	3.25
1.75	3.0625	3.1250	3.3125	3.6250	4.0625
2	4	4.0625	4.2500	4.5625	5

STEP -I I:

$$
\begin{aligned}
& I_{1}=\int_{0}^{1} f(1, y) d y=\frac{k}{3}\left[f\left(1, y_{0}\right)+f\left(1, y_{4}\right)+2 f\left(1, y_{2}\right)+4\left[f\left(1, y_{1}\right)+f\left(1, y_{3}\right)\right]=1.3333\right. \\
& I_{2}=\int_{0}^{1} f(1.25, y) d y=\frac{k}{3}\left[f\left(1.25, y_{0}\right)+f\left(1.25, y_{4}\right)+2 f\left(1.25, y_{2}\right)+4\left[f\left(1.25, y_{1}\right)+\right.\right. \\
& \left.f\left(1.25, y_{3}\right)\right]=1.8958 \quad I_{3}=\int_{0}^{1} f(1.50, y) d y=\frac{k}{3}\left[f\left(1.50, y_{0}\right)+f\left(1.50, y_{4}\right)+\right. \\
& 2 f\left(1.50, y_{2}\right)+4\left[f\left(1.50, y_{1}\right)+f\left(1.50, y_{3}\right)\right]=2.5832 \quad I_{4}=\int_{0}^{1} f(1.75, y) d y= \\
& \frac{k}{3}\left[f\left(1.75, y_{0}\right)+f\left(1.75, y_{4}\right)+2 f\left(1.75, y_{2}\right)+4\left[f\left(1.75, y_{1}\right)+f\left(1.75, y_{3}\right)\right]=3.3958\right. \\
& I_{5}=\int_{0}^{1} f(2, y) d y=\frac{k}{3}\left[f\left(2, y_{0}\right)+f\left(2, y_{4}\right)+2 f\left(2, y_{2}\right)+4\left[f\left(2, y_{1}\right)+f\left(2, y_{3}\right)\right]=4.3316\right. \\
& \text { STEP-III: }
\end{aligned}
$$

$$
I=\int_{0}^{1} \int_{1}^{2}\left(x^{2}+y^{2}\right) d x d y=\frac{h}{2}\left[I_{1}+I_{5}+2 I_{3}+4\left(I_{2}+I_{4}\right)\right]=2.6654
$$

GUASSIAN QUADRATURE FORMULAE

DERIVATION OF TWO-POINT GAUSS QUADRATURE RULE

Method 1:

The two-point Gauss quadrature rule is an extension of the trapezoidal rule approximation where the arguments of the function are not predetermined as a and b, but as unknowns x_{1} and x_{2}. So in the two-point Gauss quadrature rule, the integral is approximated as
$\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$
There are four unknowns x_{1}, x_{2}, c_{1} and c_{2}. These are found by assuming that the formula gives exact results for integrating a general third order polynomial,
$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$.
Hence $\int_{a}^{b} f(x) d x=\int_{a}^{b}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) d x$
$\int_{a}^{b} f(x) d x=\left|\left(a_{0} \mathrm{x}+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3}+a_{3} \frac{x^{4}}{4}\right)\right|_{a}^{b}$
$\int_{a}^{b} f(x) d x=\left[a_{0}(\mathrm{~b}-\mathrm{a})+a_{1}\left(\frac{b^{2}-a^{2}}{2}\right)+a_{2}\left(\frac{b^{3}-a^{3}}{3}\right)+a_{3}\left(\frac{b^{4}-a^{4}}{4}\right)\right]$.
The formula would then give

$$
\begin{align*}
& \int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) \\
& \quad=c_{1}\left(a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}\right)+c_{2}\left(a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3}\right) \tag{ii}
\end{align*}
$$

Equating
Equations
and
(ii)
gives
$\left[\begin{array}{c}a_{0}(\mathrm{~b}-\mathrm{a})+a_{1}\left(\frac{b^{2}-a^{2}}{2}\right)+a_{2}\left(\frac{b^{3}-a^{3}}{3}\right)+a_{3}\left(\frac{b^{4}-a^{4}}{4}\right) \\ =c_{1}\left(a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}\right)+c_{2}\left(a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3}\right)\end{array}\right]$
This will give us

$$
\int_{a}^{b} f(x) d x=a_{0}\left(c_{1}+c_{2}\right)+a_{1}\left(c_{1} x_{1}+c_{2} x_{2}\right)+a_{2}\left(c_{1} x_{1}^{2}+c_{2} x_{2}^{2}\right)+a_{3}\left(c_{1} x_{1}^{3}+c_{2} x_{2}^{3}\right)
$$

Since in Equation (iii), the constants a_{0}, a_{1}, a_{2}, and a_{3} are arbitrary, the coefficients of a_{0}, a_{1}, a_{2}, and a_{3} are equal. This gives us four equations as follows (iv) $\left\{\begin{array}{c}(\mathrm{b}-\mathrm{a})=\left(c_{1}+c_{2}\right) \\ \left(\frac{b^{2}-a^{2}}{2}\right)=\left(c_{1} x_{1}+c_{2} x_{2}\right) \\ \left(\frac{b^{3}-a^{3}}{3}\right)=\left(c_{1} x_{1}^{2}+c_{2} x_{2}^{2}\right) \\ \left(\frac{b^{4}-a^{4}}{4}\right)=\left(c_{1} x_{1}^{3}+c_{2} x_{2}^{3}\right)\end{array}\right.$
we can find that the above four simultaneous nonlinear equations have only one acceptable solution
$c_{1}=\frac{b-a}{2}, \quad c_{2}=\frac{b-a}{2}, \quad x_{1}=\left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}, \quad x_{2}=\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}$
Hence

$$
\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)=\frac{b-a}{2} f\left[\left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}\right]+\frac{b-a}{2} f\left[\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}\right]
$$

Method 2: We can derive the same formula by assuming that the expression gives exact values for the individual integrals of $\int_{a}^{b} 1 d x, \int_{a}^{b} x d x, \int_{a}^{b} x^{2} d x$, and $\int_{a}^{b} x^{3} d x$. The reason the formula can also be derived using this method is that the linear combination of the above integrands is a general third order polynomial given by $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$.

These will give four equations as follows

$$
\left\{\begin{array}{c}
\int_{a}^{b} 1 d x=(\mathrm{b}-\mathrm{a})=\left(c_{1}+c_{2}\right) \\
\int_{a}^{b} x d x=\left(\frac{b^{2}-a^{2}}{2}\right)=\left(c_{1} x_{1}+c_{2} x_{2}\right) \\
\int_{a}^{b} x^{2} d x=\left(\frac{b^{3}-a^{3}}{3}\right)=\left(c_{1} x_{1}^{2}+c_{2} x_{2}^{2}\right) \\
\int_{a}^{b} x^{3} d x .=\left(\frac{b^{4}-a^{4}}{4}\right)=\left(c_{1} x_{1}^{3}+c_{2} x_{2}^{3}\right)
\end{array}\right.
$$

These four simultaneous nonlinear equations can be solved to give a single acceptable solution $c_{1}=\frac{b-a}{2}, \quad c_{2}=\frac{b-a}{2}, \quad x_{1}=\left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}, \quad x_{2}=\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}$

Hence $\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)=\frac{b-a}{2} f\left[\left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)+\frac{b+a}{2}\right]+\frac{b-a}{2} f\left[\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\right.$ $\left.\frac{b+a}{2}\right]$

Since two points are chosen, it is called the two-point Gauss quadrature rule. Higher point versions can also be developed.

HIGHER POINT GAUSS QUADRATURE FORMULAS

$\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)$ is called the three-point Gauss quadrature rule. The coefficients c_{1}, c_{2} and c_{3}, and the function arguments x_{1}, x_{2} and x_{3} are calculated by assuming the formula gives exact expressions for integrating a fifth order polynomial
$\int_{a}^{b}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}\right) d x$
General n-point rules would approximate the integral
$\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+\ldots . . .+c_{n} f\left(x_{n}\right)$

A number of particular types of Gaussian formulae are given as follows.
GUASSIAN LEGENDER FORMULA: This formula takes the form $\int_{a}^{b} f(x) \mathrm{dx}=\sum_{1}^{n} A_{i} f\left(x_{i}\right)$
And Truncation error for formula is $E=\frac{1}{2 n+1}\left[f(1)+f(-1)+I-\sum_{1}^{n} A_{i} x_{i} f^{\prime}\left(x_{i}\right)\right.$
Where " I " is the approximate integral obtained by n - point formula.
GUASS - LAGURRE FORMULA
This formula takes the form $\int_{0}^{\infty} e^{-x} f(x) \mathrm{dx}=\sum_{1}^{n} A_{i} f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$
GUASS - HERMITE FORMULA
This formula takes the form $\int_{-\infty}^{\infty} e^{-x^{2}} f(x) \mathrm{dx}=\sum_{1}^{n} A_{i} f\left(x_{i}\right)$
GUASS - CHEBYSHEV FORMULA
This formula takes the form $\int_{-1}^{1} \frac{f(x)}{\sqrt{1-X^{2}}} \mathbf{d x}=\frac{\pi}{n} \sum_{1}^{n} f\left(x_{i}\right)$
Where " $\boldsymbol{x}_{\boldsymbol{i}}$ " is zero $\mathrm{n}-$ Chebysheves polynomial
EXAMPLE: Find Gauss 2 and 3 point formula for $\int_{0}^{1} e^{-x} d x$ and compare with exact value.
Solution: Firstly interval of integration are transformed to [0,1] to [-1,1]
For this, let $x=\frac{(b-a) t+a+b}{2} \Rightarrow t=\frac{2 x-a-b}{b-a}$
$\Rightarrow|t|_{x=a=0}=\frac{0-0-1}{1-0}=-1$ and $|t|_{x=b=1}=\frac{2(1)-0-1}{1-0}=1$
Since $x=\frac{(b-a) t+a+b}{2} \Rightarrow|x|_{a=0, b=1}=\frac{(1-0) t+0+1}{2}=\frac{t+1}{2} \Rightarrow x=\frac{t+1}{2} \Rightarrow d x=\frac{1}{2} d t$
Now $\int_{0}^{1} e^{-x} d x=\int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} \frac{1}{2} d t=\frac{1}{2} \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t$
Now Gauss 2 point formula is $\int_{-1}^{1} f(t) d t=f\left(\frac{1}{\sqrt{3}}\right)+f\left(-\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=e^{-\left(\frac{1}{2 \sqrt{3}}+\frac{1}{2}\right)}+e^{-\left(\frac{-1}{2 \sqrt{3}}+\frac{1}{2}\right)}=e^{-(0.788675134)}+e^{-(0.211324865)}$
$\Rightarrow \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=0.454446477+0.809511042=1.263957519$
(i) $\Rightarrow \int_{0}^{1} e^{-x} d x=\frac{1}{2} \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=\frac{1}{2}(1.263957519) \Rightarrow \int_{\mathbf{0}}^{\mathbf{1}} \boldsymbol{e}^{-x} \boldsymbol{d} \boldsymbol{x}=\mathbf{0 . 6 3 1 9 7 8 7 5 9}$

Also Gauss 3 point formula is $\int_{-1}^{1} f(t) d t=\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)$
$\Rightarrow \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=\frac{5}{9} e^{-\left(\sqrt{\frac{3}{5}}+\frac{1}{2}\right)}+\frac{8}{9} e^{-\left(\frac{1}{2}\right)}+\frac{5}{9} e^{-\left(-\sqrt{\frac{3}{5}}+\frac{1}{2}\right)}$
$\Rightarrow \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=\frac{5}{9} e^{-(0.887298334)}+\frac{8}{9} e^{-(0.5)}+\frac{5}{9} e^{(0.112701665)}$
$\Rightarrow \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=0.228759281+0.539138364+0.496342865=1.26424054$
(i) $\Rightarrow \int_{0}^{1} e^{-x} d x=\frac{1}{2} \int_{-1}^{1} e^{-\left(\frac{t+1}{2}\right)} d t=\frac{1}{2}(1.26424054) \Rightarrow \int_{\mathbf{0}}^{1} \boldsymbol{e}^{-x} \boldsymbol{d} \boldsymbol{x}=\mathbf{0 . 6 3 2 1 2 0}$

Exact value: $\int_{0}^{1} e^{-x} d x=\left|\frac{e^{-x}}{-1}\right|_{0}^{1}=-\left[\frac{1}{e}-1\right]=-[0.36787944-1]=\mathbf{0 . 6 3 2 1 2 0 5 5 8}$
Error $=$ exact - approximate $=0.632120558-0.632120=5.58 \times 10^{-07}$
EXAMPLE: Find Gauss quadrature formula for $\int_{0}^{1} \frac{\sin x}{x} d x$
Solution: Firstly interval of integration are transformed to $[0,1]$ to $[-1,1]$
For this, let $x=\frac{(b-a) t+a+b}{2}$
Since $x=\frac{(b-a) t+a+b}{2} \Rightarrow|x|_{a=0, b=1}=\frac{(1-0) t+0+1}{2}=\frac{t+1}{2} \Rightarrow x=\frac{t+1}{2} \Rightarrow d x=\frac{1}{2} d t$
Also $\Rightarrow|t|_{x=a=0}=\frac{0-0-1}{1-0}=-1$ and $|t|_{x=b=1}=\frac{2(1)-0-1}{1-0}=1$
Now $\int_{0}^{1} \frac{\sin x}{x} d x=\frac{1}{2} \int_{-1}^{1} \frac{\sin \left(\frac{t+1}{2}\right)}{\left(\frac{t+1}{2}\right)} d t \Rightarrow \int_{0}^{1} \frac{\sin x}{x} d x=\int_{-1}^{1} \frac{\sin \left(\frac{t+1}{2}\right)}{t+1} d t$ \qquad
Now Gauss 2 point formula is $\int_{-1}^{1} f(t) d t=f\left(\frac{1}{\sqrt{3}}\right)+f\left(-\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \int_{-1}^{1} \frac{\sin \left(\frac{t+1}{2}\right)}{t+1} d t=\frac{\sin \left(\frac{\frac{1}{\sqrt{3}}+1}{2}\right)}{\frac{1}{\sqrt{3}}+1}+\frac{\operatorname{Sin}\left(\frac{-\frac{1}{\sqrt{3}}+1}{2}\right)}{-\frac{1}{\sqrt{3}}+1}$

$$
\begin{aligned}
& \Rightarrow \int_{-1}^{1} \frac{\sin \left(\frac{t+1}{2}\right)}{t+1} d t=\frac{0.709420149}{1.577535 .269}+\frac{0.2097554758}{0.4226497308}=0.4497543526+0.4962867844 \\
& \Rightarrow \int_{-1}^{1} \frac{\sin \left(\frac{t+1}{2}\right)}{t+1} d t=0.946041137
\end{aligned}
$$

NEWTON'S COTES FORMULA

A quadrature formula of the form $\int_{a}^{b} f(x) \mathrm{dx} \approx \sum_{0}^{n} C_{i} f\left(x_{i}\right)$ is called a Newton's Cotes Formula if the nodes " $x_{0}, x_{1}, \ldots \ldots \ldots, x_{n}$ " are equally spaced. Where $C_{i}=\int_{a}^{b} L_{i}(x) \mathrm{dx}=\int_{a}^{b} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{i}}{x_{i}-x_{j}} \mathrm{dx}$

General Newton's Cotes Formula has the form
$\int_{a}^{b} f(x) \mathrm{dx}=h \sum_{0}^{n} f\left(x_{i}\right) \int_{0}^{n} \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{t-j}{i-j} \mathrm{dt}+\frac{1}{(n+1)!} \int_{a}^{b} f^{n+1}\left(\S_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right) \mathrm{dx}$
REMARK: Trapezoidal and Simpson's Rule Are Close Newton Cotes formulae while Rectangular Rule is Open Newton Cotes formula.

LIMITATION OF NEWTON'S COTES: Newton's Cotes formulae (Simpson's, Rectangular Rule, and Trapezoidal Rule) are not suitable for Numerical integration over large intervals. Also Newton's Cotes formulas which are based on polynomial interpolation would be inaccurate over a large interval because of oscillatory nature of high degree polynomials. To solve this problem, we use composite Numerical integration.

FORMULA DARIVATION: We shall approximate the given tabulated function by a polynomial " $P_{n}(x)$ " and then integrate this polynomial.

Suppose we are given the data $\left(x_{i}, y_{i}\right) ; i=0,1,2, \ldots \ldots . n$ at equispaced points with spacing $h=x_{i+1}-x_{i}$ we can represent the polynomial by any standard interpolation polynomial.

Now by using Lagrange's formula $\quad f(x)=\sum_{0}^{n} l_{k}(x) y_{k}$
With associated error term $\quad E(x)=\frac{\Pi(x)}{(n+1)!} y^{n+1}(\S)$
And

$$
\begin{equation*}
l_{k}(x)=\frac{\Pi(x)}{\left(x-x_{k}\right) \Pi^{\prime}(x)} \tag{ii}
\end{equation*}
$$

Where $\quad \Pi(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots \ldots \ldots \ldots\left(x-x_{n}\right)$
Integrating (i) from $a=x_{0}$ to $b=x_{n}$ w. r. to ' x '
$\int_{a}^{b} f(x) d x=\int_{a}^{b} \sum_{0}^{n} l_{k}(x) y_{k} d x=\int_{a}^{b}\left[l_{0}(x) y_{0}+l_{1}(x) y_{1}+\cdots \ldots \ldots+l_{k}(x) y_{k}\right] d x$
$\int_{a}^{b} f(x) d x=\sum_{0}^{n} \int_{a}^{b} l_{k}(x) y_{k} d x=\sum_{0}^{n}\left(\int_{a}^{b} l_{k}(x)\right) y_{k} d x=\sum_{0}^{n} C_{k} y_{k}$ where $C_{k}=\int_{a}^{b} l_{k}(x) d x$ And " C_{k} " are called Newton's Cotes

HOW TO FIND NEWTON'S COTES?

Let equispaced nodes are defined as $a=x_{0}$ to $b=x_{n}$ and $h=\frac{b-a}{n} \quad$ and $x_{k}=x_{0}+k h$ change the variable $x=x_{0}+p h$

Since $a=x_{0}=x_{0}+0 h, x_{1}=x_{0}+1 h, \ldots \ldots \ldots \ldots \ldots . b=x_{n}=x_{0}+n h$ And $x=x_{0}+p h$
Using above values in (IV) we get

$$
\begin{align*}
& \Pi(x)=\left(x_{0}+p h-x_{0}\right)\left(x_{0}+p h-x_{1}\right) \ldots \ldots \ldots \ldots \ldots\left(x_{0}+p h-x_{n}\right) \\
& \Pi(x)=p h\left[x_{0}+p h-\left(x_{0}+h\right)\right]\left[x_{0}+p h-\left(x_{0}+2 h\right)\right] \ldots \ldots \ldots \ldots\left[x_{0}+p h-\left(x_{0}+n h\right)\right] \\
& \Pi(x)=p h(p h-h)(p h-2 h) \ldots \ldots \ldots \ldots \ldots \ldots(p h-n h) \\
& \Pi(x)=h^{n+1} \cdot p(p-1)(p-2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(p-n) \ldots^{\circ} \ldots \ldots \ldots \ldots \ldots(v i) \tag{vi}
\end{align*}
$$

Now $x_{k}=x_{0}+k h$ and $x_{p}=x_{0}+p h \Rightarrow x_{k}-x_{p}=(k-p) h$
When

$$
\begin{gathered}
p=0 \Rightarrow x_{k}-x_{0}=(k-0) h=k h \\
p=1 \Rightarrow x_{k}-x_{1}=(k-1) h \\
\vdots \quad \vdots=\quad \vdots \\
\vdots=k-1 \Rightarrow x_{k}-x_{k-1}=h \\
p=k+1 \Rightarrow x_{k}-x_{k+1}=-h \\
\vdots=\vdots \\
p=n \\
\vdots \Rightarrow x_{k}-x_{n}=(k-n) h=-(n-k) h
\end{gathered}
$$

Now putting in " $l_{k}(x)$ " we get

$$
\begin{aligned}
& l_{k}(x)=\frac{\left(x_{0}+p h-x_{0}\right)\left(x_{0}+p h-x_{0}-h\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left(x_{0}+p h-x_{0}-n h\right)}{(k h)(k-1) h(k-2) h \ldots \ldots \ldots \ldots .(-h)(-2 h) \ldots \ldots \ldots[(n-k) h]} \\
& l_{k}(x)=\frac{h p . h(p-1) h(p-2) \ldots \ldots h[p-(k-1)] h[p-(k+1)] \ldots \ldots h(p-n)}{(h k) h(k-1) h(k-2) \ldots . \ldots h[k-(k-1)] h[k-(k+1)] \ldots . \ldots(k-n)}
\end{aligned}
$$

$l_{k}(x)=\frac{p(p-1)(p-2) \ldots \ldots \ldots[p-k+1][p-k-1] \ldots \ldots \ldots(p-n)}{k!(-1)^{n-k}(n-k)!}$
$l_{k}(x)=\frac{p(p-1)(p-2) \ldots \ldots \ldots[p-k+1][p-k-1] \ldots \ldots \ldots \ldots(p-n)}{k!(-1)^{n-k}(n-k)!} \times \frac{(-1)^{n-k}}{(-1)^{n-k}}$
$l_{k}(x)=\frac{(-1)^{n-k} \cdot p(p-1)(p-2) \ldots \ldots \ldots[p-k+1][p-k-1] \ldots \ldots \ldots . . .(p-n)}{k!(-1)^{2(n-k)}(n-k)!}$
$l_{k}(x)=\frac{(-1)^{n-k} \cdot p(p-1)(p-2) \ldots \ldots \ldots[p-k+1][p-k-1] \ldots \ldots \ldots(p-n)}{k!(n-k)!}$
Since $C_{k}=\int_{a}^{b} l_{k}(x) d x$ therefore after putting " $l_{k}(x)$ " and "dx"
As " $x=x_{0}+p h$ " then $d x=h d p$ and if $x \rightarrow a$ then $p \rightarrow 0$ also $x \rightarrow b$ then $p \rightarrow n$
$C_{k}=\frac{(-1)^{n-k}}{k!(n-k)!} \int_{0}^{n} p(p-1)(p-2) \ldots \ldots(p-k+1)(p-k-1) \ldots \ldots(p-n) \cdot h d p$
$C_{k}=\frac{(-1)^{n-k} . h}{k!(n-k)!} \int_{0}^{n} p(p-1)(p-2) \ldots \ldots(p-k+1)(p-k-1) \ldots \ldots(p-n) d p$
This is required formula for Newton Cotes.
ERROR TERM let $\in(x)=\frac{\Pi(x)}{(n+1)!} y^{n+1}(\S)$
$\Pi(x)=h^{n+1} \cdot p(p-1)(p-2) \ldots .(p-n)$
Using (B) in (A) we get $\in(x)=\frac{h^{n+1} \cdot p(p-1) \ldots \ldots \ldots \ldots \ldots(p-n) \cdot y^{n+1}(\S)}{(n+1)!}$
Integrating both sides $\quad \int_{a}^{b} \in(x) d x=\int_{o}^{n} \frac{h^{n+1} \cdot p(n+1) \cdot p(p-1) \ldots \ldots \ldots \ldots \ldots \ldots . . .(p-n) \cdot y^{n+1}(\S)}{(n+1)!} h d p$
$E(x)=\frac{h^{n+2} y^{n+1}(\S)}{(n+1)!} \int_{0}^{n} p(p-1)(p-2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(p-n) d p$
$\mathrm{E}(\mathrm{x})$ is called integral error.

ALTERNATIVE METHOD FOR DARIVATION OF TRAPEZOIDAL RULE AND ITS ERROR TERM

$f(x)=\sum_{k=0}^{n} l_{k}(x) y_{k}+\frac{\Pi(x)}{(n+1)!} y^{n+1}$
For trapezoidal rule put $n=1 \quad f(x)=\sum_{k=0}^{1} l_{k}(x) y_{k}+\frac{\Pi(x)}{2!} y^{\prime \prime}(\S)$
$f(x)=l_{o} y_{o}+l_{1} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2} y^{\prime \prime}$
Integrating both sides

$$
\begin{aligned}
& \int_{a=x_{0}}^{b=x_{n}=x_{1}} f(x) d x=y_{o} \int_{x_{0}}^{x_{1}} l_{o}(x) d x+y_{1} \int_{x_{0}}^{x_{1}} l_{1}(x) d x+\frac{y^{\prime \prime}(\S)}{2} \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right) d x \\
& \int_{x_{0}}^{x_{1}} f(x) d x=y_{0} \int_{x_{0}}^{x_{1}} \frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)} d x+y_{1} \int_{x_{0}}^{x_{1}} \frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} d x+\frac{y^{\prime \prime}(\S)}{2} \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right) d x
\end{aligned}
$$

Now by changing variables

$$
\begin{aligned}
& x=x_{0}+p h \text { then } x \rightarrow x_{0} \Rightarrow p \rightarrow 0 \text { and } x_{1}=x_{0}+1 \text { h then } x \rightarrow x_{1} \Rightarrow p \rightarrow 1 \\
& \int_{x_{0}}^{x_{1}} f(x) d x=y_{0} \int_{0}^{1} \frac{\left(x_{0}+p h\right)-\left(x_{0}+1 h\right) \cdot h d p}{x_{0}-\left(x_{0}+1 h\right)}+y_{1} \int_{0}^{1} \frac{\left(x_{0}+p h\right)-x_{0} \cdot h d p}{\left(x_{0}+p h\right)-x_{0}} \\
& +\frac{y^{\prime \prime}(\S)}{2} \int_{0}^{1}\left(x_{0}+p h-x_{0}\right)\left[\left(x_{0}+p h\right)-\left(x_{0}+1 h\right)\right] \cdot h d p \\
& \int_{x_{0}}^{x_{1}} f(x) d x=y_{0} \int_{0}^{1} \frac{h(p-1) h d p}{-h}+y_{1} \int_{0}^{1} \frac{p h . h d p}{h}+\frac{y^{\prime \prime}(\S)}{2} \int_{0}^{1} p h[h(p-1)] h d p \\
& \int_{x_{0}}^{x_{1}} f(x) d x=y_{0} h\left|\frac{(p-1)^{2}}{2}\right|_{0}^{1}+y_{1} h\left|\frac{p^{2}}{2}\right|_{0}^{1}+\frac{y^{\prime \prime}(\S)}{2} h^{3}\left|\frac{p^{3}}{3}-\frac{p^{2}}{2}\right|_{0}^{1} \\
& \int_{x_{0}}^{x_{1}} f(x) d x=\frac{y_{0} h}{2}+\frac{y_{1} h}{2}-\frac{y^{\prime \prime}(\S)}{12} h^{3} \quad \text { As required. }
\end{aligned}
$$

SIMPSON'S RULE AND ERROR TERM
Since $\quad C_{k}=\frac{(-1)^{n-k} . h}{k!(n-k)!} \int_{0}^{n} p(p-1)(p-2) \ldots \ldots(p-k+1)(p-k-1) \ldots \ldots(p-n) d p$

And $E_{n}(x)=\frac{h^{n+2} y^{n+1}(\S)}{(n+1)!} \int_{0}^{n} p(p-1)(p-2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(p-n) d p$

Putting $\mathrm{n}=2, \mathrm{k}=0$ in (i) we get

$$
\begin{aligned}
& C_{0}=\frac{(-1)^{2-0} \cdot h}{0!(2-0)!} \int_{0}^{2}(p-1)(p-2) d p=\frac{h}{2} \int_{0}^{2}(p-1)(p-2) d p=\frac{h}{2} \int_{0}^{2}\left(p^{2}-3 p+2\right) d p \\
& C_{0}=\frac{h}{2}\left|\frac{p^{3}}{3}-\frac{3 p^{2}}{2}+2 p\right|_{0}^{2}=\frac{h}{2}\left(\frac{2}{3}\right)=\frac{h}{3}
\end{aligned}
$$

Now Putting $\mathrm{n}=2, \mathrm{k}=1$ in (i) we get
$C_{1}=\frac{(-1)^{1} . h}{1!(2-1)!} \int_{0}^{2} p(p-2) d p=-h \int_{0}^{2}\left(p^{2}-2 p\right) d p=-h\left|\frac{p^{3}}{3}-p^{2}\right|_{0}^{2}=\frac{4}{3} h$
Now Putting $\mathrm{n}=2, \mathrm{k}=2$ in (i) we get
$C_{2}=\frac{(-1)^{2-2} \cdot h}{2!(2-2)!} \int_{0}^{2} p(p-1) d p=\frac{h}{2}\left|\frac{p^{3}}{3}-\frac{p^{2}}{2}\right|_{0}^{2}=\frac{h}{2}\left(\frac{8}{3}-2\right)=\frac{h}{3}$

ERROR TERM FOR SIMPSON'S RULE:

Now Putting $\mathrm{n}=2$ in (ii) we get

$$
\begin{aligned}
& E_{2}(x)=\frac{h^{2+2} y^{2+1}(\S)}{(2+1)!} \int_{0}^{2} p(p-1)(p-2) d p=\frac{h^{4} y^{3}(\S)}{3!} \int_{0}^{2} p\left(p^{2}-3 p+2\right) d p \\
& E_{2}(x)=\frac{h^{4} y^{3}(\S)}{3!}\left|\frac{p^{4}}{4}-\frac{3 p^{3}}{3}+\frac{2 p^{2}}{2}\right|_{0}^{2}=\frac{h^{4} y^{3}(\S)}{3!}\left(\frac{16}{4}-8+4\right)=0
\end{aligned}
$$

Error term is zero so we find Global error term $E_{2}=-\frac{h^{3} y^{4}(\S)}{90}$
Now for $\mathrm{n}=3$

$$
\begin{equation*}
\int_{x_{0}}^{x_{3}} f(x) d x=\sum_{k=0}^{3} C_{k} y_{k}=C_{0} y_{0}+C_{1} y_{1}+C_{2} y_{2}+C_{3} y_{3}+E_{3}(x) \tag{i}
\end{equation*}
$$

If $C_{0}=\frac{3 h}{8}, C_{1}=\frac{9 h}{8}, C_{2}=\frac{9 h}{8}, C_{3}=\frac{3 h}{8}, \quad E_{3}(x)=-\frac{3 h^{5} y^{4}(\S)}{80}$ then (i) becomes $\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]-\frac{3 h^{5} y^{4}(\S)}{80}$

DIFFERENTIAL EQUATIONS

DIFFERENCE EQUATION

Equation involving differences is called Difference Equation.
OR an equation that consist of an independent variable ' t ', a dependent variable ' $y(t)$ ' and one or more several differences of the dependent variable \mathbf{y}_{t} as $\Delta \mathbf{y}_{t}, \Delta^{2} \mathbf{y}_{t}, \ldots \ldots . \Delta^{n} \mathbf{y}_{t}$ is called difference equation.
The functional relationship of the difference equation is $\boldsymbol{F}\left(\boldsymbol{t}, \boldsymbol{y}, \Delta \mathbf{y}_{\mathrm{t}}, \Delta^{2} \mathbf{y}_{\mathrm{t}}, \ldots \ldots . . \Delta^{\boldsymbol{n}} \mathbf{y}_{\mathbf{t}}\right)=\mathbf{0}$
Solution of differential equation will be sequence of $\mathbf{y}_{\mathbf{t}}$ values for which the equation is true for some set of consecutive integer ' t '.
Importance: difference equation plays an important role in problem where there is a quantity ' y ' that depends on a continuous independent variable ' t '
In polynomial dynamics, modeling the rate of change of the population or modeling the growth rate yields a differential equation for the population ' y ' as the function of time ' t '
i.e. $\frac{d y}{d t}=f(t, y)$

In differential equation models, usually the population is assumed to vary continuously I time.
Difference equation model arise when the population is modeled only at certain discrete time.

DIFFERENCE OF A POLYNOMIAL

The "nth" difference of a polynomial of degree ' n ' is constant, when the values of the independent variable are given at equal intervals.

EXAMPLES:
i. $\Delta^{3} y_{\mathrm{t}}+3 \Delta^{2} \mathrm{y}_{\mathrm{t}}-6 \Delta \mathrm{y}_{\mathrm{t}}+\mathrm{y}_{\mathrm{t}}=9 t^{2}+6 t$
ii. $\quad \Delta^{2} y_{t}+3 \Delta y_{t}-7 y_{t}=0$

ORDER AND DEGREE OF DE:

The highest derivative involved in the equation determines the order of Differential Equation and the power of highest derivative in Differential Eq. is called degree of D.E. for example $\frac{d^{2} y}{d x^{2}}+$ $\left(\frac{d y}{d x}\right)^{\mathbf{3}}+\boldsymbol{y}=\mathbf{0}$ has order " 2 " and degree " 1 "

Order of differential equation is the difference between the largest and smallest argument ' t ' appearing in it.
For example; if $y_{t+2}+y_{t+1}-7 y_{t}=0$ then $\operatorname{order}=t+2-t=2$
Degree of differential equation is the highest power of ' y '
For example; if $\mathrm{y}_{\mathrm{t}+2}{ }^{3}+\mathrm{y}_{\mathrm{t}+1}{ }^{2}-7 \mathrm{y}_{\mathrm{t}}=0$ then degree $=3$

DIFFERENTIAL EQUATION: It is the relation which involves the dependent variable, independent variable and Differential co-efficient i.e.

$$
f(t, y)=\frac{d y}{d t}=\frac{y-y_{0}}{t-t_{0}} \quad \Rightarrow\left(t-t_{0}\right) \frac{d y}{d t}=y-y_{0} \quad \Rightarrow y=y_{0}+\left(t-t_{0}\right) \frac{d y}{d t}
$$

ORDINARY DIFFERENTIAL EQUATION: If differential co-efficient of Differential Equation are total, then Differential Equation is called Ordinary Differential equation.

$$
\text { e. g. } \quad \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+5 y=2 x
$$

PARTIAL DIFFERENTIAL EQUATION: If differential co-efficient of Differential Equation are partial, then Differential Equation is called Ordinary Differential equation.
e. g. $\quad \frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} x}{\partial y^{2}}=\mathbf{0}$

SOLUTION OF DIFFERENTIAL EQUATION: A solution to a difference equation is any function which satisfies it. It is the relation which satisfies the Differential Equation as consider $\frac{d^{2} y}{d x^{2}}+y=0$

Then $y=\sin x, \cos x, 3 \sin x, 20 \cos x$ Are all solution of above equation.

THE MOST GENERAL SOLUTION

It is the solution which contains as many arbitrary constants as the order of differential equation. e.g. $\boldsymbol{y}^{\prime \prime}+\boldsymbol{y}=\mathbf{0}$ Is a $2^{\text {nd }}$ order Differential Eq. with constant co-efficient and general solution is $y=c_{1} \cos x+c_{2} \sin x$

PARTICULAR SOLUTION: Solution which can be obtained from General Solution by giving different values to the arbitrary constants " c_{1}, c_{2} " in $y=c_{1} \cos x+c_{2} \sin x$ For example $\boldsymbol{y}=4 \boldsymbol{\operatorname { c o s }} \boldsymbol{x}+7 \boldsymbol{\operatorname { s i n }} \boldsymbol{x}$

SINGULAR SOLUTION: Solution which cannot be obtained from General Solution by giving different values to the arbitrary constants.

HOMOGENOUS DIFFERENTIAL EQUATION: A differential equation for which " $\boldsymbol{u}=$ $\mathbf{0}$ " is a solution is called a Homogenous Differential Equation where ' u ' is unknown function. In other words, a differential equation which always possesses the trivial solution "u $=\mathbf{0}$ " is called Homogenous Differential Equation.

NON-HOMOGENOUS DIFFERENTIAL EQUATION: A differential equation for which $" \boldsymbol{u} \neq \mathbf{0}$ " (i.e. Non-Trivial solution) is a solution is called a Nonhomogeneous Differential Equation where ' u ' is unknown function.

INITIAL AND BOUNDARY CONDITIONS: To evaluate arbitrary constant in the General solution we need some conditions on the unknown function or solution corresponding to some values of the independent variables. Such conditions are called Boundary or Initial conditions.

If all the conditions are given at the same value of the independent variable, then they are called Initial conditions. If the conditions are given at the end points of the independent variable, then they are called Boundary conditions.

INITIAL VALUE PROBLEM: An initial value problem for a first order Ordinary Differential Equation is the equation together with an initial condition on a specific interval $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}$

Such that $y^{\prime}=f(x, y), \quad y(a)=y_{a}$, and $x \in[a, b]$
The equation is Autonomous if (\boldsymbol{y} ') is independent of ' x '
BOUNDARY VALUE PROBLEM: A problem in which we solve an Ordinary Differential Equation of order two subject to condition on $\boldsymbol{y}(\boldsymbol{x})$ or $\boldsymbol{y}^{\prime}(\boldsymbol{x})$ at two different points is called a two point boundary value problem or simply a Boundary value problem.
OR A differential equation along with one or more boundary conditions defines a boundary value problem.

CONVEX SET: A set $\boldsymbol{D} \subset \boldsymbol{R}^{\mathbf{2}}$ is said to be convex if whenever $\left(\boldsymbol{t}_{\boldsymbol{1}}, \boldsymbol{y}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{t}_{\mathbf{2}}, \boldsymbol{y}_{2}\right)$ belong to 'D' then $\left[(1-\lambda) t_{1}+\lambda t_{2},(1-\lambda) y_{1}+\lambda y_{2}\right]$ also belong to ' D ' for every " λ " in $[0,1]$

LIPSCHITZ CONDITION:A function $\boldsymbol{f}(\boldsymbol{t}, \boldsymbol{y})$ is said to satisfy a Lipschitz condition in the variable ' y ' on a set $\boldsymbol{D} \subset \boldsymbol{R}^{\mathbf{2}}$ if a constant ' $\boldsymbol{L}>\boldsymbol{0}$ ' exists with
$\left|\boldsymbol{f}\left(\boldsymbol{t}, \boldsymbol{y}_{1}\right)-\boldsymbol{f}\left(\boldsymbol{t}, \boldsymbol{y}_{2}\right)\right| \leq \boldsymbol{L}\left|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}\right|$ Whenever $\left(\boldsymbol{t}, \boldsymbol{y}_{1}\right)$ and $\left(\boldsymbol{t}, \boldsymbol{y}_{2}\right)$ are in ' \boldsymbol{D} ' and ' \boldsymbol{L} ' is called Lipschitz constant for ' \boldsymbol{f} '

WELL - POSED PROBLEM: The initial value problem $\frac{d y}{d x}=f(x, y) ; a \leq x \leq b ; y(a)=$ \boldsymbol{a} is said to be a well - posed problem if (i) A unique solution $\mathrm{y}(\mathrm{x})$ to the problem exist.

There exist constants $\epsilon_{\mathbf{0}}>\mathbf{0}$ and $\boldsymbol{k}>\mathbf{0}$ such that for any " \in " with $\epsilon_{\mathbf{0}}>\in>\mathbf{0}$ whenever $\boldsymbol{\delta}(\boldsymbol{x})$ is continuous with $\lceil\boldsymbol{\delta}(\boldsymbol{x})\rceil<\epsilon \forall \boldsymbol{x} \in[\boldsymbol{a}, \boldsymbol{b}]$ and when $\boldsymbol{\delta}_{\mathbf{0}}<\epsilon$ the initial value problem $\frac{d z}{d x}=f(x, z)+\delta(x) ; a \leq x \leq b ; z(a)=a+\delta_{0}$ has a unique solution $z(x)$ that satisfies $|z(x)-y(x)|<k \in \quad \forall x \in[a, b]$

The problem $\frac{d z}{d x}$ is called a Perturbed problem associated with $\frac{d y}{d x}$

SOME STANDARD TECHNIQUES FOR SOLVING ELEMENTARY DIFFERENTIAL EQUATIONS ANALYTICALLY

SECOND ORDER HOMOGENEOUS LINEAR DIFFERENCE EQUATION

The homogeneous difference equation of order 2 is
$y_{k+2}+a_{1} y_{k+1}+a_{2} y_{k}=0$ \qquad
Suppose that $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}+a_{1} A b^{k+1}+a_{2} A b^{k}=0 \Rightarrow A b^{k}\left(b^{2}+a_{1} b+a_{2}\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{2}+\boldsymbol{a}_{\mathbf{1}} b+\boldsymbol{a}_{\mathbf{2}}\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(\boldsymbol{b}^{2}+\boldsymbol{a}_{1} \boldsymbol{b}+\boldsymbol{a}_{2}\right)=\mathbf{0}$ \qquad
This quadratic equation is called auxiliary equation or characteristic equation.
Let b_{1} and b_{2} be the roots of equation (ii) then for these values there corresponds two solutions, u_{k} and v_{k} which are given by $u_{k}=A b_{1}{ }^{k}$ and $v_{k}=A b_{2}{ }^{k}$

Now three cases appear
CASE I : BOTH ROOTS b_{1} and b_{2} ARE REAL AND UNEQUAL(DISTINCT):
i.e. discriminent $=a_{1}{ }^{2}-4 a_{2}>0$ then general solution of (i) is $y_{k}=A_{1}{b_{1}}^{k}+A_{2}{b_{2}}^{k}$ or $y_{k}=A_{1} b_{1}{ }^{k}+A_{2} b_{2}{ }^{k}+A_{3} b_{3}{ }^{k}+\cdots \ldots \ldots . .+A_{n} b_{n}{ }^{k}$

EXAMPLE : Solve the following homogeneous differential equation $y_{k+2}-13 y_{k+1}+36 y_{k}=$ 0

SOLUTION : Given $y_{k+2}-13 y_{k+1}+36 y_{k}=0 \ldots$
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-13 A b^{k+1}+36 A b^{k}=0 \Rightarrow A b^{k}\left(b^{2}-13 b+36\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{2}-13 b+36\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-13 b+36\right)=0$
$\Rightarrow b^{2}-9 b-4 b+36=0 \Rightarrow b(b-9)-4(b-9)=0 \Rightarrow(b-4)(b-9)=0 \Rightarrow b=9,4$
So $y_{k}=A_{1} 4^{k}+A_{2} 9^{k}$

EXAMPLE : Solve the following homogeneous differential equation $y_{k+2}-6 y_{k+1}+7 y_{k}=0$
SOLUTION : Given $y_{k+2}-6 y_{k+1}+7 y_{k}=0$ \qquad
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-6 A b^{k+1}+7 A b^{k}=0 \Rightarrow A b^{k}\left(b^{2}-6 b+7\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{2}-6 b+7\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-6 b+7\right)=0$.
Here $a=0, b=-6 b, c=7$ then using quadratic formula we get $b=3 \pm \sqrt{2}$
$\Rightarrow b_{1}=3+\sqrt{2}$ and $b_{2}=3-\sqrt{2}$
then general solution of (i) is $y_{k}=A_{1}(3+\sqrt{2})^{k}+A_{2}(3-\sqrt{2})^{k}$

CASE II : BOTH ROOTS b_{1} and $\boldsymbol{b}_{\mathbf{2}}$ ARE REAL AND EQUAL:

i.e. discriminent $=a_{1}{ }^{2}-4 a_{2}=0$
then general solution of (i) is $y_{k}=\left(A_{1}+A_{2} k\right) b_{1}{ }^{k}$
or $y_{k}=\left(A_{1}+A_{2} k+A_{3} k^{2}\right) b_{1}{ }^{k}+A_{3} b_{2}{ }^{k}+\cdots \ldots \ldots .+A_{n} b_{n}{ }^{k}$ in general.
EXAMPLE : Solve the following homogeneous differential equation $9 y_{k+2}-12 y_{k+1}+4 y_{k}=$ 0

SOLUTION : Given $9 y_{k+2}-12 y_{k+1}^{\circ}+4 y_{k}=0$
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non trivial solution of (i) then it must satisfies the eq (i) i.e.
$9 A b^{k+2}-12 A b^{k+1}+4 A b^{k}=0 \Rightarrow A b^{k}\left(9 b^{2}-12 b+4\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(9 b^{2}-12 b+4\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(9 b^{2}-12 b+4\right)=0$
$\Rightarrow(3 b-2)^{2}=0 \Rightarrow(3 b-2)(3 b-2)=0 \Rightarrow b=\frac{2}{3}, \frac{2}{3}$
then general solution of (i) is $y_{k}=\left(A_{1}+A_{2} k\right)\left(\frac{2}{3}\right)^{k}$

CASE III : BOTH ROOTS b_{1} and b_{2} ARE IMAGINARY:

i.e. discriminent $=a_{1}{ }^{2}-4 a_{2}<0$, the roots are complex (say) $m_{1} \pm i m_{2}$
let $b_{1}=m_{1}+i m_{2}$ and $b_{2}=m_{1}-i m_{2}$
then general solution of (i) is $y_{k}=\left(A_{1} \operatorname{Cosk} \theta+A_{2} \operatorname{Sink} \theta\right) R^{k}$
where $R=\sqrt{m_{1}^{2}+m_{2}{ }^{2}}$ and $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)$
EXAMPLE: Solve the following homogeneous differential equation $y_{k+4}+4 y_{k}=0$
SOLUTION : Given $y_{k+4}+4 y_{k}=0$ \qquad
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+4}+4 A b^{k}=0 \Rightarrow A b^{k}\left(b^{4}+4\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{4}+4\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{4}+4\right)=0$. \qquad
$\Rightarrow\left(b^{2}\right)^{2}+2^{2}+2\left(b^{2}\right)(2)-4 b^{2}=0 \Rightarrow\left(b^{2}+2\right)^{2}-\left(2 b^{2}\right)^{2}=0$
$\Rightarrow\left(b^{2}+2+2 b\right)\left(b^{2}+2-2 b\right)=0 \Rightarrow b^{2}+2+2 b=0$ and $b^{2}+2-2 b=0$
$\Rightarrow b=-1 \pm i$ and $b=1 \pm i \Rightarrow b_{1}=1 \pm i$ and $b_{2}=-1 \pm i$
where $R=\sqrt{m_{1}^{2}+m_{2}^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ for both above
and $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}(1)=\frac{\pi}{4}$ also $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}(-1)=\frac{3 \pi}{4}$
then
general
solution of
(i)
is
$y_{k}=\left(A_{1} \operatorname{Cosk} \theta+A_{2} \operatorname{Sink} \theta\right) R^{k}=\left(A_{1} \operatorname{Cosk} \frac{\pi}{4}+A_{2} \operatorname{Sink} \frac{\pi}{4}\right)(\sqrt{2})^{k}+\left(B_{1} \operatorname{Cos} \frac{3 k \pi}{4}+\right.$ $\left.B_{2} \operatorname{Sin} \frac{3 k \pi}{4}\right)(\sqrt{2})^{k}$

EXAMPLE :
Solve the following homogeneous differential equation $y_{k+3}+y_{k+2}-y_{k+1}-y_{k}=0$
SOLUTION : Given $y_{k+3}+y_{k+2}-y_{k+1}-y_{k}=0$ \qquad
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+3}+A b^{k+2}-A b^{k+1}-A b^{k}=0 \Rightarrow A b^{k}\left(b^{3}+b^{2}-b-1\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{3}+b^{2}-b-1\right)=0$

Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{3}+b^{2}-b-1\right)=0$.

-1	1	1	-1	-1
		-1	0	1
	1	0	-1	0

$\Rightarrow b=-1$ and $\Rightarrow\left(b^{2}-1\right)=0 \Rightarrow b=1,-1$
then general solution of (i) is $y_{k}=A_{1} 1^{k}+\left(A_{2}+A_{3} k\right)(-1)^{k}$

EXAMPLE :

Solve the following homogeneous differential equation $2 y_{k+2}-5 y_{k+1}+2 y_{k}=0$ with $y_{0}=0, y_{1}=1$

SOLUTION : Given $2 y_{k+2}-5 y_{k+1}+2 y_{k}=0$
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$2 A b^{k+2}-5 A b^{k+1}+2 A b^{k}=0 \Rightarrow A b^{k}\left(2 b^{2}-5 b+2\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(2 b^{2}-5 b+2\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(2 b^{2}-5 b+2\right)=0$
$\Rightarrow 2 b^{2}-4 b-b+2=0 \Rightarrow 2 b(b-2)-1(b-2)=0 \Rightarrow(2 b-1)(b-2)=0 \Rightarrow b=2, \frac{1}{2}$
So $y_{k}=A_{1} 2^{k}+A_{2}\left(\frac{1}{2}\right)^{k}$
Now using $y_{0}=0 \Rightarrow y_{0}=A_{1} 2^{0}+A_{2}\left(\frac{1}{2}\right)^{0} \Rightarrow A_{1}+A_{2}=0 \ldots \ldots \ldots$.(iii) $\Rightarrow A_{2}=-A_{1}$
$y_{1}=1 \Rightarrow y_{1}=A_{1} 2^{1}+A_{2}\left(\frac{1}{2}\right)^{1} \Rightarrow 2 A_{1}+\frac{1}{2} A_{2}=1$
$\Rightarrow 2 A_{1}-\frac{1}{2} A_{1}=1 \Rightarrow A_{1}=\frac{3}{2}$ then $\Rightarrow A_{2}=-A_{1} \Rightarrow A_{2}=-\frac{3}{2}$
then general solution of (i) is $y_{k}=\frac{3}{2} \cdot 2^{k}-\frac{3}{2} \cdot\left(\frac{1}{2}\right)^{k} \Rightarrow y_{k}=\frac{1}{3}\left(2^{1+k}-2^{1-k}\right)$
EXAMPLE: Solve the following homogeneous differential equation $y_{k+2}+\frac{1}{4} y_{k}=0$
SOLUTION : Given $y_{k+2}+\frac{1}{4} y_{k}=0$.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+4}+\frac{1}{4} A b^{k}=0 \Rightarrow A b^{k}\left(b^{4}+\frac{1}{4}\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{4}+\frac{1}{4}\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{4}+\frac{1}{4}\right)=0$
$\Rightarrow b= \pm \frac{1}{2} i \Rightarrow b_{1}=\frac{1}{2} i \quad$ and $b_{2}=-\frac{1}{2} i$
where $R=\sqrt{m_{1}{ }^{2}+m_{2}^{2}}=\sqrt{1^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{2}$ also $R=\sqrt{m_{1}{ }^{2}+m_{2}^{2}}=\sqrt{1^{2}+\left(-\frac{1}{2}\right)^{2}}=\sqrt{2}$
and $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}\left(\frac{\frac{1}{2}}{0}\right)=\operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$
also $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}\left(\frac{-\frac{1}{2}}{0}\right)=\operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$
then general solution of (i) is $\boldsymbol{y}_{\boldsymbol{k}}=\left(A_{1} \operatorname{Cosk} \frac{\pi}{2}+A_{2} \operatorname{Sink} \frac{\pi}{2}\right)\left(\frac{1}{2}\right)^{k}$

EXAMPLE :

Solve the following homogeneous differential equation
$y_{k+4}-6 y_{k+3}+14 y_{k+2}-14 y_{k+1}+5 y_{k}=0$
SOLUTION : Given $y_{k+4}-6 y_{k+3}+14 y_{k+2}-14 y_{k+1}+5 y_{k}=0$
Let $y_{k}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+4}-6 A b^{k+3}+14 A b^{k+2}-14 A b^{k+1}+5 A b^{k}=0 \Rightarrow A b^{k}\left(b^{4}-6 b^{3}+14 b^{2}-14 b+\right.$ 5) $=0$
\Rightarrow either $A b^{k}=0$ or $\left(\mathrm{b}^{4}-6 \mathrm{~b}^{3}+14 \mathrm{~b}^{2}-14 \mathrm{~b}+5\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore
$\left(b^{4}-6 b^{3}+14 b^{2}-14 b+5\right)=0$

$\Rightarrow b=1,1$ and $\Rightarrow\left(b^{2}-4 b+5\right)=0 \Rightarrow b=2 \pm i$ using quadratic formula.
$\Rightarrow b_{1}=1, b_{2}=1, b_{3}=2+i, b_{4}=2-i$
where $R=\sqrt{m_{1}{ }^{2}+m_{2}^{2}}=\sqrt{2^{2}+(1)^{2}}=\sqrt{5}$ also $R=\sqrt{m_{1}{ }^{2}+m_{2}{ }^{2}}=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$
and $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}\left(\frac{1}{2}\right)$ also $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}\left(-\frac{1}{2}\right)$

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+3}+6 y_{k+2}+11 y_{k+1}+6 y_{k}=0$ with $y_{0}=0, y_{1}=1, y_{2}=0$

SOLUTION : Given $y_{k+3}+6 y_{k+2}+11 y_{k+1}+6 y_{k}$
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+3}+6 A b^{k+2}+11 A b^{k+1}+6 A b^{k}=0 \Rightarrow A b^{k}\left(b^{3}+6 b^{2}+11 b+6\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{3}+6 b^{2}+11 b+6\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore
$\left(b^{3}+6 b^{2}+11 b+6\right)=0$

$\Rightarrow b=-1$ and $\Rightarrow\left(b^{2}+5 b+6\right)=0 \Rightarrow b=-2,-3 \Rightarrow b_{1}=-1, b_{2}=-2, b_{3}=-3$
then general solution of (i) is $y_{k}=A_{1}(-1)^{k} \oplus A_{2}(2)^{k}+A_{3}(-3)^{k}$
Now using $y_{0}=1 \Rightarrow y_{0}=A_{1}(-1)^{0}+A_{2}(2)^{0}+A_{3}(-3)^{0} \Rightarrow A_{1}+A_{2}+A_{3}=1$ \qquad
$y_{1}=1 \Rightarrow y_{1}=A_{1}(-1)^{1}+A_{2}(2)^{1}+A_{3}(-3)^{1} \Rightarrow A_{1}+2 A_{2}+2 A_{3}=-1$. \qquad
$y_{2}=0 \Rightarrow y_{2}=A_{1}(-1)^{2}+A_{2}(2)^{2}+A_{3}(-3)^{2} \Rightarrow A_{1}+4 A_{2}+9 A_{3}=0$
Eq (iii) -Eq (iv) $\Rightarrow A_{2}+2 A_{3}=-2 \ldots \ldots \ldots$ (vi) and Eq (iv) -Eq (v) $\Rightarrow A_{2}+3 A_{3}=\frac{1}{2}$
\qquad
$\mathrm{Eq}(\mathrm{vi})-\mathrm{Eq}(\mathrm{vii}) \Rightarrow A_{3}=\frac{5}{3}$
Put in (vi) $\Rightarrow A_{2}=-7$ Put in (iii) $\Rightarrow A_{1}=\frac{11}{2}$
then general solution of (i) is $y_{k}=\frac{11}{2}(-1)^{k}-7(-2)^{k}+\frac{5}{2}(-3)^{k}$

EXERCISE:

i. $\quad y_{k+2}=y_{k+1}+y_{k} \quad ; \quad y_{0}=0, y_{1}=1$
ii. $\quad y_{k+2}-2 y_{k+1}+y_{k}=0$

SECOND ORDER INHOMOGENEOUS LINEAR DIFFERENCE EQUATION

The non - homogeneous difference equation has the form as
$y_{n+k}+a_{1} y_{n+(k-1)}+a_{2} y_{n+(k-2)}+\cdots \ldots+a_{n} y_{k}=f(x)$
If $\boldsymbol{y}_{\boldsymbol{k}}$ is the solution of nth order homogeneous difference equation and $\boldsymbol{y}_{\boldsymbol{k}}^{*}$ is the solution of non - homogeneous linear difference equation then $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}$ where $\boldsymbol{y}_{\boldsymbol{k}}$ is also called complimentary function and $\boldsymbol{y}_{\boldsymbol{k}}^{*}$ is particular integral.

TYPE I : When R.H.S of given non - homogeneous difference equation is constants. i.e. $f(\boldsymbol{k})=\boldsymbol{c o n s t a n t}$ then to find $\boldsymbol{y}_{\boldsymbol{k}}^{*}$ put $\boldsymbol{y}_{\boldsymbol{k} / \boldsymbol{s}}=\boldsymbol{A}$ and then evaluate the value of A.

EXAMPLE : Solve the following homogeneous differential equation $y_{k+2}-3 y_{k+1}-4 y_{k}=2$
SOLUTION : Given $y_{k+2}-3 y_{k+1}-4 y_{k}=2$..
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-3 A b^{k+1}-4 A b^{k}=0 \Rightarrow A b^{k}\left(b^{2}-3 b-4\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{2}-3 b-4\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-3 b-4\right)=0$
$\Rightarrow b^{2}-4 b+b-4=0 \Rightarrow b(b-4)+1(b-4)=0 \Rightarrow(b-4)(b+1)=0 \Rightarrow b=-1,4$
So $y_{k}=A_{1}(-1)^{k}+A_{2} 4^{k}$
To find particular integral. Let $y_{k}=\boldsymbol{A} \quad(i) \Rightarrow A-3 A-4 A=2 \Rightarrow-6 A=2 \Rightarrow A=-\frac{1}{3}$
Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=A_{1}(-1)^{k}+A_{2} 4^{k}-\frac{1}{3}$

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+3}-3 y_{k+2}+3 y_{k+1}-y_{k}=9$
SOLUTION : Given $y_{k+3}-3 y_{k+2}+3 y_{k+1}-y_{k}=9$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+3}-3 A b^{k+2}+3 A b^{k+1}-A b^{k}=0$
$\Rightarrow A b^{k}\left(b^{3}-3 b^{2}+3 b-1\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{3}-3 b^{2}+3 b-1\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore

$$
\left(b^{3}-3 b^{2}+3 b-1\right)=0 \ldots \ldots \ldots .(i i) \Rightarrow(b-1)^{3}=0 \Rightarrow b=1,1,1
$$

So $y_{k}=\left(A_{1}+A_{2} k+A_{3} k^{2}\right)(1)^{k}$
TO FIND PARTICULAR INTEGRAL.: Since in characteristic solution $y_{k}=A_{2} k$ and $y_{k}=A_{3} k^{2}$ involves in homogeneous solution of given equation. So it does not particular integral for equation. So, we take higher power for ' k '' then put $y_{k}=A k^{3}$ in (ii)
(ii) $\Rightarrow A(k+3)^{3}-3 A(k+2)^{3}+3 A(k+1)^{3}-A(k)^{3}=9 \Rightarrow A=\frac{3}{2}$ (after solving) Thus $\boldsymbol{y}_{\boldsymbol{k}}^{*}=\frac{3}{2} k^{3}$
Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=\left(A_{1}+A_{2} k+A_{3} k^{2}\right)(1)^{k}+\frac{3}{2} k^{3}$
TYPE II : When R.H.S of given non - homogeneous difference equation has the form as $f(\boldsymbol{k})=\boldsymbol{\beta} \propto^{\boldsymbol{k}}$ where \propto and β are constants then to find $\boldsymbol{y}_{\boldsymbol{k}}^{*}$ put $\boldsymbol{y}_{\boldsymbol{k}^{\prime} \boldsymbol{s}}=\boldsymbol{A} \propto^{\boldsymbol{k}}$ and then evaluate the value of A.

EXAMPLE: Solve the following homogeneous differential equation $y_{k+2}-6 y_{k+1}+7 y_{k}=3^{k}$
SOLUTION : Given $y_{k+2}-6 y_{k+1}+7 y_{k}=3^{k}$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-6 A b^{k+1}+7 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}-6 b+7\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{2}-6 b+7\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-6 b+7\right)=0$
$\Rightarrow b=3 \pm \sqrt{2}$ using quadratic formula. So $y_{k}=A_{1}(3+\sqrt{2})^{k}+A_{2}(3-\sqrt{2})^{k}$
To find particular integral. Let $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{A} \mathbf{3}^{\boldsymbol{k}}$
(ii) $\Rightarrow A 3^{k+2}-6 A 3^{k+1}+7 A 3^{k}=3^{k} \Rightarrow 3^{k}(9 A-18 A+7 A)=3^{k} \Rightarrow A=-\frac{1}{2}$

Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=A_{1}(3+\sqrt{2})^{k}+A_{2}(3-\sqrt{2})^{k}-\frac{1}{2} 3^{k}$

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+3}-y_{k+2}+y_{k+1}-7 y_{k}=3^{k}$
SOLUTION : Given $y_{k+3}-y_{k+2}+y_{k+1}-7 y_{k}=3^{k}$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+3}-A b^{k+2}+A b^{k+1}-A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{3}-b^{2}+b-1\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{3}-b^{2}+b-1\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{3}-b^{2}+b-1\right)=0$
$\Rightarrow b^{2}(b-1)+1(b-1) \Rightarrow\left(b^{2}-1\right)(b-1) \Rightarrow b=1, \pm i$
where $R=\sqrt{m_{1}{ }^{2}+m_{2}{ }^{2}}=\sqrt{0^{2}+(1)^{2}}=\sqrt{1}$
and $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}\left(\frac{1}{0}\right)=\operatorname{Tan}^{-1}(\infty)=\frac{\pi}{2}$
$y_{k}=A_{1}(1)^{k}+\left(A_{2} \operatorname{Cosk} \frac{\pi}{2}+A_{3} \operatorname{Sink} \frac{\pi}{2}\right) \sqrt{1}$
To find particular integral. Let $y_{k}=A_{4} 3^{k}$
$\Rightarrow A_{4} 3^{k+3}-A_{4} 3^{k+2}+A_{4} 3^{k+1}-A_{4} 3^{k}=3^{k} \Rightarrow 3^{k}\left(27 A_{4}-9 A_{4}+3 A_{4}-A_{4}\right)=3^{k} \Rightarrow A_{4}=\frac{1}{20}$
Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=A_{1}(1)^{k}+\left(A_{2} \operatorname{Cosk} \frac{\pi}{2}+A_{3} \operatorname{Sink} \frac{\pi}{2}\right) \sqrt{1}+\frac{1}{20} 3^{k}$

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+2}-4 y_{k+1}+4 y_{k}=2.2^{k}$
SOLUTION : Given $y_{k+2}-4 y_{k+1}+4 y_{k}=2.2^{k} \ldots \ldots \ldots(i)$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-4 A b^{k+1}+4 A b^{k}=0$
$\Rightarrow A b^{k}\left(b^{2}-4 b+4\right)=0$
\Rightarrow either $A b^{k}=0$ or $\left(b^{2}-4 b+4\right)=0$

Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-4 b+4\right)=0$
$\Rightarrow b(b-2)-2(b-2) \Rightarrow(b-2)(b-2) \Rightarrow b=2,2$
$y_{k}=\left(A_{1}+A_{2} k\right)(2)^{k}$
To find particular integral. put $y_{k}=A k^{2} 2^{k}$ in (i)
(ii) $\Rightarrow A(k+2)^{2} 2^{k+2}-4 A(k+1)^{2} 2^{k+1}+4 A(k)^{2} 2^{k}=2.2^{k} \Rightarrow A=\frac{1}{4} \quad$ (after solving)

Thus $\boldsymbol{y}_{\boldsymbol{k}}^{*}=\frac{1}{4} k^{2} 2^{k}$
Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=\left(A_{1}+A_{2} k\right)(2)^{k}+\frac{1}{4} k^{2} 2^{k}$
EXAMPLE :
Solve the following homogeneous differential equation $y_{k+2}+6 y_{k+1}+25 y_{k}=2^{k}$
SOLUTION : Given $y_{k+2}+6 y_{k+1}+25 y_{k}=2^{k}$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}+6 A b^{k+1}+25 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}+6 b+25\right)=0 \Rightarrow$ either $A b^{k}=0 \operatorname{or}\left(b^{2}+6 b+25\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}+6 b+25\right)=0$
$\Rightarrow b=-3 \pm 4 i \quad$ using Quadratic formula.
where $R=\sqrt{m_{1}^{2}+m_{2}^{2}}=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{25}=5 \quad$ and $\theta=\operatorname{Tan}^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)$
$y_{k}=5\left(A_{1} \operatorname{Cosk}\left(\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)\right)+A_{2} \operatorname{Sink}\left(\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)\right)\right)$
To find particular integral. put $y_{k}=A 2^{k}$ in (i)
(ii) $\Rightarrow A 2^{k+2}+6 A 2^{k+1}+25 A 2^{k}=2^{k} \Rightarrow 4 A+12 A+25 A=0 \Rightarrow A=\frac{1}{41} \quad$ (after solving)

Thus $\boldsymbol{y}_{\boldsymbol{k}}^{*}=\frac{1}{41} 2^{k}$
Now general solution is

$$
\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=5\left(A_{1} \operatorname{Cosk}\left(\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)\right)+A_{2} \operatorname{Sink}\left(\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)\right)\right)+\frac{1}{41} 2^{k}
$$

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+2}-6 y_{k+1}+8 y_{k}=4^{k}$
SOLUTION : Given $y_{k+2}-6 y_{k+1}+8 y_{k}=4^{k}$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-6 A b^{k+1}+8 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}-6 b+8\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{2}-6 b+8\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-6 b+8\right)=0$
$\Rightarrow b=2,4 \quad$ factorizing. \quad So $y_{k}=A_{1} 2^{k}+A_{2} 4^{k}$
To find particular integral. put $y_{k}=A k 4^{k}$ in (i)
(ii) $\Rightarrow A(k+2) 4^{k+2}-6(k+1) A 4^{k+1}+8 A k 4^{k}=4^{k}$
$\Rightarrow 16 A k-32-24 A k-24+8 A k=0 \Rightarrow A=\frac{1}{8}$ (after solving)
Thus $\boldsymbol{y}_{\boldsymbol{k}}^{*}=\frac{1}{8} k 4^{k}$
Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=A_{1} 2^{k}+A_{2} 4^{k}+\frac{1}{8} k 4^{k}$
TYPE III : When R.H.S of given non homogeneous difference equation is a polynomial i.e $f(k)=1+k^{2}, 2+3 k+4 k^{2}+9 k^{3}$ etc. then to find $\boldsymbol{y}_{\boldsymbol{k}}^{*}$
put $\boldsymbol{y}_{k^{\prime},}=a_{0}+a_{1} k+a_{2} k^{2}+a_{3} k^{3}$ \qquad upto the highest power of ' k ' defined in the difference equation and the evaluate the values of $a_{0}, a_{1}, a_{2}, a_{3} \ldots \ldots \ldots \ldots \ldots$..............

EXAMPLE :
Solve the following homogeneous differential equation $y_{k+2}-5 y_{k+1}+6 y_{k}=k^{2}-1$
SOLUTION : Given $y_{k+2}-5 y_{k+1}+6 y_{k}=k^{2}-1$ \qquad
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-5 A b^{k+1}+6 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}-5 b+6\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{2}-5 b+6\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-5 b+6\right)=0$
$\Rightarrow b^{2}-3 b-2 b+6=0 \Rightarrow b(b-3)-2(b-3)=0 \Rightarrow(b-3)(b-2)=0 \Rightarrow b=2,3$
So $y_{k}=A_{1} 2^{k}+A_{2} 3^{k}$
To find particular integral. Let $\boldsymbol{y}_{\boldsymbol{k} / \boldsymbol{s}}=a_{0}+a_{1} k+a_{2} k^{2}$ in (i)
$\Rightarrow\left[a_{0}+a_{1}(k+2)+a_{2}(k+2)^{2}\right]-5\left[a_{0}+a_{1}(k+1)+a_{2}(k+1)^{2}\right]+6\left[a_{0}+a_{1} k+\right.$ $\left.a_{2} k^{2}\right]=k^{2}-1$
$(i) \Rightarrow\left(2 a_{0}-3 a_{1}-a_{2}\right)+\left(2 a_{1}-6 a_{2}\right) k+\left(2 a_{2}\right) k^{2}=k^{2}-1$
Comparing the coefficient of same powers of ' k ' we get
$2 a_{0}-3 a_{1}-a_{2}=-1 \ldots \ldots \ldots$ (iii), $2 a_{1}-6 a_{2}=0 \ldots \ldots \ldots$ (iv), $2 a_{2}=1$
(v) $\Rightarrow a_{2}=\frac{1}{2}$ put in (iv) (iv) $\Rightarrow a_{1}=\frac{3}{2}$ put in (iii) (iii) $\Rightarrow a_{0}=2$

Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=A_{1} 2^{k}+A_{2} 3^{k}+\left(2+\frac{3}{2} k+\frac{1}{2} k^{2}\right)$
EXERCISE : Solve the following homogeneous differentialequation
i. $\quad y_{k+2}+5 y_{k+1}-6 y_{k}=k^{2}+k+1$
ii. $\quad y_{k+2}+y_{k+1}+y_{k}=k^{2}+k+1$
iii. $\quad 4 y_{k+2}+4 y_{k+1}+y_{k}=k+1$

TYPE IV : When R.H.S of given non - homogeneous difference equation has the form as $f(k)=\alpha^{k} g(k)$ where $g(k)$ is a polynomial in ' k ' then to find $\boldsymbol{y}_{\boldsymbol{k}}^{*}$ put $\boldsymbol{y}_{k^{\prime} s}=\alpha^{k}\left(a_{0}+a_{1} k+a_{2} k^{2}+a_{3} k^{3}\right)$ \qquad upto the highest power of ' k ' defined in the difference equation and the evaluate the values of $a_{0}, a_{1}, a_{2}, a_{3} \ldots \ldots \ldots \ldots \ldots$

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+2}-13 y_{k+1}+36 y_{k}=2^{k}\left(k^{2}+1\right)$
SOLUTION : Given $y_{k+2}-13 y_{k+1}+36 y_{k}=2^{k}\left(k^{2}+1\right)$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-13 A b^{k+1}+36 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}-13 b+36\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{2}-13 b+36\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-13 b+36\right)=0$
$\Rightarrow b^{2}-9 b-4 b+36=0 \Rightarrow b(b-9)-4(b-9)=0 \Rightarrow(b-4)(b-9)=0 \Rightarrow b=4,9$
So $y_{k}=A_{1} 4^{k}+A_{2} 9^{k}$
To find particular integral. Let $\boldsymbol{y}_{\boldsymbol{k} / \boldsymbol{s}}=2^{k}\left(a_{0}+a_{1} k+a_{2} k^{2}\right)$ in (i)
(i) $\Rightarrow 2^{k+2}\left[a_{0}+a_{1}(k+2)+a_{2}(k+2)^{2}\right]-13.2^{k+1}\left[a_{0}+a_{1}(k+1)+a_{2}(k+1)^{2}\right]+$ 36. $2^{k}\left[a_{0}+a_{1} k+a_{2} k^{2}\right]=2^{k}\left(k^{2}+1\right)$
$\Rightarrow 2^{k}\left[4\left[a_{0}+a_{1}(k+2)+a_{2}(k+2)^{2}\right]-13.2\left[a_{0}+a_{1}(k+1)+a_{2}(k+1)^{2}\right]+36\left[a_{0}+\right.\right.$ $\left.\left.a_{1} k+a_{2} k^{2}\right]\right]=2^{k}\left(k^{2}+1\right)$
$\Rightarrow 2^{k}\left[4\left[a_{0}+a_{1}(k+2)+a_{2}(k+2)^{2}\right]-26\left[a_{0}+a_{1}(k+1)+a_{2}(k+1)^{2}\right]+36\left[a_{0}+a_{1} k+\right.\right.$ $\left.\left.a_{2} k^{2}\right]\right]=2^{k}\left(k^{2}+1\right)$
$\Rightarrow\left[4\left[a_{0}+a_{1}(k+2)+a_{2}(k+2)^{2}\right]-26\left[a_{0}+a_{1}(k+1)+a_{2}(k+1)^{2}\right]+36\left[a_{0}+a_{1} k+\right.\right.$ $\left.\left.a_{2} k^{2}\right]\right]=\left(k^{2}+1\right)$
(i) $\Rightarrow\left(16 a_{0}-18 a_{1}-10 a_{2}\right)+\left(66 a_{1}-36 a_{2}\right) k+\left(14 a_{2}\right) k^{2} \stackrel{\circ}{=} k^{2}-1$

Comparing the coefficient of same powers of ' k ' we get
$16 a_{0}-18 a_{1}-10 a_{2}=-1 \ldots \ldots \ldots$ (iii), $66 a_{1}-36 a_{2}=0 \ldots \ldots \ldots$ (iv), $14 a_{2}=1 \ldots \ldots \ldots$ (v)
(v) $\Rightarrow a_{2}=\frac{1}{14}$ put in (iv) (iv) $\Rightarrow a_{1}=\frac{18}{462}$ put in (iii) (iii) $\Rightarrow a_{0}=\frac{78}{539}$

Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=A_{1} 4^{k}+A_{2} 9^{k}+2^{k}\left(\frac{78}{539}+\frac{18}{462} k+\frac{1}{14} k^{2}\right)$
EXERCISE : Solve the following homogeneous differential equation
i. $\quad y_{k+2}-9 y_{k+1}+20 y_{k}=3^{k}\left(k^{2}-1\right)$
ii. $\quad y_{k+2}-4 y_{k+1}+4 y_{k}=2^{k}\left(k^{2}+k+1\right)$
iii. $\quad y_{k+2}-9 y_{k+1}+20 y_{k}=4^{k}\left(k^{2}+1\right)$
iv. $\quad y_{k+2}-7 y_{k+1}-8 y_{k}=2^{k}\left(k^{2}-k\right)$

TYPE V : When R.H.S of given non - homogeneous difference equation has the form as $f(k)=\operatorname{Sin} A k$ or $\operatorname{Cos} B k$ where A and B are constants then to find $\boldsymbol{y}_{\boldsymbol{k}}^{*}$
put $\boldsymbol{y}_{k^{\prime},}=c_{1} \operatorname{Sin} A k+c_{2} \operatorname{Cos} B k$ or $\boldsymbol{y}_{\boldsymbol{k}^{\prime} \boldsymbol{s}}=c_{3} \operatorname{Cos} B k+c_{4} \operatorname{Sin} B k$ then evaluate the values of c_{1}, c_{2}, c_{3}.

EXAMPLE :

Solve the following homogeneous differential equation $y_{k+2}-7 y_{k+1}+12 y_{k}=\operatorname{Sin} 3 k$
SOLUTION : Given $y_{k+2}-7 y_{k+1}+12 y_{k}=\operatorname{Sin} 3 k$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}-7 A b^{k+1}+12 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}-7 b+12\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{2}-7 b+12\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}-7 b+12\right)=0$
$\Rightarrow b^{2}-4 b-3 b+12=0 \Rightarrow b(b-4)-3(b-4)=0 \Rightarrow(b-4)(b-3)=0 \Rightarrow b=3,4$
So $y_{k}=c_{1} 3^{k}+c_{2} 4^{k}$
To find particular integral. Let $\boldsymbol{y}_{\boldsymbol{k}^{\prime} \boldsymbol{s}}=c_{3} \operatorname{Sin} 3 k+c_{4} \operatorname{Cos} 3 k$ in (i)
(i) $\Rightarrow\left[c_{3} \operatorname{Sin} 3(k+2)+c_{4} \operatorname{Cos} 3(k+2)\right]-7\left[c_{3} \operatorname{Sin} 3(k+1)+c_{4} \operatorname{Cos} 3(k+1)\right]+$ $12\left[c_{3} \operatorname{Sin} 3 k+c_{4} \operatorname{Cos} 3 k\right]=\operatorname{Sin} 3 k$
$\Rightarrow c_{3}[\operatorname{Sin} 3 k \operatorname{Cos} 6+\operatorname{Cos} 3 k \operatorname{Sin} 6]+c_{4}[\operatorname{Cos} 3 k \operatorname{Cos} 6-\operatorname{Sin} 3 k \operatorname{Sin} 6]-7 c_{3}[\operatorname{Sin} 3 k \operatorname{Cos} 3+$ $\operatorname{Cos} 3 k \operatorname{Sin} 3]-7 c_{4}[\operatorname{Cos} 3 k \operatorname{Cos} 3-\operatorname{Sin} 3 k \operatorname{Sin} 3]+12 c_{3} \operatorname{Sin} 3 k+12 c_{4} \operatorname{Cos} 3 k=\operatorname{Sin} 3 k$
$\Rightarrow c_{3}[\operatorname{Cos} 6-7 \operatorname{Cos} 3+12] \operatorname{Sin} 3 k+c_{4}[-\operatorname{Sin} 6+7 \operatorname{Sin} 3] \operatorname{Sin} 3 k+c_{3}[\operatorname{Sin} 6-7 \operatorname{Sin} 3] \operatorname{Cos} 3 k+$ $c_{4}[\operatorname{Cos} 6-7 \operatorname{Cos} 3+12] \operatorname{Cos} 3 k=\operatorname{Sin} 3 k$
$\Rightarrow\left[c_{3}(\operatorname{Cos} 6-7 \operatorname{Cos} 3+12)-c_{4}(\operatorname{Sin} 6-7 \operatorname{Sin} 3)\right] \operatorname{Sin} 3 k+\left[c_{3}(\operatorname{Sin} 6-7 \operatorname{Sin} 3)+\right.$ $\left.c_{4}(\operatorname{Cos} 6-7 \operatorname{Cos} 3+12)\right] \operatorname{Cos} 3 k=\operatorname{Sin} 3 k$

Comparing like terms

$$
\begin{align*}
& \Rightarrow c_{3}(\operatorname{Cos} 6-7 \operatorname{Cos} 3+12)-c_{4}(\operatorname{Sin} 6-7 \operatorname{Sin} 3)=1 \tag{iii}\\
& \Rightarrow c_{3}(\operatorname{Sin} 6-7 \operatorname{Sin} 3)+c_{4}(\operatorname{Cos} 6-7 \operatorname{Cos} 3+12)=0 \tag{iv}
\end{align*}
$$

\qquad
Let $(\operatorname{Cos} 6-7 \operatorname{Cos} 3+12)=l_{1}$ and $(\operatorname{Sin} 6-7 \operatorname{Sin} 3)=l_{2}$

Then (iii) and (iv) becomes
$\Rightarrow c_{3} l_{1}-c_{4} l_{2}=1$ and $\Rightarrow c_{3} l_{2}+c_{4} l_{1}=0$
$\Rightarrow \frac{c_{3}}{l_{1}}=\frac{c_{4}}{-l_{2}}=\frac{1}{l_{1}{ }^{2}+l_{2}{ }^{2}}$ then $\Rightarrow c_{3}=\frac{l_{1}}{l_{1}{ }^{2}+l_{2}{ }^{2}}$ and $\Rightarrow c_{4}=\frac{-l_{2}}{l_{1}{ }^{2}+l_{2}{ }^{2}}$
Then $\boldsymbol{y}_{\boldsymbol{k}}^{*}=\frac{l_{1}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Sin} 3 k-\frac{l_{2}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Cos} 3 k$
Now general solution is $\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=c_{1} 3^{k}+c_{2} 4^{k}+\frac{l_{1}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Sin} 3 k-\frac{l_{2}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Cos} 3 k$
Where $(\operatorname{Cos} 6-7 \operatorname{Cos} 3+12)=l_{1}$ and $(\operatorname{Sin} 6-7 \operatorname{Sin} 3)=l_{2}$
EXERCISE : Solve the following homogeneous differential equation
i. $\quad y_{k+2}-4 y_{k+1}+4 y_{k}=\operatorname{Sin} 4 k$
ii. $\quad y_{k+2}-2 y_{k+1}+y_{k}=\operatorname{Sin} 5 k+\operatorname{Cos} 5 k+6$
iii. $\quad y_{k+2}-2 y_{k+1}+y_{k}=\operatorname{Cos}^{2} k$

TYPE VI : When R.H.S of given non - homogenéous difference equation has the form as $f(k)=a^{k} \operatorname{Sin} A k$ or $a^{k} \operatorname{Cos} B k$ where A and B are constants then to find $\boldsymbol{y}_{\boldsymbol{k}}^{*}$
put $\boldsymbol{y}_{\boldsymbol{k}^{\prime} \boldsymbol{s}}=a^{k}\left(c_{1} \operatorname{Sin} A k+c_{2} \operatorname{Cos} B k\right)$ or $\boldsymbol{y}_{k^{\prime} / \boldsymbol{s}}=a^{k}\left(c_{3} \operatorname{Cos} B k+c_{4} \operatorname{Sin} B k\right)$ then evaluate the values of $c_{1}, c_{2}, c_{3} \ldots \ldots \ldots \ldots \ldots$

EXAMPLE :
Solve the following homogeneous differential equation $y_{k+2}+13 y_{k+1}+3 y_{k}=3^{k} \operatorname{Cos} 4 k$
SOLUTION : Given $y_{k+2}+13 y_{k+1}+3 y_{k}=3^{k} \operatorname{Cos} 4 k$
Firstly we find characteristic solution.
Let $\boldsymbol{y}_{\boldsymbol{k}}=A b^{k}$ be the non - trivial solution of (i) then it must satisfies the eq (i) i.e.
$A b^{k+2}+13 A b^{k+1}+3 A b^{k}=0$ \qquad
$\Rightarrow A b^{k}\left(b^{2}+13 b+3\right)=0 \Rightarrow$ either $A b^{k}=0$ or $\left(b^{2}+13 b+3\right)=0$
Since $A b^{k}$ is supposed to be non - trivial solution therefore $\left(b^{2}+13 b+3\right)=0$
$\Rightarrow b=\frac{-13 \pm \sqrt{157}}{2}$ using quadratic formula.
So $y_{k}=c_{1}\left(\frac{-13+\sqrt{157}}{2}\right)^{k}+c_{2}\left(\frac{-13-\sqrt{157}}{2}\right)^{k}$

To find particular integral. Let $\boldsymbol{y}_{\boldsymbol{k}^{\prime} \boldsymbol{s}}=3^{k}\left(c_{3} \operatorname{Cos} 4 k+c_{4} \operatorname{Sin} 4 k\right)$ in (i)
$(i) \Rightarrow 3^{k+2}\left[c_{3} \operatorname{Cos} 4(k+2)+c_{4} \operatorname{Sin} 4(k+2)\right]+13.3^{k+1}\left[c_{3} \operatorname{Cos} 4(k+1)+c_{4} \operatorname{Sin} 4(k+1)\right]+$ $+3.3^{k}\left[c_{3} \operatorname{Cos} 4 k+c_{4} \operatorname{Sin} 4 k\right]=3^{k} \operatorname{Cos} 4 k$
$\Rightarrow 3^{k}\left[3^{2}\left[c_{3} \operatorname{Cos} 4(k+2)+c_{4} \operatorname{Sin} 4(k+2)\right]+13.3\left[c_{3} \operatorname{Cos} 4(k+1)+c_{4} \operatorname{Sin} 4(k+1)\right]+\right.$ $\left.3\left[c_{3} \operatorname{Cos} 4 k+c_{4} \operatorname{Sin} 4 k\right]\right]=3^{k} \operatorname{Cos} 4 k$
$\Rightarrow 9\left[c_{3} \operatorname{Cos} 4(k+2)+c_{4} \operatorname{Sin} 4(k+2)\right]+39\left[c_{3} \operatorname{Cos} 4(k+1)+c_{4} \operatorname{Sin} 4(k+1)\right]+$ $3\left[c_{3} \operatorname{Cos} 4 k+c_{4} \operatorname{Sin} 4 k\right]=\operatorname{Cos} 4 k$
$\Rightarrow 9 c_{3}[\operatorname{Cos} 4 k \operatorname{Cos} 8-\operatorname{Sin} 4 k \operatorname{Sin} 8]+9 c_{4}[\operatorname{Sin} 4 k \operatorname{Cos} 8+\operatorname{Cos} 4 k \operatorname{Sin} 8]+39 c_{3}[\operatorname{Cos} 4 k \operatorname{Cos} 4-$ $\operatorname{Sin} 4 k \operatorname{Sin} 4]+39 c_{4}[\operatorname{Sin} 4 k \operatorname{Cos} 4+\operatorname{Cos} 4 k \operatorname{Sin} 4]+3 c_{3} \operatorname{Cos} 4 k+3 c_{4} \operatorname{Sin} 4 k=\operatorname{Cos} 4 k$
$\Rightarrow c_{3}[9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3] \operatorname{Cos} 4 k+c_{4}[9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3] \operatorname{Sin} 4 k-c_{3}[9 \operatorname{Sin} 8+$ $39 \operatorname{Sin} 4] \operatorname{Sin} 4 k+c_{4}[9 \operatorname{Sin} 8+39 \operatorname{Sin} 4] \operatorname{Cos} 4 k=\operatorname{Sin} 3 k$
$\Rightarrow\left[c_{3}(9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3)+c_{4}(9 \operatorname{Sin} 8+39 \operatorname{Sin} 4)\right] \operatorname{Cos} 4 k+\left[-c_{3}(9 \operatorname{Sin} 8+39 \operatorname{Sin} 4)+\right.$ $\left.c_{4}(9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3)\right] \operatorname{Sin} 4 k=\operatorname{Sin} 3 k$

Comparing like terms
$\Rightarrow c_{3}(9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3)+c_{4}(9 \operatorname{Sin} 8+39 \operatorname{Sin} 4)=1$
$\Rightarrow-c_{3}(9 \operatorname{Sin} 8+39 \operatorname{Sin} 4)+c_{4}(9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3)=0$
Let $(9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3)=l_{1}$ and $(9 \operatorname{Sin} 8+39 \operatorname{Sin} 4)=l_{2}$
Then (iii) and (iv) becomes $\Rightarrow c_{3} l_{1}+c_{4} l_{2}=1$ and $\Rightarrow-c_{3} l_{2}+c_{4} l_{1}=0$
$\Rightarrow \frac{c_{3}}{l_{1}}=\frac{c_{4}}{l_{2}}=\frac{1}{l_{1}{ }^{2}+l_{2}{ }^{2}} \quad$ then $\quad \Rightarrow c_{3}=\frac{l_{1}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \quad$ and $\quad \Rightarrow c_{4}=\frac{l_{2}}{l_{1}{ }^{2}+l_{2}{ }^{2}}$
Then $\boldsymbol{y}_{\boldsymbol{k}}^{*}=3^{k}\left(\frac{l_{1}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Cos} 4 k+\frac{l_{2}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Sin} 4 k\right)$
Now
general
solution
is
$\boldsymbol{y}_{\boldsymbol{k}}=\boldsymbol{y}_{\boldsymbol{k}}+\boldsymbol{y}_{\boldsymbol{k}}^{*}=c_{1}\left(\frac{-13+\sqrt{157}}{2}\right)^{k}+c_{2}\left(\frac{-13-\sqrt{157}}{2}\right)^{k}+3^{k}\left(\frac{l_{1}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Cos} 4 k+\frac{l_{2}}{l_{1}{ }^{2}+l_{2}{ }^{2}} \operatorname{Sin} 4 k\right)$
Where $(9 \operatorname{Cos} 8+39 \operatorname{Cos} 4+3)=l_{1}$ and $(9 \operatorname{Sin} 8+39 \operatorname{Sin} 4)=l_{2}$
EXERCISE : Solve the following homogeneous differential equation
i. $\quad y_{k+2}-4 y_{k+1}+4 y_{k}=(2)^{k} \operatorname{Sink} \quad$ with $y(o)=o=y(1)$
ii. $\quad y_{k+2}-7 y_{k+1}+12 y_{k}=12 k+8$ with $y(o)=o=y(1)$
iii. $\quad y_{k+2}+y_{k+1}+y_{k}=(2)^{k} \operatorname{Sink} \operatorname{Cos} 3 k$
iv. $\quad y_{k+4}-2 y_{k+3}+2 y_{k+2}-2 y_{k+1}+y_{k}=n^{2}$

Examples from Vedamurthy's Book
Example 1:-
Form difference eq corresponding to family of curves $y=a x^{2}+b x-3$ Sol:-

$$
\text { Since } y_{x}=a x^{2}+b x-3 \rightarrow \text { i, }
$$

where a and b are arbitral ousts.

$$
\begin{aligned}
\therefore y_{x+1} & =a(x+1)^{2}+b(x+1)-b \\
y x+1 & =a\left(x^{2}+2 x+1\right)+b(x-3 \\
& =a x^{2}+2 a x+b x+b-3 \\
y_{x+1} & =a x^{2}+(2 a+b x+b-3) \rightarrow \text { (2) }
\end{aligned}
$$

and $\left.y_{x+2}=a(x \neq 2)^{2}+b x^{2} x+2\right)-3$

Nous eq (2) - eq(1)
$\iint_{x+1}-y x=(2 a+b) x-b x+a+b-3+3$

$$
\Delta y_{x}=(2 x+1) a+b \rightarrow(4)
$$

Now $\Delta^{2} y_{x}=y_{x+2}-2 y_{x+1}+y$

$$
\begin{aligned}
& -x^{2} y+2 x^{2} y x+2=x^{2} y-\frac{x y}{2} y+x y+2 \\
& -\frac{x}{2} y_{x}-3=0 \\
& \Rightarrow\left(\frac{x^{2}}{2} \frac{x}{2}-x^{2}\right) \frac{y}{x+2}+\left(-x^{2}+x+2 x^{2}+x\right) y x+1 \\
& t\left(\frac{x^{2}}{2}-x-1-x^{2}-\frac{x}{2}\right) y x-3=0 \\
& \Rightarrow\left(x^{2}-x-2 x^{2}\right) y x+\left(-2 x^{2}+2 x+4 x^{2}+2 x\right) y_{x+1} \\
& \cdots+\left(x^{2}-2 x-2-2 x^{2}-x\right) y x-6=0 \\
& \Rightarrow\left(-x^{2}-x\right) y_{x \neq z}+\left(2 x^{2}+4 x\right) y+\cdots \\
& \left(-x^{2}-3 x-2\right) y-6=0 \\
& \Rightarrow \quad\left(x^{2}+x\right) y x \neq 2-2\left(x^{2}+2 x\right) y x+1+ \\
& \text { is } \quad\left(x^{2}+3 x+2\right) y x+6=0
\end{aligned}
$$

Example difference eq:
Example $\$ 2:$ the difference eq given that $y_{n}=A 3^{n}+B 5^{n}$ Sol 2
G given $y_{n}=A 3^{n}+B S^{n} \rightarrow 1$ 年 where A and B are arbitrary consents.

$$
\text { So } \frac{y}{n+1}=A 3^{n+1}+B 5^{n+1} \rightarrow(2)
$$

$$
y_{n+2}=A 3^{n+2}+B 5^{n+2} \rightarrow(3)
$$

$$
\begin{aligned}
& \Delta^{2} y= a x^{2}+4 a x+b x+4 a+3 b-b-2 a x^{2} \\
&-4 a x-2 b x+2 a-2 b+b+a x^{2}+b x \\
&-8 a \\
& \therefore \quad \\
& \Delta_{x}^{2} y=2 a \\
& \Rightarrow a=\frac{1}{2} \Delta^{2} y x=(5)
\end{aligned}
$$

put in eq (u)

$$
\begin{aligned}
& \Delta y_{x}=(2 x+1) \frac{1}{2} \Delta^{2} y_{x}+10 \\
& b=\Delta y=-\frac{1}{2}(2 x+1) \Delta^{2} y, ~(6) \\
& \text { put nese in (1) } \\
& y_{x}=\left(\frac{1}{2} \Delta^{2} y_{x}\right) \bar{x}^{2}+\left(\Delta y_{x}-\frac{1}{2}(2 x+1) \Delta^{2} y_{x}\right) x-3 \\
& y_{x} \equiv\left(\frac{1}{2} a^{2} y_{x}\right) x^{2} \pm x\left(y+\frac{y}{x+1}-\frac{x(2 x+1)}{2} a^{2} y\right. \text {. } \\
& =3 \\
& \left.y_{x} \equiv \frac{(1}{2} \Delta^{2} y_{x}\right) x^{2}+\frac{x y}{y_{x+1}-x y}-\frac{x(2 x+1)}{2} \\
& \Delta^{2} y x-3=0 \\
& \Rightarrow y_{x}=\frac{1}{2}\left[y_{x+2}=2 y_{x+1}+y_{x}\right] x^{2}+x y_{x+1}-x y_{x} \\
& \left(-\frac{2 x}{2}-\frac{x}{2}\right)\left(y_{x+2}-2 y_{x+1}+y_{x}\right]-3=0 \\
& \Rightarrow x^{2}\left(\frac{1}{2} y x+2-\frac{2 y}{2}+\frac{1}{2} y\right)+\frac{x y}{x+1}-y_{x}-3=0
\end{aligned}
$$

Eliminate A and B from 12,12, ... and (3). For this eq(1), (22 and (3) becomes
\qquad

$$
\begin{aligned}
& \text { eq(1), } 223^{n}+B S^{n} \\
& y n=3 A 3^{n}+5 B 5^{n} \\
& y_{n+1}
\end{aligned}
$$

$$
\therefore-393^{n}+5 B S
$$

$$
\therefore-y_{n+2}=9 A 3^{n}+25 B S^{n}
$$

So
$\left|\begin{array}{lll}y_{n} & 1 & 1 \\ y_{n+1} & 3 & 5 \\ y_{n+2} & -9 & 25\end{array}\right|=0$
\qquad

$$
\Rightarrow y_{n}(75-45)-1(25 y-5 y+1
$$

$$
(9 y+1-3 y+2)=0
$$

$$
\Rightarrow \quad 30 y-25 y+5 y+9 y
$$

$$
-3 y_{r+2}=0
$$

$$
\Rightarrow \quad 2 y_{n+1}=16 y_{n+1}+30 y=0
$$

$$
\begin{array}{r}
\text { Kr }^{r} \Rightarrow y_{n+1}-8 y_{n+1}+15 y_{n}=0 \\
\text { is rea wiron }
\end{array}
$$

is required difference equation.

Example \#3:-
Sole Equation $y_{x+1-2 y_{x} \cos \alpha+y_{x}=1=0}$
Equation can be written as

$$
\left(E^{2}-2 E \cos \alpha+1\right) y_{y-1}=0
$$

its Auxiliary eq is

$$
\begin{aligned}
& E^{2}-\frac{2 E \cos \alpha+1=0}{E} \\
&=\frac{12 \cos \alpha \pm \sqrt{4 \cos ^{2} \alpha-4}}{2} \\
&=\frac{2 \cos \alpha \pm \sqrt{4\left(\cos ^{2} \alpha-1\right)}}{2} \\
&=\frac{2 \cos \alpha \pm \sqrt{4\left(-\sin ^{2} \alpha\right)}}{2} \\
& E=\frac{2 \cos \alpha \pm 2 i \sin \alpha}{2} \\
& R=\sin _{4}^{2}+\sin _{2}^{2} \alpha \\
& R=\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}=1 \\
& \theta=\tan ^{-1}\left(\frac{m_{2}}{m_{1}}\right)=\tan ^{-1}\left(\frac{\sin \alpha}{\cos \alpha}\right)=\alpha
\end{aligned}
$$

ic, celution is

$$
\begin{aligned}
& \text { iclution is } \\
& {\left[C_{x-1} \cos \alpha(x-1)+c_{2} \sin \alpha(x-1)\right] 0} \\
& \sin \alpha x
\end{aligned}
$$

$$
\text { or } y x=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

Example \#4:-

Sol R

$$
\sqrt{y}+4 y=0 \rightarrow 12
$$

$$
\begin{aligned}
& \text { SolR } \begin{array}{l}
\text { Equ }+4 y=0 \\
\text { can be written as }
\end{array}
\end{aligned}
$$

$$
\left(E^{4}-4 E^{3}+8 E^{2}-8 E+4\right) y_{n}=0
$$

$$
\therefore \quad E^{2}-4 E^{3}+8 E^{2}-8 E+4=0
$$

$$
\equiv E-2 E^{3}-2 E^{3}+4 E^{2}+2 E^{2}+2 E^{2}-4 E=4 E+4=0
$$

$$
\Rightarrow E^{4}-2 E^{3}+2 E^{2}-2 E^{3}+4 E-4 E
$$

$$
+2 E^{2}-4 E+4=0
$$

$$
\Rightarrow E^{2}\left(E^{2}-2 E+2\right)-2 E\left(E^{2}-2 E+2\right)
$$

$$
+2\left(E^{2}-2 E+2\right)=0
$$

$$
\Rightarrow\left(E^{2}-2 E+2\right)\left(E^{2}-2 E+2\right)=0
$$

$$
\Rightarrow \quad E^{2}-2 E+2=0, E^{2}-2 E+2=0
$$

$$
\begin{aligned}
E & =\frac{2 \pm \sqrt{4-4(1)(2)}}{2} \\
E & =\frac{2 \pm \sqrt{-4}}{2} \\
E & =\frac{2 \pm 2 i}{2} \\
R & =\sqrt{m_{1}^{2}+m_{2}^{2}} \\
& =\sqrt{1 \pm 1}=\sqrt{2} \\
\theta & =T \operatorname{tn}\left(\frac{m_{2}}{m_{1}}\right) \\
\theta & =\operatorname{tin}^{1}(1)-\frac{\pi}{4}
\end{aligned}
$$

So, solution in

$$
\begin{array}{r}
\theta_{n}=\frac{\left\{\left(c_{1}+c_{2} n\right) \cos \frac{n \pi}{4}+\left(c_{3}+c_{4} n\right)\right.}{\left.\sin \frac{n \pi}{4}\right\}(\sqrt{2})^{n}} \text {. }
\end{array}
$$

Simultaneaes Linear Difference Equationse Example:-

She the foliowing system of dift crace quentions

$$
\begin{aligned}
& \frac{\text { quentions }}{4} \rightarrow n_{n}^{2} \rightarrow \sqrt{4} \\
& 4 y_{n}-3 z_{n}+y_{n}=3^{n} \rightarrow(2)
\end{aligned}
$$

Sol.
If: giosuratia ca- be writen in operator form as

$$
\begin{aligned}
& 1 E_{1}+z_{n}=n^{2} \rightarrow(32 \\
& 1 E_{n}+y_{n}=3^{n} \rightarrow(4)
\end{aligned}
$$

Clonting st to eq(u) and then aralyg for cq(3), gives

$$
\begin{aligned}
& (B E-2) y_{n}+z=-n^{2} \\
& +5 E=2) y_{n}(3 E-2)(4 E-3) z_{n}=+3^{n}(3 E-2) \\
& \cdots(1-3 E-2)(4 E-3) z_{n}=n^{2}-(3 E-2) 3^{n} \\
& \left.Z_{1}\left[1-10 E^{2}=9 E-85+6\right)\right]=n^{2}-33^{n+1}+23^{n} \\
& \Rightarrow \operatorname{Zn}\left[12 E^{2}+17 E-6\right]=n^{2}+3(2-9) \\
& \cdots-z_{n}-12 z_{n+2}+17 z_{n+1}=6 z_{n}=+n^{2}+3^{n} \cdot 7 \\
& \Rightarrow 12 z_{n+2}-17 z_{n+1}+5 z_{n}=7 \cdot 3 \cdot 3^{n} \rightarrow(5)
\end{aligned}
$$

Consider the homogeneous difference equation corresponding to difference eq(5),
as $\quad 12 z_{n+2}-17 z_{n+1}+5 z_{n}=0 \rightarrow(6)$
Let $Z_{n}=A b^{n}$ be non-trivial solution of eq (6) - δ_{0}, it satisfies eq(6) ie

$$
\begin{gathered}
12 A b^{n+2}-17 A b^{n+1}\left(12 b^{n}=0\right. \\
\left.\Rightarrow 12 b^{2}-17 b+5\right)=0 \\
\Rightarrow 12 b^{2}-12 b-5 b+5=0 \\
\Rightarrow 12 b(b-1)-5(b-1)=0 \\
(b=1)(12 b-5)=0 \\
\Rightarrow b-1=0,12 b-5=0 \\
\Rightarrow b=1,-\frac{5}{12} \\
\Rightarrow \text { so } C E=Z_{r}=c_{1} C 2^{n}+c_{2}\left(\frac{5}{12}\right)^{n}
\end{gathered}
$$

To find P. I of eq(5). substitute $z_{n}=c_{3} \cdot 3^{n}+n\left(c_{4}+c_{5} n+c_{6} n^{2}\right)$ in eq (5) $12\left[c_{3} 3^{n+2}+(n+2)\left(c_{4}+c_{5}(n+2)+C_{6}(n+2)^{2}\right]-\right.$ $17\left[c_{3} 3^{n+1}+(n+1)\left(c_{4}+c_{5}(n+1)+c_{6}(n+1)^{2}\right]+\right.$

$$
s\left[c_{3} 3^{n}+n\left(c_{4}+c_{8} n+C_{6} n^{2}\right)\right]=7 \cdot 3^{n}-n^{2}
$$

$$
\begin{aligned}
& 12\left(c_{3} 3^{n+2}+(n+2)\left(c_{4}+n c_{5}+2 c_{5}+c_{6}\left(n^{2}+\not q_{n}+4\right)\right)\right) \\
& -17\left(c_{6} 3^{n+1}+(n+1)\left(c_{4}+n c_{5}+c_{5}+c_{6}\left(n^{2}+2 n+2\right)\right)\right. \\
& \left.+5\left(c_{5} 3^{n}+n\left(c_{4}+c_{4} n+c_{6} n^{2}\right)\right)=7 \cdot 3^{n}-n^{2}\right) \\
& 12\left(c_{3} 3+(n+2)\left(c_{4}+n c_{5}+2 c_{5}+n^{2} c_{6}+c_{n} c_{6}+c_{1} c_{6}\right.\right. \\
& -17\left(c_{8} 3^{n+1}+(n+1)\left(c_{4}+n c_{5}+c_{5}+c_{6} n^{2}+2 c_{6}^{n}+2 c_{6}\right)\right. \\
& \left.+5\left(c_{5} 3^{n}+n\left(c_{4}+c_{5} n+c_{6} n^{2}\right)\right)=7-3-n^{2}\right)
\end{aligned}
$$

equating cofficients of n^{3}

$$
-12\left(c_{6}^{c}\right)-17\left(c_{6}\right)+5\left(c_{6}\right) \equiv 0
$$

- cequaling cocfociculs of n^{2}

$$
12\left(c_{5}+4 c_{6}\right)-17\left(c_{5}+2 c_{6}^{+6}\right)+\delta\left(c_{5}\right)=1
$$

cequering cortficienes of n

$$
\begin{aligned}
& 12\left(c_{4}+2 c_{5}+4 c_{6}+2 c_{5}+8 c_{6}\right)-17\left(c_{4}+c_{5}+2 c_{6}+c_{5}+2 c_{6}\right) \\
& -5\left(c_{4}\right)=0
\end{aligned}
$$

Cequacing conslamt lerms

$$
12\left(2 c_{4}+4 c_{5}+8 c_{6}\right)-17\left(c_{4}+c_{5}+2 c_{6}\right)=0
$$

Equainy coefficieves of 3^{n}

$$
12\left(3 c_{3}^{2}\right)-17\left(c_{3}(3)\right)+5 c_{5}=7
$$

The general solution of eq(s) is

$$
\begin{aligned}
& Z_{n}=c_{1}(1)^{n}+c_{2}\left(\frac{5}{12}\right)^{n}+\frac{7}{62} 3^{n}+n\left(-\frac{1777}{2058}+\frac{31 n}{98}\right. \\
&\left.-\frac{1}{21} n^{2}\right) \rightarrow(7)
\end{aligned}
$$

using $\operatorname{eq}(7)$ in eq(2) leads to \sim

piven system
(ii) \qquad

$$
4 z_{n+1}-13 z_{n}+2 y_{n}=\sin n
$$

Sol:-

$$
3 y_{n+1}-2 y_{n}+z_{n}=n^{2}
$$

(i)

$$
\begin{aligned}
& \quad z_{n+1}-z_{n}+y_{n}=2^{n} \rightarrow 11 \\
& \quad 3 y_{n+1}+2 y_{n} \pm z_{n}=7 \rightarrow(22
\end{aligned}
$$

The given system of linear difference equations can be written in operator form as

$$
\begin{aligned}
& (E-1) z_{n}+y_{n}=2^{n} \rightarrow(3) \\
& (3 E+2) y_{n}+z_{n}=7 \rightarrow(4)
\end{aligned}
$$

Operating eq (3) by operator $(3 E+2)$ and subtract from (4)

$$
\begin{aligned}
& \left(3 E+2 \pi y_{n}+z_{n}=7\right. \\
& \pm(3 E \neq 2) y_{n} \pm(3 E+2)(E-1) z_{n} \equiv(3 E+2) 2^{n} \\
& Z_{n}[1-(3 E+2)(E-1)]=7-(3 E+2) 2^{n} \\
& Z_{n}\left[1-\left(3 E^{2}-3 E+2 E-2\right)\right]=7-3 \cdot 2^{n+1}+2^{n+1} \\
& Z_{n}\left[1-\frac{3 E^{2}}{}+E+2\right]=z-(3+1) 2^{n+1} \\
& Z n\left[-3 E^{2}+E+3\right]=7-2 \cdot 2^{n+1} \\
& -Z_{n}\left[3 E^{2}-E-3\right]=-\left(2^{1+2}-7\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z_{n}\left[3 E^{2}-E-3\right]=2^{n+2}-7 \\
\Rightarrow & 3 Z_{n+2}-z_{n+1}=3 z_{n}=2^{n+2}-7=(5)
\end{aligned}
$$

Consider the homogeneous difference eq corresponding to eds is

$$
3 z_{n+2}-z_{n+1}-3 z_{n}=0 \quad 0 \cdot 62
$$

Let $z_{n}=A b^{n}$ be non-trivial sol of eq (6). So, it satisfies eq (6) ice.

$$
\begin{aligned}
& \cdots A b^{n+2}-A b^{n+1}-3 A b^{n}=0 \\
& A b^{n}\left(3 b^{2}-b-3\right)=0 \\
& \Rightarrow \quad 3 b^{2}-b-3 \equiv 0 \\
& b=\frac{1+\sqrt{1-4(3)(-3)}}{2(b)} \\
& b=\frac{1 \pm \sqrt{1+36}}{6} \\
& b=\frac{1 \pm \sqrt{37}}{2} \\
& C F=\frac{c_{1}\left(\frac{1+\sqrt{37}}{b}\right)^{n}}{b}+c_{2} \frac{(1-\sqrt{37})^{n}}{2} \\
& \text { To find } p-I \text { substitute } \\
& Z_{n}=C_{3} 2^{n+2}-n C_{4} \text { in (} s \text {) } \\
& 3\left(C_{3} 2^{n+4}-(n+2) C_{4}\right)-\left(C_{3} 2^{n+3}-(n+1) C_{4}\right)- \\
& 3\left(c_{3} 2^{n+2}-n c_{4}\right)=2^{n+2}-7
\end{aligned}
$$

$$
\begin{aligned}
& 12 C_{3} 2^{n+2}-3 n C_{4}-6 C_{4}-2 C_{3} 2^{n+2}+n C_{4}+C_{4} \\
& -3 C_{3} 2^{n+2}-3 n C_{4}=2^{n+2}-7 \\
& \Rightarrow \quad\left(12 C_{3}=2 C_{3}=3 C_{3}\right) 2^{n+2}+\left(-3 C_{4}+C_{4}-3 C_{4}\right) n_{1} \\
& \quad+\left(-6 C_{4}+C_{4}\right)=2^{n+2}-7
\end{aligned}
$$

comparing like terms

$$
\begin{aligned}
& 12 C_{3}-2 C_{3}-3 C_{3} \equiv 1 \\
& \Rightarrow(12-5) C_{3}
\end{aligned}
$$

$$
-2 c_{4}=\frac{7}{5}
$$

$$
P \cdot I \text { is }\left(\frac{1}{7}\right) 2^{n+2}-\frac{7}{5} n
$$

General solution of eq (s) is

\qquad
using eq(3) in (1) yields

$$
\begin{aligned}
& C_{1}\left(\frac{1+\sqrt{37}}{2}\right)^{n+1}+c_{2} \frac{(1-\sqrt{37})^{n+1}}{2}+\frac{2^{n+3}}{7}-\frac{7(n+1)}{5} \\
& -c_{1}\left(\frac{1+\sqrt{37}}{2}\right)^{n}-c_{2}\left(\frac{1-\sqrt{37}}{2}\right)^{n}-\frac{2^{n+2}}{7}-\frac{7}{5} n- \\
& +y_{n}=2^{n} \\
& \Rightarrow y_{n}=2^{n}+c_{1}\left(\frac{1+\sqrt{37}}{2}\right)^{n}+c_{2}\left(1-\frac{\sqrt{37}}{2}\right)^{n}+\frac{2^{n+z}}{7} \cdots \\
& +\frac{7}{5} n-c_{1}\left(\frac{1+\sqrt{37}}{2}\right)^{n+1}-c_{2}\left(\frac{1-\sqrt{37})^{n}}{2}\right. \\
& -\frac{2^{n+3}}{7}+\frac{7}{5}(n+1) \rightarrow(7)
\end{aligned}
$$

$E q(6)$ and (7) are general solutions
of given system.
(ii)

$$
\begin{aligned}
& 4 z_{n+1}=13 z_{n}+2 y_{n}=\sin n \rightarrow(2 \\
& 3 y_{n+1}=2 y_{n}+z_{n}=n^{2}-1(2)
\end{aligned}
$$

The given system of linear difference ens can be operated as

$$
\begin{aligned}
& (4 E-13) z_{n}+2 y_{n}=\sin n \rightarrow \text { (3) } \\
& (3 E-2) y_{n}+z_{n}=n^{2} \rightarrow(4)
\end{aligned}
$$

\therefore operating eq (4) by $(4 E-B)$ and : - rutting from (3)

$$
\frac{(4 E-13) z_{n}+2 y_{n}=\sin n}{ \pm(4 E-13) z_{n} \pm y_{n}(3 E-2)(4 E-13)=n^{2}} \cdot \frac{(4 E-13)}{}
$$

$$
\begin{aligned}
& y[2-(3 E-2)(4 E-13)]=\sin n-n^{2}(4 E-13) \\
& \Rightarrow y\left[2-\left(12 E^{2}-3 q E-8 E+26\right)\right]=\sin n-4 n^{2} \\
& \Rightarrow y\left[2-12 E^{2}+39 E+8 E-26\right]=\sin n-4 n^{3}+13 n^{2} \\
& \left.\Rightarrow y+12 E^{2}+47 E-24\right]=\sin n+13 n^{2}-4 n^{3} \\
& \Rightarrow[12 y-47 y+24 y]=4 n^{3}-13 n^{2}- \\
& \left.\Rightarrow \sin n \rightarrow c^{5}\right)
\end{aligned}
$$

Censider the romogenenus difference Eq-corespending t eq(s) is

$$
12 y_{n+2}-47 y_{n+1}+24 y_{n}=0 \rightarrow(6)
$$

$L \epsilon t y_{n}=A b^{n} b e$ non-trival sol
at $\left(q_{6}(6) \quad s_{c}\right.$, it satisfies eq(θ. i-e
$\cdots 12 E b^{n+2}-47 A b^{n+1}+24 A b^{n}=0$

$$
A b^{5}\left[\frac{12 b^{2}}{2}-47 b+24\right]=0
$$

$$
\Rightarrow \quad 12 b^{2}-47 b+24=0
$$

\qquad

$$
b=\frac{47 \pm \sqrt{2209-4(12)(24)}}{2(12)}
$$

\qquad

$$
b=\frac{47 \pm \sqrt{2209-1152}}{24}
$$

$$
b=\frac{47 \pm \sqrt{1057}}{24}
$$

STIFF DIGFFERENTIAL EQUATIONS: Those equations whose exact solutions has a term of the form $\boldsymbol{e}^{-c t}$ where c is a large positive constant.

REGION OF ABSOLUTE STABILITY: Region R of absolute stability for a one step method is $\boldsymbol{R}=\{\boldsymbol{h} \boldsymbol{\lambda} \boldsymbol{\epsilon} \mathbb{C}:|\boldsymbol{Q}(\boldsymbol{h} \boldsymbol{\lambda})|<\mathbf{1}\} \quad$ and for a multistep method it is
$R=\left\{h \lambda \in \mathbb{C}:\left|\beta_{k}\right|<1\right.$, for all zeros β_{k} of $\left.Q(z, h \lambda)\right\}$
A-STABLE METHOD: A numerical method is said to be A-Stable method if its region R of absolute stability contains the entire left half plane.

HOW TO REMOVE STIFFNESS OF IVP?: by increasing magnitude of derivative but not of solution. IN this situation error can grow so large that it dominates the calculations IVP.

METHODS FOR NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

SINGLE STEP METHODS: A series for ' y ' in terms of power of ' x ' form which the value of ' y ' at a particular value of ' x ' can be obtained by direct substitution e.g. Taylor's, Picard's, Euler's, Modified Euler's Method.

MULTI - STEP METHODS: In multi-step methods, the solution at any point ' x ' is obtained using the solution at a number of previous points.
(Predictor- corrector method, Adam's Moulton Method, Adam's Bash forth Method)
REMARK: There are some ODE that cannot be solved using the standard methods. In such situations we apply numerical methods. These methods yield the solutions in one of two forms.
(i) A series for ' y ' in terms of powers of ' x ' from which the value of ' y ' can be obtained by direct substitution. e.g. Taylor's and Picard's method
(ii) A set of tabulated values of 'x' and 'y'. e.g. and Euler's, Runge Kutta

ADVANTAGE/DISADVANTAGE OF MULTI - STEPMETHODS

They are not self-starting. To overcome this problem, the single step method with some order of accuracy is used to determine the starting values.

Using these methods one step method clears after the first few steps.

LIMITATION (DISADVANTAGE) OF SINGLE STEP METHODS.

For one step method it is typical, for several functions evaluation to be needed.
IMPLICIT METHODS: Method that does not directly give a formula to the new approximation. A need to get it, need an implicit formula for new approximation in term of known data. These methods also known as close methods. It is possible to get stable $3^{\text {rd }}$ order implicit method.

EXPLICIT METHODS; Methods that not directly give a formula to new approximation and need an explicit formula for new approximation " $\boldsymbol{y}_{\boldsymbol{i + 1}}$ " in terms of known data. These are also called open methods.

Most Authorities proclaim that it is not necessary to go to a higher order method. Explain.
Because the increased accuracy is offset by additional computational effort.

If more accuracy is required, then either a smaller step size. OR an adaptive method should be used.
CONSISTENT METHOD: A multi-step method is consistent if it has order at least one " 1 "

TAYLOR'S SERIES EXPANSION

Given (\boldsymbol{x}), smooth function. Expand it at point $\boldsymbol{x}=\boldsymbol{c}$ then

$$
f(x)=f(c)+(x-c) f^{\prime}(c)+\frac{(x-c)^{2}}{2!} f^{\prime \prime}(c)+\cdots \ldots \ldots \ldots
$$

$\Rightarrow \boldsymbol{f}(\boldsymbol{c})=\sum_{k=0}^{\infty} \frac{(x-c)^{\boldsymbol{k}}}{\boldsymbol{k}!} \boldsymbol{f}^{\boldsymbol{k}} \quad$ This is called Taylor's series of ' f ' at ' c '
If $\quad x_{0}-c=h \quad$ and $\quad f(x)=y \quad$ then $\Rightarrow c=x_{0}+h$
$y\left(x_{0}+h\right)=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\cdots$
MECLAURIN SERIES FROM TAYLOR'S: If we put $\boldsymbol{c}=\mathbf{0}$ in Taylor's series then

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{2}}{3!} \quad f^{\prime \prime \prime}(0)+\cdots \cdots \cdots=\sum_{k=0}^{\infty} \quad \frac{x^{k}}{k!} f^{k}(0)
$$

ADVANTAGE OF TAYLOR'S SERIES

(1) One step, Explicit.
(2) Can be high order.
(3) Easy to show that global error is the same as local truncation error.
(4) Applicable to keep the error small.

DISADVANTAGE: Need to explicit form of the derivatives of function. That is why not practical.

ERROR IN TAYLOR'S SERIES

Assume $f^{k}(x) \quad(0 \leq k \leq n)$ are continuous functions. Call

$$
f_{n}(x)=\sum_{k=0}^{n} \frac{(x-c)^{k}}{k!} f^{k}(c) \quad \text { Then first }(n+1) \text { term is Taylor series }
$$

Then the error is

$$
\begin{equation*}
E_{n+1}=f(x)-f_{n}(x) \sum_{k=n+1}^{\infty} \frac{(x-c)^{k}}{k!} f^{k}(c)=\frac{(x-c)^{n+1}}{(n+1)!} f^{n+1} \tag{§}
\end{equation*}
$$

Where ' \wp ' is some point between ' x ' and ' c '.

CONVERGENCE

A Taylor's series converges rapidly if ' x ' is nears ' c ' and slowly (or not at all) if ' x ' is for away form ' c '.

EXAMPLE: Obtain numerically the solution of $\boldsymbol{y}^{\prime}=\boldsymbol{t}^{2}+\boldsymbol{y}^{\mathbf{2}} ; \boldsymbol{y}(\mathbf{1})=\mathbf{0}$ using Taylor Series method to find 'y' at 1.3

SOLUTION

$$
\begin{aligned}
& y^{\prime}=t^{2}+y^{2} \ldots \ldots \ldots .(i) \\
& y^{\prime \prime}=2 t+2 y y^{\prime} \ldots \ldots \ldots . \text { (ii) } y^{\prime \prime \prime}=2\left[1+y^{\prime 2}+y y^{\prime \prime}\right]
\end{aligned}
$$

where $y_{0}=0$ and $t_{0}=0, h=t-t_{0}=0.3$
therefore $(i) \Rightarrow y_{0}^{\prime}=1,(i i) \Rightarrow y_{0}^{\prime \prime}=2,(i i i) \Rightarrow y_{0}^{\prime \prime \prime}=4,(i v) \Rightarrow y_{0}^{i v}=12$,
Now by using formula $y\left(t_{0}+h\right)=y\left(t_{0}\right)+h y^{\prime}\left(t_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(t_{0}\right)+\cdots$. we get $y(1+0.3)=y(1.3)=0.4132$ as required.

QUESTION: Explain Taylor Series method for solving an initial value problem described by $\frac{d y}{d x}=f(x, y)$;
(i) with $y\left(x_{0}\right)=y_{0}$

SOLUTION: Here we assume that $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is sufficiently differentiable with respect to ' x ' and ' y ' If $\mathrm{y}(\mathrm{x})$ is exact solution of (i) we can expand by Taylor Series about the point $x=x_{0}$ and obtain $y(x)=y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\cdots$
Since the solution is not known, the derivatives in the above expansion are known explicitly. However ' f ' is assume to be sufficiently differentiable and therefore the derivatives can be obtained directly from the given differentiable equation itself. Noting that ' f ' is an implicit function of ' y '. we have $y^{\prime}=f(x, y)$
$\Rightarrow y^{\prime \prime}=\frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x} f(x, y)=\frac{d f}{d x}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d x}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d x}=f_{x}+f_{y} \cdot f$
$\Rightarrow y^{\prime \prime \prime}=\frac{d}{d x}\left(y^{\prime \prime}\right)=\frac{d}{d x}\left(f_{x}\right)+\frac{d}{d x}\left(f_{y} . f\right)$
Now $\frac{d}{d x}\left(f_{x}\right)=\frac{\partial f_{x}}{\partial x} \cdot \frac{d x}{d x}+\frac{\partial f_{x}}{\partial y} \cdot \frac{d y}{d x}=f_{x x}+f_{x y} \cdot f$
$\frac{d}{d x}\left(f_{y} \cdot f\right)=f_{y} \cdot \frac{d f}{d x}+f \cdot \frac{d f_{y}}{d x}=f_{y} \cdot f_{x}+f f_{y}^{2}+f f_{y x}+f^{2} f_{y y}$
Using (a) and (b) in (ii) we get $\Rightarrow y^{\prime \prime \prime}=f_{x x}+f_{x y} \cdot f+f_{y} \cdot f_{x}+f f_{y}^{2}+f f_{y x}+f^{2} f_{y y}$

$$
\Rightarrow y^{\prime \prime \prime}=f_{x x}+2 f f_{x y}+f_{y} \cdot\left[f_{x}+f f_{y}\right]+f^{2} f_{y y} \quad \therefore f_{x y}=f_{y x}
$$

Continuing in this manner we can express any derivative of ' y ' in term of $f(x, y)$ and its partial derivatives.

EULER'S METHOD

To find the solution of the given Differential Equation in the form of a recurrence relation $\boldsymbol{y}_{\boldsymbol{m}+\boldsymbol{1}}=\boldsymbol{y}_{\boldsymbol{m}}+\boldsymbol{h} \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{m}}\right)$ Is called Euler Method

FORMULA DERIVATION

Consider the differential Equation of the first order

$$
\frac{d y}{d x}=f(t, y) \quad \text { and } \quad y\left(t_{0}\right)=y_{0}
$$

Let $\left(\boldsymbol{t}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{0}}\right)$ and $\left(\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}\right)$ be two points of approximation curve. Then

$$
y_{1}-y_{0}=m\left(x_{1}-x_{0}\right) \quad \ldots \ldots \ldots .(i) \quad \text { (point Slope form) }
$$

Given That $\quad \frac{d y}{d t}=\left.f(t, y) \Rightarrow \frac{d y}{d t}\right|_{\left(t_{0}, y_{0}\right)}=f\left(t_{0}, y_{0}\right) \Rightarrow \boldsymbol{m}=\boldsymbol{f}\left(\boldsymbol{t}_{0}, y_{0}\right)$

$$
(i) \Longrightarrow y_{1}-y_{0}=f\left(t_{0}, y_{0}\right)\left(x_{1}-x_{0}\right) \Longrightarrow y_{1}=y_{0}+\left(x_{1}-x_{0}\right) f\left(t_{0}, y_{0}\right)
$$

Similarly

$$
\begin{gathered}
y_{2}=y_{1}+\left(x_{2}-x_{1}\right) f\left(t_{1}, y_{1}\right) \\
y_{3}=y_{2}+\left(x_{3}-x_{2}\right) f\left(t_{2}, y_{2}\right) \\
\vdots \quad \vdots \\
y_{m+1}=y_{m}+\left(x_{m+1}-x_{m}\right) f\left(t_{m}, y_{m}\right) \\
\Rightarrow y_{m+1}=y_{m}+h f\left(t_{m}, y_{m}\right) \quad \text { is called Euler Method. }
\end{gathered}
$$

BASE OF EULER'S METHOD

In this method we use the property that in a small interval, a curve is nearly a Straight Line. Thus at $\left(\boldsymbol{t}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{0}}\right)$ We approximate the Curve by a tangent at that point.

OBJECT (PURPOSE) OF METHOD

The object of Euler's Method is to obtain approximations to the well posed initial value problem $\frac{d y}{d t}=f(t, y) \quad ; a \leq t \leq b ; y(a)=a$

GEOMETRICAL INTERPRETATION

Geometrically, this method has a very simple meaning. The desired function curve is approximated by a polygon train. Where the direction of each part is determined by the value of the function $\boldsymbol{f}(\boldsymbol{t}, \boldsymbol{y})$ at its starting point

Also $\boldsymbol{y}_{\boldsymbol{m}+\boldsymbol{1}}=\boldsymbol{y}_{\boldsymbol{m}}+\boldsymbol{h} \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{m}}\right)$ Shows that the next approximation $\boldsymbol{y}_{\boldsymbol{m}+\boldsymbol{1}}$ is obtained at the point where the tangent to the graph of $\boldsymbol{y}(\boldsymbol{t}) \boldsymbol{a t} \boldsymbol{t}=\boldsymbol{t}_{\boldsymbol{i}}$ interest with the vertical line $\boldsymbol{t}=\boldsymbol{t}_{\boldsymbol{m}+\boldsymbol{1}}$

LIMITATION OF EULER METHOD

There is too much inertia in Euler Method. One should not follow the same initial slope over the whole interval of length " h ".

EULER METHOD IN VECTOR NOTATION

Consider the system $\frac{d \boldsymbol{Y}}{d t}=\boldsymbol{F}(\boldsymbol{Y})$ where $\boldsymbol{Y}=(\boldsymbol{x}, \boldsymbol{y}), \frac{d \boldsymbol{Y}}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$ and $\boldsymbol{F}(\boldsymbol{Y})=(\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}))$ if we are given the initial condition $\boldsymbol{Y}_{\mathbf{0}}=\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{y}_{0}\right)$ then Euler method approximate a solution (x, y) by $\quad\left(x_{k+1}, y_{k+1}\right)=\left(x_{k}, y_{k}\right)+\Delta t F\left(x_{k}, y_{k}\right)$

ADVANTAGE/DISADVANTAGE OF EULER METHOD

The advantage of Euler's method is that it requires only one slope evaluation and is simple to apply, especially for discretely sampled (experimental) data points. The disadvantage is that errors accumulate during successive iterations and the results are not very accurate.

EXAMPLE: Obtain numerically the solution of $\boldsymbol{y}^{\prime}=\boldsymbol{t}^{2}+\boldsymbol{y}^{\mathbf{2}} ; \boldsymbol{y}(\mathbf{0})=\mathbf{0} .5$ using simple Euler method to find ' y ' at 0.1

SOLUTION: $\quad y^{\prime}=t^{2}+y^{2}=f(t, y)$ where $y_{0}=0.5$ and $t_{0}=0$
Then $n=\frac{t-t_{0}}{h}=\frac{0.1-0}{0.1}=1\left(\right.$ number of steps) $\quad \therefore h=t-t_{0}$
Now by using formula $\boldsymbol{y}_{\boldsymbol{m}+\boldsymbol{1}}=\boldsymbol{y}_{\boldsymbol{m}}+\boldsymbol{h} \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{m}}\right)$ we get
$\boldsymbol{y}(0.1)=y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)=0.525$ as required.

For illustration, an example follows.

Example 8.2 Given

$$
\frac{d y}{d t}=\frac{y-t}{y+t}
$$

with the initial condition $y=1$ at $t=0$. Find y approximately at $t=0.1$, in five steps, using Euler's method.

Solution Since the number of steps involved are five, we shall march in steps of $0.1 / 5=0.02$. Therefore, taking step size $h=0.02$, we shall compute the value of y at $t=0.02,0.04,0.06,0.08$ and 0.1 . Thus,

$$
y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right), \quad \text { where } y_{0}=1, t_{0}=0
$$

Therefore,

$$
y_{1}=1+0.02 \frac{1-0}{1+0}=1.02
$$

Similarly

$$
\begin{aligned}
& y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)=1.02+0.02 \frac{1.02-0.02}{1.02+0.02}=1.0392 \\
& y_{3}=y_{2}+h f\left(t_{2}, y_{2}\right)=1.0392+0.02 \frac{1.0392-0.04}{1.0392+0.04}=1.0577 \\
& y_{4}=y_{3}+h f\left(t_{3}, y_{3}\right)=1.0577+0.02 \frac{1.0577-0.06}{1.0577+0.06}=1.0756 \\
& y_{5}=y_{4}+h f\left(t_{4}, y_{4}\right)=1.0756+0.02 \frac{1.0756-0.08}{1.0756+0.08}=1.0988
\end{aligned}
$$

Hence, the value of y corresponding to $t=0.1$ is 1.0988 .

MODIFIED EULER METHOD

Modified Euler's Method is given by the iteration formula
$y_{m+1}=y_{m}+\frac{h}{2}\left[f\left(t_{m}, y_{m}\right)+f\left(t_{m+1}, y_{m+1}^{(1)}\right)\right]$
Method also known as Improved Euler method sometime known as Runge Kutta method of order 2

CONVERGENCE FOR EULER METHOD: Assume that $\mathrm{f}(\boldsymbol{t}, \boldsymbol{y})$ has a Lipschitz constant L, for the variable ' y , and that the solution $\boldsymbol{y}_{\boldsymbol{i}}$ of the initial value problem $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{t}, \boldsymbol{y}), \boldsymbol{t} \in[\boldsymbol{a}, \boldsymbol{b}], \boldsymbol{y}(\boldsymbol{a})=\boldsymbol{y}_{\boldsymbol{a}}$ at $\boldsymbol{t}_{\boldsymbol{i}}$ is Approximated by $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{y}\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$ using Euler Method

Let ' M ' be an upper bound for $\left|\boldsymbol{y}^{\boldsymbol{n}}(\boldsymbol{t})\right|$ on $[\boldsymbol{a}, \boldsymbol{b}]$ then $\left[\boldsymbol{w}_{\boldsymbol{i}}-\boldsymbol{y}_{\boldsymbol{i}}\right] \leq \frac{\boldsymbol{M h}}{2 \boldsymbol{l}}\left(\boldsymbol{e}^{\boldsymbol{L}\left(\boldsymbol{t}_{\boldsymbol{i}}-\boldsymbol{a}\right)}-\mathbf{1}\right)$

DARIVATION OF MODIFIED EULER METHOD

Consider the differential Equation of $1^{\text {st }}$ order $\frac{d y}{d t}=f(t, y)$ and $y\left(t_{0}\right)=y_{0}$
Then by Euler's Method

$$
\begin{aligned}
& y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right) \quad \because h=t_{i+1}-t_{i} \\
& y_{1}=y_{0}+\frac{h}{2}\left[f\left(t_{0}, y_{0}\right)+f\left(t_{1}, y_{1}^{(1)}\right)\right] \\
& y_{2=} y_{1}+\frac{h}{2}\left[f\left(t_{1}, y_{1}\right)+f\left(t_{2}, y_{2}^{(1)}\right)\right] \\
& \vdots \quad \vdots \\
& y_{m+1}=y_{m}+\frac{h}{2}\left[f\left(t_{m}, y_{m}\right)+f\left(t_{m+1}, y_{m+1}^{(1)}\right)\right]
\end{aligned}
$$

EXAMPLE: Obtain numerically the solution of $\quad \boldsymbol{y}^{\prime}=\boldsymbol{\operatorname { l o g }}(\boldsymbol{t}+\boldsymbol{y}) ; \boldsymbol{y}(\mathbf{0})=\mathbf{1} \quad$ using modified Euler method to find ' y ' at 0.2

SOLUTION: Take $\mathrm{h}=0.1$ (own choice) and $t_{0}=0, t_{1}=t_{0}+h=0.1, t_{2}=0.2$
Now using Euler's method $y_{1}^{(1)}=y_{0}+h f\left(t_{0}, y_{0}\right)=1$
Then by using Euler's modified method
$y_{1}=y_{0}+\frac{h}{2}\left[f\left(t_{0}, y_{0}\right)+f\left(t_{1}, y_{1}^{(1)}\right)\right]^{\prime}=1.002069$
Again using Euler's method $y_{2}^{(1)}=y_{1}+h f\left(t_{1}, y_{1}\right)=1.006289$
Then by using Euler's modified method
$y_{2}=y_{1}+\frac{h}{2}\left[f\left(t_{1}, y_{1}\right)+f\left(t_{2}, y_{2}^{(1)}\right)\right]=1.008175 \Rightarrow y_{2}=y(0.2) \approx 1.0082$

182
Example : $^{3} 3$ Using modified Euler's method, obtain the solution of the differential equation
f^{\prime}

$$
\frac{d y}{d t}=t+\sqrt{y}=f(t, s)
$$

with the initial condition $y_{0}=1$ at $t_{0}=0$ for the range $0 \leq t \leq 0.6$ in steps of $0.2 \Rightarrow n$

Solution At first, we use Euler's method to get

$$
y_{1}^{(1)}=y_{0}+h f\left(t_{0}, y_{0}\right)=1+0.2(0+1)=1.2
$$

$$
\begin{aligned}
& \text { then, we use modified Euler's method to find } \\
& \qquad y(0.2)=y_{1}=y_{0}+h \frac{f\left(t_{0}, y_{0}\right)+f\left(t_{1}, y_{1}^{(1)}\right)}{2} \\
& \\
& y^{(1)}=1.0+0.2 \frac{1+(0.2+\sqrt{1.2})}{2}=1.2295
\end{aligned}
$$

Sinularly proceeding, we have from Euler's method

$$
y_{2}^{(1)}=y_{1}+h f\left(t_{1}, y_{1}\right)=1.2295+0.2(0.2+\sqrt{12295})=1.4913
$$

Using modified Euler's method, we get

$$
\begin{aligned}
y_{2} & =y_{1}+h \frac{f\left(t_{1}, y_{1}\right)+f\left(t_{2}, y_{2}^{(1)}\right)}{2} \\
& =1.2295+0.2 \frac{(0.2+\sqrt{1.2295})+(0.4+\sqrt{1.4913})}{2}=1.5225
\end{aligned}
$$

Finally

$$
y_{3}^{(1)}=y_{2}+h f\left(t_{2}, y_{2}^{\prime}\right)=1.5225+0.2(0.4+\sqrt{1.5225})=: 8493
$$

Now, modified Euler's method gives

$$
\begin{aligned}
y(0.6)=y_{3} & =y_{2}+h \frac{f\left(t_{2}, y_{2}\right)+f\left(t_{3} . y_{3}^{(1)}\right)}{2} \\
& =1.5225+0.1[(0.4+\sqrt{1.5225})+(0.6+\sqrt{1.8493})]=1.8819
\end{aligned}
$$

Hence, the solution to the given problem is given by

!	0.2	04	06
\boldsymbol{y}	1.2295	1.5225	12317

RUNGE KUTTA METHODS

Basic idea of Runge Kutta Methods can be explained by using Modified Euler's Method by Equation $\quad y_{m+1}=y_{\boldsymbol{n}}+\boldsymbol{h}$ (average of slopes)

Here we find the slope not only at ' $\boldsymbol{t}_{\boldsymbol{n}}$ ' but also at several other interior points and take the weighted average of these slopes and add to ' $\boldsymbol{y}_{\boldsymbol{n}}$ ' to get ' $\boldsymbol{y}_{\boldsymbol{n + 1}}$ '.

ALSO RK-Approach is to aim for the desirable features for the Taylor Series method but with the replacement of the requirement for the evaluation of the higher order derivatives with the requirement to evaluate $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ at some points with in the steps ' $\boldsymbol{x}_{\mathrm{I}}$ ' to ' $\boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}$ '

IMPORTANCE: Quite Accurate, Stable and easy to program but requires four slopes evaluation at four different points of (x, y) : these slope evaluations are not possible for discretely sampled data points, because we have is what is given to us and we do not get to choose at will where to evaluate slopes. These methods do not demand prior computation of higher derivatives of $\boldsymbol{y}(\boldsymbol{t})$ as in Taylor Series Method. Easy for automatic Error control. Global and local errors have same order in it.

DIFFERENCE B/W TAYLOR SERIES AND RK-METHOD (ADVANTAGE OF RK OVER TAYLOR SERIES)

Taylor Series needs to explicit form of deriyative of $\boldsymbol{f}(\boldsymbol{t}, \boldsymbol{y})$ but in RK-method this is not in demand. RK-method very extensively used.

SECOND ORDER RUNGE KUTTA METHOD

WORKING RULE: For a given initial value problem of first order $y^{\prime}=f(x, y) \quad, \quad y\left(x_{0}\right)=y_{0}$

Suppose " $x_{0}, x_{1}, x_{2} \ldots \ldots \ldots$ " be equally spaced ' x ' values with interval ' h '
i.e. $\quad x_{1}=x_{0}+h, \quad x_{2}=x_{1}+h$ \qquad
Also denote $y_{0}=y\left(x_{0}\right), \quad y_{1}=y\left(x_{1}\right), y_{2}=y\left(x_{2}\right) \ldots \ldots \ldots \ldots \ldots$
Then for " $n=0,1,2 \ldots \ldots \ldots$..... until termination do:
$x_{n+1}=x_{n}+h \quad, \quad k_{n}=h f\left(x_{n}, y_{n}\right) \quad, \quad I_{n}=h f\left(x_{n+1}, y_{n}+k_{n}\right)$
Then $\quad y_{n+1}=y_{n}+\frac{1}{2}\left(k_{n}+I_{n}\right)$ Is the formula for second order RK-method.
REMARK: Modified Euler Method is a special case of second order RK-Method.

IN ANOTHER WAY:

If $k_{1}=h f\left(x_{k}, y_{k}\right), \quad k_{2}=h f\left(x_{k+1}, y_{k}+k_{1}\right)$
Then Equation for second order method is $\boldsymbol{y}_{\boldsymbol{k}+\boldsymbol{1}}=\boldsymbol{y}_{\boldsymbol{k}}+\frac{\mathbf{1}}{\mathbf{2}}\left(\boldsymbol{k}_{\boldsymbol{1}}+\boldsymbol{k}_{2}\right)$ This is called Heun's Method(third order RK method)

ANOTHER FORMULA FOR SECOND ORDER RK-METHOD

$$
y_{n+1}=y_{n}+\frac{1}{3}\left(2 k_{1}+k_{2}\right) \quad \text { Where } k_{1}=h f\left(t_{n}, y_{n}\right) \quad, \quad k_{2}=h f\left(t_{n}+\frac{3}{2} h, y_{n}+\frac{3}{2} k_{1}\right)
$$

LOCAL TRUNCATION ERROR IN RK-METHOD.

LTE in RK-method is the error that arises in each step simply because of the truncated Taylor series. This error is inevitable. Error of Runge Kutta method of order two involves an error of $\mathrm{O}\left(\boldsymbol{h}^{3}\right)$.

In General RK-method of order 'm' takes the form $\boldsymbol{x}_{\boldsymbol{k}+\mathbf{1}}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{w}_{\mathbf{1}} \boldsymbol{k}_{\mathbf{1}}+\boldsymbol{w}_{\mathbf{2}} \boldsymbol{k}_{\mathbf{2}}+\cdots+\boldsymbol{w}_{\boldsymbol{m}} \boldsymbol{k}_{\boldsymbol{m}}$
Where $\quad k_{1}=\boldsymbol{h} . f\left(t_{k}, x_{k}\right) \quad, \boldsymbol{k}_{2}=\boldsymbol{h} f\left(t_{k}+a_{2} h, x+b_{2} \boldsymbol{k}_{1}\right)$
$k_{3}=h f\left(t_{k}+a_{3} h, x+b_{3} k_{1}+c_{3} k_{2}\right) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \quad k_{m}=h . f\left(t_{k}+a_{m} h, x+\right.$ $\left.\sum_{i=1}^{m-1} \emptyset_{i} k_{i}\right)$

MULTI STEP METHODS OVER RK-METHOD (PREFRENCE):

Determination of $\boldsymbol{y}_{\boldsymbol{i + 1}}$ require only on evaluation of $\boldsymbol{f}(\boldsymbol{t}, \boldsymbol{y})$ per step. Whereas RK-method for $\boldsymbol{n} \geq \mathbf{3}$ require four or more function evaluations. For this reason, multi-step methods can be twice as fast as RK-method of comparable Accuracy.

EXAMPLE:
use second order RK method to solve $\frac{d y}{d x}=\frac{y+x}{y-x}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) ; \boldsymbol{y}(\mathbf{0})=\mathbf{1}$ at $\mathrm{x}=0.4$ and $\mathrm{h}=0.2$
SOLUTION: $\frac{d y}{d x}=\frac{y+x}{y-x}=f(x, y)$
If ' h ' is not given then use by own choice for 4 - step take $h=0.1$ and for $1-$ step take $h=0.4$
Given that $\mathrm{h}=0.2, x_{0}=0, x_{1}=x_{0}+h=0.2, x_{2}=0.4$
Now using formula of order two
$y_{n+1}=y_{n}+\frac{1}{3}\left(2 k_{1}+k_{2}\right) \quad$ Where $\quad k_{1}=h f\left(x_{n}, y_{n}\right) \quad, \quad k_{2}=h f\left(x_{n}+\frac{3}{2} h, y_{n}+\frac{3}{2} k_{1}\right)$ $k_{1}=h f\left(x_{0}, y_{0}\right)=0.2, \quad k_{2}=h f\left(x_{n}+\frac{3}{2} h, y_{n}+\frac{3}{2} k_{1}\right)=0.32$

For $\mathrm{n}=0 ; k_{1}=h f\left(x_{0}, y_{0}\right)=0.2, \quad k_{2}=h f\left(x_{0}+\frac{3}{2} h, y_{0}+\frac{3}{2} k_{1}\right)=0.32$
$(i) \Longrightarrow y_{1}=y_{0}+\frac{1}{3}\left(2 k_{1}+k_{2}\right)=1.24 \Longrightarrow y(0.2)=1.24$

$$
\begin{aligned}
& \therefore n=\frac{x-x_{0}}{h} \\
& n=2 \text { steps }
\end{aligned}
$$

For $\mathrm{n}=1 ; k_{1}=h f\left(x_{1}, y_{1}\right)=0.2769, \quad k_{2}=h f\left(x_{1}+\frac{3}{2} h, y_{1}+\frac{3}{2} k_{1}\right)=0.3731$
$(i) \Rightarrow y_{2}=y_{1}+\frac{1}{3}\left(2 k_{1}+k_{2}\right)=1.54897 \Rightarrow y(0.4)=1.54897$
, Kutta metnous ve ...
Example 8.4 Use the following second order Runge-Kutta method described

$$
y_{n+1}=y_{n}+\frac{1}{3}\left(2 k_{1}+k_{2}\right)
$$

where

$$
k_{1}=h f\left(x_{n}, y_{n}\right) \quad \text { and } \quad k_{2}=h f\left(x_{n}+\frac{3}{2} h, y_{n}+\frac{3}{2} k_{1}\right)
$$

and find the numerical solution of the initial value problem described as

$$
\frac{d y}{d x}=\frac{y+x}{y-x}, \quad y(0)=1
$$

at $x=0.4$ and taking $h=0.2$.
Solution In the present problem

$$
f(x, y)=\frac{y+x}{y-x}, \quad h=0.2, \quad x_{0}=0, \quad y_{0}=1
$$

We calculate

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right)=0.2 \frac{1+0}{1-0}=0.2 \\
& k_{2}=h f\left[x_{0}+0.3, y_{0}+(1.5)(0.2)\right]=h f(0.3,1.3)=0.2 \frac{1.3+0.3}{1.3-0.3}=0.32
\end{aligned}
$$

Now, using the given R-K method, we get

$$
y(0.2)=y_{1}=1+\frac{1}{3}(0.4+0.32)=124
$$

Now, taking $x_{1}=0.2, y_{1}=1.24$, we calculate

$$
\begin{aligned}
& k_{1}=h f\left(x_{1}, y_{1}\right)=0.2 \frac{1.24+0.2}{1.24-0.2}=0.2769 \\
& k_{2}=h f\left(x_{1}+\frac{3}{2} h, y_{1}+\frac{3}{2} k_{1}\right)=h f(0.5,1.6554)=0.2 \frac{1.6554+0.5}{1.6554-0.5}=0.3731
\end{aligned}
$$

Again using the given R-K method, we obtain

$$
y(0.4)=y_{2}=1.24+\frac{1}{3}[2(0.2769)+0.3731]=1.54897
$$

Example 8.5 Solve the following differential equation

$$
\frac{d y}{d t}=t+y
$$

with the initial condition $y(0)=1$, using fourth-order Runge-Kuttamethod from :

$$
t=0 \text { to } t=0.4 \quad \text { taking } h=0.1
$$

Solution The fourth-order Runge-Kurta method is described as

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{1}=h f\left(t_{n}, v_{n}\right) \\
& k_{2}=h f\left(t_{n}+\frac{h}{2}, v_{n}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
& k_{4}=h f\left(t_{n}+h_{1}, y_{n}+k_{3}\right)
\end{aligned}
$$

In this problem, $f(t, y)=t+y, h=0.1,1_{0} \cdots 0, y_{0}=1$. As a first step, we calculate

$$
\begin{aligned}
& k_{1}=h f\left(t_{0}, y_{0}\right)=0.1(1)=0.1 \\
& k_{2}=h f\left(t_{0}+0.05, y_{0}+0.05\right)=h f(0.05,1.05)=0.1[0.05+1.05]=0.11 \\
& k_{3}=h f\left(t_{0}+0.05, y_{0}+0.055\right)=0.1(0.05+1.055)=0.1105 \\
& k_{4}=0.1(0.1+1.1105)=0.12105
\end{aligned}
$$

Now, we compute from, Eq (1) that

$$
\begin{aligned}
y_{1} & =y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& =1+\frac{1}{6}(a 1+0.22+0.2210+0.121003 \\
& =1.15034
\end{aligned}
$$

Therefore, $y(0.1)=y_{1}=1.11034$. In the second step, we have to find $y_{2}=y(0.2)$. K.howing that $t_{1}=0.1, y_{1}=1.11034$, we compute
$k_{1}=h f\left(t_{1}, y_{1}\right)=0.1(0.1+1.11034)=0.121034$

$$
\begin{aligned}
& k_{2}=h f\left(l_{1}+\frac{h}{2} \cdot y_{1}+\frac{k_{1}}{2}\right)=0.1[0.15+(1.11034+0.060517)]=0.13208 \\
& k_{2}=h f\left(t_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=0.1[0.15+(1.11034+0.06504)]=0.132638 \\
& k_{4}=h f\left(l_{1}+h, y_{1}+k_{3}\right)=0.1[0.2+(1.11034+0.132638)]=0.1442978
\end{aligned}
$$

and then from Eq. (1), we see that

$$
y_{2}=1.1103 .4+\frac{1}{6}[0.121034+2(0.13208)+2(0.132638)+0.1442978]=12428
$$

Similaily by calculating,

$$
\begin{aligned}
& k_{1}=h f\left(t_{2}, y_{2}\right)=0.1[0.2+1.2428]=0.14428 \\
& k_{2}=h f\left(t_{2}+\frac{h}{2}, y_{2}+\frac{k_{1}}{2}\right)=0.1[0.25+(1.2428+0.07214)]=0.156494 \\
& k_{3}=h f\left(t_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right)=0.1[0.25+(1.2428+0.078247)]=0.1571047 \\
& k_{4}=h f\left(t_{2}+h, y_{2}+k_{3}\right)=0.1[0.3+(1.2428+0.1571047)]=0.16999047
\end{aligned}
$$

Using Eq. (1), we compute

$$
y(0.3)=y_{3}=y_{2}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)=1.399711
$$

Finally, we calculate

$$
\begin{aligned}
& k_{1}=h f\left(t_{3}, y_{3}\right)=0.1[0.3+1.3997]=0.16997 \\
& k_{2}=h f\left(t_{3}+\frac{h}{2}, y_{3}+\frac{k_{1}}{2}\right)=0.1[0.35+(1.3997+0.084985)]=0.1834685 \\
& k_{3}=h f\left(t_{3}+\frac{h}{2}, y_{3}+\frac{k_{2}}{2}\right)=0.1[0.35+(1.3997+0.091734)]=0.1841434 \\
& k_{4}=h f\left(t_{3}+h, y_{3}+k_{3}\right)=0.1[0.4+(1.3997+0.1841434)]=0.19838434
\end{aligned}
$$

Using them in Eq. (1), we get

$$
y(0.4)=y_{4}=y_{3}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)=158363
$$

which is the required result.

CLASSICAL RUNGE KUTTA METHOD (RK - METHOD OF ORDER FOUR)

ALORITHM: Given the initial value problem of first order $y^{\prime}=f(x, y) \quad, \quad y\left(x_{0}\right)=y_{0}$
Suppose " $x_{0}, x_{1}, x_{2} \ldots \ldots \ldots$ " be equally spaced ' x ' values with interval ' h '
i.e.

$$
x_{1}=x_{0}+h, \quad x_{2}=x_{1}+h
$$

Also denote $y_{0}=y\left(x_{0}\right), \quad y_{1}=y\left(x_{1}\right), \quad y_{2}=y\left(x_{2}\right) \ldots \ldots \ldots \ldots \ldots$
Then for " $n=0,1,2 \ldots \ldots \ldots$ " until termination do:
$x_{n+1}=x_{n}+h \quad, \quad k_{1}=h f\left(x_{n}, y_{n}\right) \quad k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right)$
$k_{3}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \quad k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right)$
Then $\quad y_{n+1}=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+y_{n}$
Is the formula for Runge Kutta method of order four and its error is " $O\left(h^{5}\right)$ "

ADVANTAGE OF METHOD

- Accurate method.
- Easy to compute for the use of
- It lakes in estimating the error. computer.

COMPUTATIONAL COMPARISON:

The main computational effort in applying the Runge Kutta method is the evaluation of ' \boldsymbol{f} '. In RK - 2 the cost is two function evaluation per step. In $\mathrm{RK}-4$ require four evaluations per step.

EXAMPLE:

use 4th order RK method to solve $\frac{d y}{d x}=t+y ; y(0)=1$ from $\mathrm{t}=0$ to 0.4 taking $\mathrm{h}=0.4$
SOLUTION:

$$
\frac{d y}{d x}=t+y
$$

$h=0.1, t_{0}=0, t_{1}=t_{0}+h=0.1, t_{2}=0.2, t_{3}=0.3, t_{4}=0.4$
Now using formulas for the RK method of $4^{\text {th }}$ order $y_{n+1}=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+y_{n}$

Where $k_{1}=h f\left(t_{n}, y_{n}\right) \quad, \quad k_{2}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \quad, \quad k_{3}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \quad k_{4}=$ $h f\left(t_{n}+h, y_{n}+k_{3}\right)$

STEP I : for $\mathrm{n}=0$;

$$
\begin{array}{lc}
k_{1}=h f\left(t_{0}, y_{0}\right)=0.1 & k_{2}=h f\left(t_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right)=0.11 \\
k_{3}=h f\left(t_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right)=0.1105 & k_{4}=h f\left(t_{0}+h, y_{0}+k_{3}\right)=0.12105 \\
\text { (ii }) \Rightarrow y_{1}=y(0.1)=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+y_{0}=1.11034
\end{array}
$$

STEP II : for $\mathrm{n}=1$;
$k_{1}=h f\left(t_{1}, y_{1}\right)=0.121034 \quad, \quad k_{2}=h f\left(t_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right)=0.13208$
$k_{3}=h f\left(t_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right)=0.132638 \quad k_{4}=h f\left(t_{1}+h, y_{1}+k_{3}\right)=0.1442978$
(ii) $\Rightarrow y_{1}=y(0.2)=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+y_{1}=1.2428$

STEP III : for $\mathrm{n}=2$;
$k_{1}=h f\left(t_{2}, y_{2}\right)=0.14428$

$$
k_{2}=h f\left(t_{2}+\frac{h}{2}, y_{2}+\frac{k_{1}}{2}\right)=0.156494
$$

$k_{3}=h f\left(t_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right)=0.1571047 \quad k_{4}=h f\left(t_{2}+h, y_{2}+k_{3}\right)=0.16999047$
(ii) $\Rightarrow y_{1}=y(0.3)=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+y_{2}=1.399711$
this is required answer
Example 8.6 Solve the following van der Pol's equation

$$
y^{\prime \prime}-(0.1)\left(1-y^{2}\right) y^{\prime}+y=0
$$

using fourth order Runge-Kutta method for $x=0.2$, with the initial values $y(0)=1, y^{\prime}(0)=0$.

Solution Let

$$
\frac{d y}{d x}=p=f_{1}(x, y, p)
$$

Then

$$
\frac{d p}{d y}=(0.1)\left(1-y^{3}\right) p-y=f_{2}(x, y, p)
$$

Thus, the given van der Pol's equation reduced to two first-order equations.
In the present problem, we are given that $x_{0}=0, y_{0}=1, p_{0}=y_{0}^{\prime}=0$. Taking $h=0.2$, we compule

$$
\begin{aligned}
k_{1} & =h f_{1}\left(x_{0}, y_{0}, p_{0}\right)=0.2(0.0)=0.0 \\
l_{1} & =h f_{2}\left(x_{0}, y_{0}, p_{0}\right)=0.2(0.0-1)=-0.2 \\
k_{2} & =h f_{1}\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}, p_{0}+\frac{l_{1}}{2}\right)=h f_{1}(0.1,1,0,-0.1)=-0.02 \\
l_{2} & =h f_{2}\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}, p_{0}+\frac{l_{1}}{2}\right)=h f_{2}(0.1,1.0,-0.1)=0.2(0-1) \\
& =-0.2 \\
k_{3} & =h f_{1}\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}, p_{0}+\frac{l_{2}}{2}\right)=h f_{1}(0.1,0.99,-0.1)=0.2(-0.1) \\
l_{3} & =h f_{2}\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}, p_{0}+\frac{l_{2}}{2}\right)=h f_{2}(0.1,0.99,-0.1) \\
& =0.2[(0.1)(0.0199)(-0.1)-0.99]=-0.1980 \\
k_{4} & =h f_{1}\left(x_{0}+h, y_{0}+k_{3}, p_{0}+l_{3}\right)=h f_{1}(0.2,0.98,-0.1980)=-0.0396 \\
l_{4} & =h f_{2}\left(x_{0}+h, y_{0}+k_{3}, p_{0}+l_{3}\right)=h f_{2}(0.2,0.98,-0.1980) \\
& =0.2[(0.1 x(1-0.9604)(-0.1980)-0.98]=-0.19616 .
\end{aligned}
$$

Now, $y(0.2)=y_{1}$ is given by

$$
\begin{aligned}
& y(0.2)=y_{1}=y_{0}+\frac{1}{6}\left[h_{1}+2 L_{2}+2 h_{1}+k_{3}\right] \\
& -1+\frac{1}{6}[0.0+2(-0.02)+2(-30 n)+(-a n+3)] \\
& \text { - } 1 \text {-0.01sens - anmen }
\end{aligned}
$$

and

$$
\begin{aligned}
& y^{\prime}(0.2)=p_{1}=p_{0}+\frac{1}{6}\left(_{1}+24_{1}+2 y_{3}+4\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-0.1569\left(=-0.45+x^{3}\right) \\
& \text { Therefore, the required solution is } \\
& x(0.2)=0.9901 \text {, }
\end{aligned}
$$

PREDICTOR - CORRECTOR METHODS

A predictor corrector method refers to the use of the predictor equation with one subsequent application of the corrector equation and the values so obtained are the final solution at the grid point.

PREDICTOR FORMULA: The explicit (open) formula used to predict approximation " $\boldsymbol{y}_{\boldsymbol{i + 1}}^{\boldsymbol{n}}$ "is called a predictor formula.

CORRECTOR FORMULA: The implicit (closed) formula used to determine " $\boldsymbol{y}_{\boldsymbol{i + 1}}^{\boldsymbol{n}}$ "is called Corrector Formula. This used to improve " $\boldsymbol{y}_{\boldsymbol{i + 1}}$ "

IN GENERAL: Explicit and Implicit formula are used as pair of formulas. The explicit formula is called 'predictor' and implicit formula is called 'corrector'

Implicit methods are often used as 'corrector' and Explicit methods are used as 'predictor' in predictor-corrector method. why?

Because the corresponding Local Truncation Error formula is smaller for implicit method on the other hand the implicit methods has the inherent difficulty that extra processing is necessary to evaluate implicit part.

REMARK

- Truncation Error of predictor is $\boldsymbol{E}_{\boldsymbol{p}}=\frac{\mathbf{1 4}}{45} \boldsymbol{h}^{5} \boldsymbol{y}_{\boldsymbol{k}-\mathbf{1}}^{(5)}$ OR $\frac{\mathbf{2 8}}{\mathbf{9 0}} \boldsymbol{h} \Delta^{4} \boldsymbol{y}_{\mathbf{0}}^{\prime}$
- Local Truncation Error of Adam's Predictor is $\mathbf{2 5 1} \boldsymbol{h}^{\mathbf{5} \boldsymbol{y}} \boldsymbol{y}^{(5)}$
- Truncation Error of Corrector is $\frac{\mathbf{1}}{\mathbf{9 0}} \boldsymbol{h} \Delta^{4} \boldsymbol{y}_{\mathbf{0}}^{\prime}$

Why Should one bother using the predictor corrector method When the Single step method are of the comparable accuracy to the predictor corrector methods are of the same order?

A practical answer to that relies in the actual number of functional evaluations. For example, RK - Method of order four, each step requires four evaluations where the Adams Moulton method of the same order requires only as few as two evaluations. For this reason, predictor corrector formulas are in General considerably more accurate and faster than single step methods.

REMEMBER: In predictor corrector method if values of " $\boldsymbol{y}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{y}_{2} \ldots \ldots \ldots$ " against the values of " $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \ldots \ldots \ldots$ " are given the we use symbol predictor corrector method and in this method we use given values of " $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2} \ldots \ldots \ldots$ "

If " $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2} \ldots \ldots \ldots$ " Are not given against the values of " $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \ldots \ldots \ldots$ " then we first find values of " $\boldsymbol{y}_{0}, y_{1}, \boldsymbol{y}_{2} \ldots \ldots \ldots$ " by using RK - method
OR By using formula $\forall \boldsymbol{j}=1,2,3 \ldots \ldots \ldots n$
$y_{j}=y_{0}+(j h) y_{0}^{\prime}+\frac{(j h)^{2}}{2!} y_{0}^{\prime \prime}+\frac{(j h)^{3}}{3!} y_{0}^{\prime \prime \prime}+\ldots$

f: PREDICTOR-CORRECTOR METHODS

the prochods presented in Sections 8.2 to 8.4 are in general known as single-step bads, where we have seen that the computation of y at t_{n+1}, that is y_{n+1} nainss the knowledge of y_{n} only. In predictor-corrector methods which we cuss below, also known as multi-step methods, we require to know the metion y at t_{n}, t_{n-1}, t_{n-2}, etc., to compute the value of y at t_{n+1}. Thus, a predictor !"

$$
\frac{d y}{d t}=f(t, y)
$$

fith the initial condition $y\left(t_{n}\right)=y_{n}$. Using simple Euler's and modified Euler's -hod, we can write down a simple predictor-corrector pair ($\mathrm{P}-\mathrm{C}$) as
-

$$
\left.\begin{array}{l}
\mathrm{P}: y_{n+1}^{(0)}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
\mathrm{C}: y_{n+1}^{(1)}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}^{(0)}\right)\right] \tag{8.32}
\end{array}\right\}
$$

$\rightarrow 7$
杪
Here, $y_{n+1}^{(1)}$ is the first corrected value of y_{n+1}. The corrector formula may be used Wintively as defined below:

$$
\begin{equation*}
y_{n+1}^{(r)}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}^{(r-1)}\right)\right] . \quad r=1,2, \ldots \tag{8.33}
\end{equation*}
$$

The iteration is terminated when two successive iterates agice to the desired

* 'sccuracy. In this pair, to extrapolate the value of y_{n+1}, we have approxin:ated the
\therefore colution curve in the interval $\left(t_{n}, t_{n+1}\right)$ by a straight line passing throug. a $\left(t_{n}, y_{n}\right)$
\& and $\left(t_{n+1}, y_{n-1}\right)$. The accuracy of the predictor formula can be improved by
\because - porsidering a quadratic curve through the equispaced points $\left(t_{n-1}, \because_{n}, 1\right),\left(t_{n}, y_{n}\right)$,

$$
\begin{equation*}
y=a+b\left(t-t_{n-1}\right)+c\left(t-t_{n}\right)\left(t-t_{n-1}\right) \tag{8.34}
\end{equation*}
$$

Where a, b, c are constants to be determined. Since the curve passes through

$\therefore\left(\theta_{0-1}, y_{n-1}\right)$ and
- obtain
Thinefore,
'

$$
\begin{gathered}
\left(\frac{d y}{d t}\right)_{\left(t_{n}, y_{+}\right)}=f\left(t_{n}, y_{n}\right) \\
y_{n-1}=a, \quad y_{z}=a+b h=y_{n-1}+b h \\
b=\frac{y_{n}-y_{0-1}}{h}
\end{gathered}
$$

www. RanaMaths.com

Which gives

$$
f\left(t_{n}, y_{n}\right)=b+c\left(t_{n}-t_{n-1}\right)=b+c h
$$

or

$$
c=\frac{f\left(t_{n}, y_{n}\right)}{h}-\frac{\left(y_{n}-y_{n-1}\right)}{h^{2}}
$$

Substituting these values of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} into the quadratic equation (8.34), we get

$$
y_{n+1}=y_{n-1}+2\left(y_{n}-y_{n-1}\right)+2\left[h f\left(v_{n}, y_{n}\right)-\left(y_{n}-y_{n-1}\right)\right]
$$

That is,

$$
\begin{equation*}
y_{n+1}=y_{n-1}+2 h f\left(t_{n}, y_{n}\right) \tag{8.35}
\end{equation*}
$$

Thus, $\mathrm{i}^{1} \cdot$ te. d of considering the predictor-corrector pair (8.32), we may sonsider the predictor-corrector pair given by

$$
\left.\begin{array}{l}
P: y_{n+1}=y_{n-1}+2 h f\left(t_{n}, y_{n}\right) \\
C: y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right] \tag{8.36}
\end{array}\right\}
$$

The essentin' difference between them is, the predictor of (8.36) is more accurate. Hov.ever, the predictor of (8.36) cannot be used to predict y_{n+1} for a given initial val'ie proklim The reason being, its use require the knowledge of past two po.ats. In stech a situation, a Runge-Kutta method is generally used to start the pre fictor m thod.

BASE (MAIN IDEA) OF PREDICTOR CORRECTOR METHOS

In predictor corrector methods a predictor formula is used to predict the value of ' \boldsymbol{y} ' at $\boldsymbol{t}_{\boldsymbol{n + 1}}$ and then a corrector formula is used to improve the value of $\boldsymbol{y}_{\boldsymbol{n + 1}}$
Following are predictor - corrector methods

1. Milne's Method
2. Adam - Moulton method

MILNE'S METHOD

It's a multi-step method. In General, Milne's Predictor - Corrector pair can be written as

$$
\begin{array}{ll}
\mathrm{P}: y_{n+1}=y_{n-3}+\frac{4 h}{3}\left(2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right) & n \geq 3 \\
\mathrm{C}: y_{n+1}=y_{n-1}+\frac{h}{3}\left(y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right) & n \geq 3
\end{array}
$$

REMARK: Magnitude of truncation error in Milne's corrector formula is $\frac{\mathbf{1}}{\mathbf{9 0}} \boldsymbol{h} \Delta^{\mathbf{4}} \boldsymbol{y}_{\mathbf{0}}^{\prime}$ and truncation error in Milne's predictor formula is $\frac{\mathbf{2 8}}{\mathbf{9 0}} \boldsymbol{h} \Delta^{4} \boldsymbol{y}_{\mathbf{0}}^{\prime}$ stable, convergent, efficient, accurate, compeer friendly.

ALGORITHM

- First predict the value of $\mathbf{y}_{\boldsymbol{n + 1}}$ by above predictor formula.

Where derivatives are computed using the given differential equation itself.

- Using the predicted value $" \mathbf{y}_{\boldsymbol{n}+\boldsymbol{1}}$ " we calculate the derivative $\boldsymbol{y}_{\boldsymbol{n}+\boldsymbol{1}}^{\prime}$ from the given differential Equation.
- Then use the corrector formula given above for corrected value of $\mathbf{y}_{\boldsymbol{n + 1}}$. Repeat this process.

8.j. 1 Milr.e's Method

It is also a riulti-step method where we assume that the solution to the given in cial value problem is known at the past four equispaced points t_{0}, t_{1}, t_{2} and
13. To derive Nilne's predictor-corrector pair, we proceed as follows:

Let us crmsider the typical differential equation

$$
\frac{d y}{d t}=f\left(t_{1}, y\right), \quad y\left(t_{0}\right)=y_{0}
$$

On integratic- between the limits t_{0} and $t_{4 ;}$ we get

That is,

$$
\begin{equation*}
\int_{x_{0}}^{y_{4}} \frac{d y}{d t} d t=\int_{\infty_{0}}^{t_{4}} f(t, y) d t \tag{8.37}
\end{equation*}
$$

$$
\begin{equation*}
y_{4}-y_{0}=\int_{1_{0}}^{x_{4}} f(t ; y) d t \tag{8.38}
\end{equation*}
$$

Eo carry out integration, we employ a quadrature formula such as Newton's 'orward diffe: ence formula (6.33), so that
where

$$
\begin{equation*}
f\left(t, s^{2}=f_{0}+s \Delta f_{0}+\frac{s(s-1)}{2} \Delta^{2} f_{a}+\frac{s(s-1)(s-2)}{6} \Delta^{3} f_{0}+\cdots\right. \tag{8.39}
\end{equation*}
$$

$$
s=\frac{t-t_{0}}{h}, \quad t=s_{0}+s h
$$

Subrtituting Eq. (8.39) into Eq. (8.38), we obtain

$$
\begin{aligned}
y_{4}=y_{0}+\int_{r_{0}}^{f_{4}} & {\left[f_{0}+s \Delta f_{0}+\frac{s(s-1)}{2} \Delta^{2} f_{0}+\frac{s(s-1)(s-2)}{6}-\frac{s}{} \Delta_{0}\right.} \\
& \left.+\frac{s(s-1)(s-2)(s-3)}{24} \Delta^{4} f_{0}+\cdots\right] d t
\end{aligned}
$$

Now, by changing the variable of integration (from t to s), the limits of integration also changes (from 0 to 4), and thus the above expression becomes

$$
\begin{gather*}
y_{4}=y_{0}+h \int_{0}^{4}\left[f_{0}+s \Delta f_{0}+\frac{s(s-1)}{2} \Delta^{2} f_{0}+\frac{s(s-1)(s-2)}{6} \Delta^{3} f_{0}\right. \\
\left.+\frac{s(s-1)(s-2)(s-3)}{24} \Delta^{4} f_{0}+\cdots\right] d s \tag{8.40}
\end{gather*}
$$

which simplifies to

$$
\begin{equation*}
y_{4}=y_{0}+h\left[4 f_{0}+8 \Delta f_{0}+\frac{20}{3} \Delta^{2} f_{0}+\frac{8}{3} \Delta^{3} f_{0}+\frac{28}{90} \Delta^{4} f_{0}\right] \tag{8.41}
\end{equation*}
$$

Substituting the differences, such as $\Delta f_{0}=f_{1}-f_{0}, \Delta^{2} f_{0}=f_{2}-2 f_{1}+f_{0}$, etc., Eq. (8.41) can be further simplified to

$$
\begin{equation*}
y_{4}=y_{0}+\frac{4 h}{3}\left(2 f_{1}-f_{2}+2 f_{3}\right)+\frac{28}{90} h \Delta^{4} f_{0} \tag{8.42}
\end{equation*}
$$

Altematively, it can also be written as

$$
\begin{equation*}
y_{4}=y_{0}+\frac{4 h}{3}\left(2 y_{i}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right)+\frac{28}{90} h \Delta^{4} y_{0}^{\prime} \tag{8.43}
\end{equation*}
$$

This is known as Milne's predictor formula.
Similarly, integrating Eq. (8.37) over the interval t_{0} to t_{2} or $s=0$ to 2 and repeating the above steps, wio get

$$
\begin{equation*}
y_{2}=y_{0}+\frac{h}{3}\left(y_{0}^{\prime}+4 y_{2}^{\prime}+y_{2}^{\prime}\right)-\frac{1}{90} h \Delta^{4} y_{0}^{\prime} \tag{8.44}
\end{equation*}
$$

which is known as Milne's corrector formula.
In general, Milne's predictor-corrector pair can be written as

$$
\left.\begin{array}{l}
P: y_{n+1}=y_{n-3}+\frac{4 h}{3}\left(2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right) \tag{8.45}\\
C: y_{n+1}=y_{n-1}+\frac{h}{3}\left(y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right)
\end{array}\right\}
$$

EXAMPLE: use Milne's method to solve $\frac{d y}{d x}=1+\boldsymbol{y}^{2} \quad ; \boldsymbol{y}(\mathbf{0})=\mathbf{0}$ and compute $y(0.8)$
SOLUTION: $\quad h=0.2, x_{0}=0, x_{1}=x_{0}+h=0.2 \quad, \quad x_{2}=0.4, x_{3}=0.6$ also $y_{0}=0$
Now by using Euler's method

$$
\Rightarrow y_{m+1}=y_{m}+h f\left(t_{m}, y_{m}\right)
$$

for $m=0 ; \quad \Rightarrow y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)=0.2=y(0.2)$
for $m=1 ; \quad \Rightarrow y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)=0.48=y(0.4)$
for $m=2 ; \quad \Rightarrow y_{3}=y_{2}+h f\left(t_{2}, y_{2}\right)=0.73=y(0.6)$
Now

$$
y_{n}^{\prime}=1+y_{n}^{2}
$$

$$
\text { For } \mathrm{n}=1 \Rightarrow y_{1}^{\prime}=1+y_{1}^{2}=1.04
$$

For $\mathrm{n}=2 \Rightarrow y_{2}^{\prime}=1+y_{2}^{2}=1.16 \quad$ For $\mathrm{n}=3 \Longrightarrow y_{3}^{\prime}=1+y_{3}^{2}=1.36$

Now using Milne's Predictor formula

$$
\begin{aligned}
& \mathrm{P}: \mathrm{y}_{n+1}=y_{n-3}+\frac{4 h}{3}\left(2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right) \quad n \geq 3 \\
& \mathrm{y}_{4}=y_{0}+\frac{4 h}{3}\left(2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right)=0.98 \Rightarrow y_{4}^{\prime}=1+y_{4}^{2}=1.9604
\end{aligned}
$$

Now using corrector formula
C:

$$
\mathrm{y}_{n+1}=y_{n-1}+\frac{h}{3}\left(y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right) \quad n \geq 3
$$

$\mathrm{y}_{4}=y_{2}+\frac{h}{3}\left(y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right)=1.05=y(0.8)$
examples.
Example 8.7 Find $y(2.0)$ if $y(0)$ is the solution of

$$
\frac{d y}{d t}-\frac{1}{2}(t+y)
$$

 predictor-corrector method.
 $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ and \boldsymbol{y}_{3}, we have to compute the solution of the given $111, \ldots \ldots 1$ equation corresponding to $t=2.0 .1 \mathrm{i}=\mathrm{Milne}$'s P-C pair is given a

$$
\begin{aligned}
& P: y_{n+1}=y_{n-1}+\frac{4 h}{3}\left(2 y_{n-2}^{0}-y_{n-1}^{0}+2 y_{n}^{\prime}\right) \\
& C: y_{n+1}=y_{n-1}+\frac{h}{3}\left(y_{n-1}^{0}+4 y_{n}^{0}+y_{n+1}^{0}\right)
\end{aligned}
$$

From the given differential equation, we have $y^{\circ}=(\ell+y) / 2$. Therefurc.

$$
\begin{aligned}
& y_{i}=\frac{y_{1}+y_{1}}{2}=\frac{0:+2636}{2}=15680 \\
& y_{i}=\frac{t_{2}+y_{i}}{2}-\frac{1.2+3595}{2}=2.2975 \\
& y_{i}=\frac{f_{1}+y_{2}}{2}-\frac{15+4.968}{2}=32340
\end{aligned}
$$

Now, using predictor formula, we conpure

$$
\begin{aligned}
y_{4} & =y_{0}+\frac{10}{3}\left(2 x_{1}-. \frac{2}{2}+2 y_{3}\right) \\
& \left.=2-\frac{405}{3}[2 \operatorname{cisesc})-2.2975+2(3.2340)\right] \\
& =6.8710 .
\end{aligned}
$$

Using this predicted sabie, we shall cornpuce the improved value of, $1, \ldots, 1 /$
corrector formula

$$
y_{4}=y_{2}+\frac{f_{1}^{\prime}}{3}\left(y_{i}^{0}+4 y_{3}^{0}+y_{4}^{0}\right)
$$

$$
\begin{aligned}
& x_{i}=\frac{p_{1}+y_{4}}{2}=\frac{2+68710}{2}=4.4355 \\
& x_{i}-\frac{5_{2}+y_{2}}{2}-\frac{15+4.983}{2}=12340
\end{aligned}
$$

and

$$
y_{2}^{\prime}=2.2975
$$

Thus, the first corrected value of y_{4} is given by

$$
y_{4}^{(1)}=3.595+\frac{0.5}{3}[2.2975+4(3.234)+4.4355]=6.8731667
$$

Suppose, we apply the corrector formula again, then we have

$$
\begin{aligned}
y_{4}^{(2)} & =y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+\left(y_{4}^{(1)}\right)^{\prime}\right] \\
& =3.595+\frac{0.5}{3}\left[2.2975+4(3.234)+\frac{2+6.8731667}{2}\right] \\
& =6.8733467
\end{aligned}
$$

Finally, the value of y at $t=2.0$ is given by $y(2.0)=y_{i}=6.8734$.
Example 8.8 Tabulate the solution of

$$
\frac{d y}{d t}=t+y, \quad \jmath(0)=1
$$

in the interval $0 \leq t \leq 0.4$, with $h=0.1$, using Milne's predictor-corrector method.
Soltution Milne's P.C method demands the solution at the first four points t_{0}, t_{3}, t_{2} and t_{3}. As it is not a self-starting method, we shall use Runge-Kurta method of fourth order (why?) to get the required solution and then switch over to Mine's P-C method. Thus, taking $t_{0}=0, t_{1}=0.1, t_{2}=0.2, t_{3}=0.3$ we get the corresponding y values using Runge-Kutta method of fourth order; that is, y_{0} $=1, y_{1}=1.1103, y_{2}=1.2428$ and $y_{3}=1.3997$ (as obtained in Example 8.5). Now we compute

$$
\begin{aligned}
& y_{1}^{\prime}=t_{1}+y_{1}=0.1+1.1103=1.2103 \\
& y_{2}^{\prime}=t_{2}+y_{2}=0.2+1.2428=1.4428 \\
& y_{3}^{\prime}=t_{3}+y_{3}=0.3+1.3997=1.6997
\end{aligned}
$$

Using Milne's predictor formula

$$
\begin{aligned}
P: y_{4} & =y_{0}+\frac{4 h}{3}\left(2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right) \\
& =1+\frac{4(0.1)}{3}[2(1.2103)-1.4428+2(1.6997)] \\
& =1.58363
\end{aligned}
$$

Before using corrector formula, we compute

$$
y_{i}^{\prime}=i_{4}+y_{4}(\text { predicted value })=0.4+1.5836=1.9836
$$

ADAM'S MOULTON METHOD

The predictor - corrector formulas for Adam's Moulton method are given as follows
$P: y_{n+1}=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]$
$C: y_{n+1}=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right]$

REMARK

- The predictor Truncation Error is $\left(\frac{\mathbf{2 5 1}}{\mathbf{7 2 0}}\right) \boldsymbol{h} \boldsymbol{\nabla}^{4} \boldsymbol{y}_{\boldsymbol{n}}^{\prime}$ and Corrector Truncation Error is $\left(-\frac{19}{720}\right) \boldsymbol{h} \boldsymbol{\nabla}^{\mathbf{4}} \boldsymbol{y}_{\boldsymbol{n + 1}}^{\prime}$
- Truncation Error in Adam's predictor is approximately 13-time more than that in the corrector. OF course with Opposite Sign.
- In the predictor Corrector methods if ${ }^{\prime} \boldsymbol{y}_{\mathbf{0}}{ }^{\prime}$ is given another $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2} \ldots\right.$) or not Then Using Euler or RK or any other method we can find these. For example, by Euler method

$$
\boldsymbol{y}_{\boldsymbol{m}+\boldsymbol{1}}=\boldsymbol{y}_{\boldsymbol{m}}+\boldsymbol{h} \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{m}}\right) \quad \text { For } \mathrm{m}=0 \quad \Rightarrow \boldsymbol{y}_{\boldsymbol{1}}=\boldsymbol{y}_{\mathbf{0}}+\boldsymbol{h} \boldsymbol{f}\left(\boldsymbol{t}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{0}}\right)
$$

EXAMPLE: use Adam's Moulton method to solve $\frac{d y}{d \boldsymbol{t}}=\boldsymbol{y}-\boldsymbol{t}^{\mathbf{2}} ; \boldsymbol{y}(\mathbf{0})=\mathbf{1}$ at $\mathrm{t}=1.0$ taking $\mathrm{h}=0.2$ and compare it with analytic solution.
SOLUTION: in order to use Adam's Moulton method we require the solution of the given Differential equation at the past four equispaced points for which we have RK-4th order method which is self-starting.

Using RK method we get $y_{1}=1.21859, y_{2}=1.46813, y_{3}=1.73779$ where $h=0.2, y_{0}=1, t_{0}=0, t_{1}=t_{0}+h=0.2, t_{2}=0.4, t_{3}=0.6$

Also in easy way we can find y_{1}, y_{2}, y_{3} by using Euler's method with some error as follows Now by using Euler's method

$$
\Rightarrow y_{m+1}=y_{m}+h f\left(t_{m}, y_{m}\right)
$$

for $m=0 ; \quad \Rightarrow y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)=1.20000$
for $m=1 ; \quad \Rightarrow y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)=1.4320$
for $m=2 ; \quad \Rightarrow y_{3}=y_{2}+h f\left(t_{2}, y_{2}\right)=1.6864$
now as $\quad y_{n}^{\prime}=y_{n}-t_{n}^{2}$
$\Rightarrow y_{0}^{\prime}=y_{0}-t_{0}^{2}=1 \Rightarrow y_{1}^{\prime}=y_{1}-t_{1}^{2}=1.16 \Rightarrow y_{2}^{\prime}=y_{2}-t_{2}^{2}=1.27 \Rightarrow y_{3}^{\prime}=y_{3}-t_{3}^{2}=1.32$
Now using Adam's Predictor formula
P: $y_{n+1}=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]$
$y_{4}=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right]=1.95=y(0.8) \Rightarrow y_{4}^{(p)^{\prime}}=y_{4}-t_{4}^{2}=1.3105$

Now using

Adam's
Corrector
formula
C: $y_{n+1}=y_{n}+\frac{h}{24}\left[9 y^{\prime}{ }_{n+1}+19 y^{\prime}{ }_{n}-5 y^{\prime}{ }_{n-1}+y^{\prime}{ }_{n-2}\right]$
$\Rightarrow y_{4}=y_{3}+\frac{h}{24}\left[9 y_{4}^{\prime}+19 y_{3}^{\prime}-5 y^{\prime}{ }_{2}+y_{1}^{\prime}\right]=1.9530 \Rightarrow y_{4}^{(c)^{\prime}}=y_{4}{ }^{(c)}-t_{4}^{2}=1.3103$
Proceeding in similar way we can get
$2.2039, y_{5}^{(p)^{\prime}}=1.2039, y_{5}{ }^{(c)}=2.2034=y(1.0)$
Now the analytic solution can be seen in the following steps $\frac{d y}{d t}-y=-t^{2} \quad$ Then using integrating factor $e^{-t} \Rightarrow \frac{d}{d t}\left(y e^{-t}\right)=-t e^{-t} \Rightarrow y e^{-t}=-\int t e^{-t}$ $\Rightarrow y=t^{2}+2 t+2+c e^{t}$
now using initial conditions $y(0)=1$ we get $\mathrm{c}=-1$ therefor analytic solution is
$\Rightarrow y=t^{2}+2 t+2-e^{t} \quad \Rightarrow y(1.0)=2.2817$

EXERCISES

1
Explain lay lur's series anethod of solving an mintial valac problem described b)

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

Thylor's series method, find the solution of the differential equation $x y^{\prime \prime}=x-y$ given that $f(2)=2$ at $x=2.1$.
18.3 Using Taylor's series method, find the solution of

$$
\frac{d y}{d t}=t^{2}+y^{2}
$$

1 with the initial values $t_{0}=1, y_{0}=0$, at $t=1.3$.
Using Taylor's series method, solve

$$
y^{\prime}=y \sin x+\cos x
$$

subject to $x=0, y=0$ for some x.
Using modified Euler's method, obtain the solution of .39

$$
\frac{d y}{d t}=1-y, \quad y(0)=0 \quad 0.41
$$

for the range $0 \leq t \leq 0.2$, by taking $h=0.1$.
$\sqrt{6.6}$ Solve the initial niue problem

$$
y y^{\prime}=x, \quad y(0)=1.5
$$

using simple Euler's method, taking $h=0.1$ and hence find $y(0.2)$.
8.7 Obtain numerically the solution of

$$
y^{\prime}=x^{2}+y^{2}, \quad y(0)=0.5
$$

using Euler's method to find y at $x=0.1$ and 0.2
8.8 Use Runge-Kutta method of fourth order to solve numerically the initial value problem

$$
10 \frac{d y}{d x}=x^{2}+y^{2}, \quad y(0)=1
$$

and find y in the interval $0 \leq x \leq 0.4$, taking $h=0.1$.
Solve $y^{\prime \prime}=x\left(y^{\prime}\right)^{2}-y^{2}$, using fourth order Runge-Kurta method for $x=0.2$ correct to four decimal places with the initial conditions $y(0)=1$. $y^{\prime}(0)=0$.
Using R-K method of fourth order, solve $y^{\prime \prime}=x y^{\prime}+y^{2}$. given that $y(0)=1$. $y^{\prime}(0)=2$. Take $h=0.2$ and find y and y^{\prime} at $x=0.2$.
8.11 Use fourth order Runge-Kurta method to solve numerically the following initial value problem

$$
\frac{d y}{d t}=y^{2}-100 \exp \left[-100(t-1)^{2}\right], \quad y(0.8)=4.9491
$$

and find y in the interval $0.8 \leq t \leq 0.9$ taking $h=0.01$.
8.12 Find $y(0.8)$ using Milne's P-C method, if $y(x)$ is the solution of the differential equation

$$
\frac{d y}{d x}=-x y^{2}, \quad y(0)=2
$$

$$
\text { assuming } y(0.2)=1.92308, y(0.4)=1.72414, y(0.6)=1.47059 \text {. }
$$

8.13 Explain the principle of predictor-corrector methods. Derive Milne's predictor-corrector formulae to solve an initial value problem

$$
\frac{d y}{d x}=f(x, y), \quad y(0)=y_{0}
$$

8.14 Using Adam's predictor-corrector method, find y at $t=4.4$ from the differential equation

$$
5 t \frac{d y}{d t}+y^{2}=2
$$

given that

t	4.0	4.1	4.2	4.3
y	1.0	1.0049	1.0097	1.0143

8.15 It is well known in the theory of beams that the radius of curvature is given by

$$
\frac{\text { EI } y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}}=M(x)
$$

where $M(x)$ is the bending moment. For a cantilever beam, it is known that $y(0)=y^{\prime}(0)=0$. Express the above equation into two first order simultaneous differential equations.
8.16 The resonant spring system with a periodic forcing function is given by

$$
\frac{d^{2} y}{d t^{2}}+64 y=16 \cos 8 t, \quad y(0)=y^{\prime}(0)=0
$$

Determine the displacement at $t=0.1,0.2, \ldots, 0.5$ using Adam's-Moulton method after getting the required starting values by Runge-Kutta fourth order method.
8.17 Solve the initial value problem

$$
\frac{d y}{d x}=3 x^{2}+y, \quad y(0)=4
$$

for the range $0.1 \leq x \leq 0.5$, using Euler's method by taking $h=0.1$.
8.18 Using Euler's method, obtain the solution to the initial value problem

$$
\begin{aligned}
& y^{\prime}=x+y+x y, \quad, y(0)=1 \\
& \mathrm{ng} h=0.025 .
\end{aligned}
$$

at $x=0.1$, by taking $h=0.025$.
Solve the initial value problem '

$$
\frac{d y}{d x}=\log (x+y), \quad y(0)=1
$$

using modified Euler method and find $y(0.2)$.
8.20 Using fourth order Runge-Kutta method find the solution of the initial
value problem
value problem

$$
\boldsymbol{y}^{\prime}=1 /(x+y), \quad y(0)=1
$$

λ in the range $0.5 \leq x \leq 2.0$, by taking $h=0.5$.
8.21 Using fourth order Runge-Kutta method, find the solution of

$$
x(d y+d x)=y(d x-d y), \quad y(0)=1
$$

at $x=0.1$ and 0.2 , by taking $h=0.1$.
8.22 Find the solution of

$$
y^{\prime}=y(x+y), \quad y(0)=1
$$

using Milne's P-C method at $x=0.4$ given that $y(0.1)=1.11689$, $y(0.2)=1.27739$ and $y(0.3)=1.50412$.
8.23 Using Adam's-Moulton P-C method, find the solution of

$$
x^{2} y^{\prime}+x y=1, \quad y(1)=1.0
$$

at $x=1.4$, given that $y(1.1)=0.996, y(1.2)=0.986, y(1.3)=0.972$
8.24 Find the solution of the initial value problem

$$
y^{\prime}=y^{2} \sin t \quad y(0)=1
$$

using Adam's-Moulton P-C method, in the interval $(0.2,0.5)$, given that $y(0.05)=1.00125, y(0.1)=1.00502, y(0.15)=1.01136$
8.25 Solve the following system of differential equations

$$
\begin{array}{ll}
\frac{d x}{d t}=x+2 y, & x(0)=6 \\
\frac{d y}{d t}=3 x+2 y, & y(0)=4
\end{array}
$$

over the interval $(0.02,0.06)$ using Runge-Kutta method, with step size $h=0.02$.

THE END
GOOD LUCK
REFERENE BOOKS
Numerical Analysis for Scientists and Engineers by \$. Sankara Rac.

* Best Numerical Methods by Sri. Nanda Kumar M.
* Numerical Analysis by Btrkhđ́diser.
* Numerical Analysis by Ruennhwa Ferng.
* Numerical Computations Notes by Wennshenn.
* Numerical Analysis by Timothy Sauer.
* Shuaums Outline of Numerical Analysis.
* Numerical Analysis by R.L. Burden.
* An introduction to Numerical Analysis by Dr. Muhammad Iqbal.
* Elementary Numerical Analysis Notes by Prof. Rekha P. Kuikarnf.

