Promatraco Geoumetay $Z=$ vielict $(t, y b)$ is ailled onving Taikedichi. Lexey et a pront whtose position wester is mancerentat as a function of sigle poremptery is called cuave, it two prometex them it is called surface. Dexisutive is the rate of change of appondent yeviable w.ut independent weriable -

$$
\begin{aligned}
\text { value of cylinden } & =\pi n^{2} h \\
\text { sphere } & =4 / 3 \pi n^{3} \\
\text { cone } & =1 / 3 \pi n^{2} h
\end{aligned}
$$

vavon of lone $=$ plane

- Curve = Suctace

Fist pardamental torm

$$
\begin{equation*}
d v^{2}=E d u^{2}+2 F d u d u+G d v^{2} \tag{1}
\end{equation*}
$$

whece

$$
E=x_{a} x_{u}, F=x_{u} \cdot x_{v}, G=x_{v} \cdot x_{v}
$$

Now we cown expreves asy it in talmes d? wistic bencor as

$$
d^{2}=\mathrm{Fan}^{a} d x^{a} d x^{2}
$$

$$
\begin{aligned}
&= g_{1 b} d x^{1} d x^{b}+g_{2 b} d x^{2} d x^{b} \\
&=g_{11} d x^{1} d x^{\prime}+g_{21} d x^{2} d x^{1}+g_{12} d x^{2} d x^{2} \\
&+g_{22} d x^{2} d x^{2}
\end{aligned}
$$

Let $x^{\prime}=u, x^{2}=v$

$$
=g_{11}(d u)^{2}+\left(g_{12}+g_{21}\right) d u d v+g_{22}(d v)^{2} \rightarrow \text { (2) }
$$

comparing eq.(1) \& eq.(2), we have

$$
g_{11}=E \quad, g_{12}=g_{21}=F, \quad g_{22}=G
$$

Then we have

$$
\begin{aligned}
\theta_{a b} & =\left(\begin{array}{ll}
g_{11} & \theta_{12} \\
\theta_{21} & g_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)
\end{aligned}
$$

97 we considen a plane in cantesian coondinates then 7 ind 896 ?

$$
\begin{gathered}
\underline{x}_{n}=\hat{i}, \quad \underline{x}_{v}=\hat{j} \\
E=\hat{i} \cdot \hat{i} \quad, F=i \cdot j, G=j \cdot j \\
\Rightarrow E=1, F=0, G=1 \\
G_{a b}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

3
(3)

First Fundamental Form

$$
\begin{aligned}
\underline{x} & =x(u, v) \\
d x & =x_{u} d u+x_{v} d v \\
& =\frac{\partial x}{r^{u}} d u+\frac{\partial x}{\partial^{v}} d v
\end{aligned}
$$

If. Its is the distance b/w two neighbouring points $P \& Q$ on the suntace then,

$$
\begin{aligned}
& d s^{2}=d \underline{x} \cdot d \underline{x} \\
& =\left(\underline{x}_{u} d u+\underline{x}_{v} d v\right)\left(\underline{x}_{u} d u+\underline{x}_{v} d v\right) \\
& =\underline{x}_{u} \cdot \underline{x}_{u} d u^{2}+\underline{x}_{u} \cdot x_{u} d u d v+\underline{x}_{v} \underline{x}_{u} d v d u+\underline{x}_{v} \cdot \underline{x}_{u} \cdot d u \\
& =\underline{x}_{u} \cdot \underline{x}_{u} d u{ }^{2}+2 \underline{x}_{u} \cdot \underline{x}_{v} d u d v+\underline{x}_{v} \cdot \underline{x}_{v} d v^{2}
\end{aligned}
$$

Let $\underline{x}_{u} \cdot \underline{x}_{u}=E, \underline{x}_{u} \cdot \underline{x}_{v}=F, \quad \underline{x}_{v} \cdot \underline{x}_{v}=G$

$$
\Rightarrow d s^{2}=E d u^{2}+2 F d u d v+F d v^{2}
$$

which is called 7 inst fundamental Form due to the fact that the ne involve the first derivative quantities.

Normal:-
The normal to the suntace at any point is the perpendicular to the parametric curves passing through that point.
If $\underline{x}_{u} \& \underline{x}_{v}$ are the unit tangents to the respective parametric cure, then we can write

$$
\underline{v}=\frac{\underline{x}_{u} \times \underline{x}_{v}}{\left|\underline{x}_{u} \times \underline{x}_{v}\right|}
$$

Obviously;

$$
\underline{N} \cdot \underline{x}_{u}=0=\underline{x}_{v} \cdot \underline{N}
$$

The tendency of turning of curve is called curvature of curve.

Normal curvature:-
At is denoted by
Kp and defined as,

$$
K_{n}=t^{\prime} \cdot N
$$

As $\quad \underline{t} N=0$
Diff. wink 5 .

$$
\begin{aligned}
& \quad \underline{t}^{\prime} \cdot \underline{N}+\underline{t} \cdot \underline{N}^{\prime}=0 \\
& \Rightarrow \quad \underline{t}^{\prime} \cdot \underline{N}=-\underline{t} \cdot N^{\prime} \\
& \Rightarrow \quad \quad_{2}=-\underline{t} \cdot N^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow K_{n} & =-\underline{t} \cdot N^{\prime} \\
& =-\frac{d x}{d s} \cdot \frac{d N}{d s}=-\frac{d \underline{x} \cdot d N}{d s^{2}} \longrightarrow
\end{aligned}
$$

As in general;

$$
\begin{gathered}
\underline{x}=\underline{x}(u, v) \& \underline{N}=\underline{N}(u, v) \\
d \underline{x_{u}}=\underline{x}_{u} d u+\underline{x}_{v} d v, \quad d \underline{N}=\underline{N}_{u} d u+\underline{N}_{v} d v
\end{gathered}
$$

$$
\begin{aligned}
& d s_{n}^{\text {Then }}=d \underline{u} \cdot d \underline{v}=\underline{x}_{u} \cdot \Delta_{u} \cdot d u+\underline{x}_{u} \cdot N_{v} d u d v \\
&+\underline{x}_{v} \cdot N_{u} d u d v \\
&+\underline{x}_{v} \cdot \underline{N}_{v} d v \\
&=\underline{x}_{u} \cdot N_{u} \\
& d_{u}^{2}+\left(\underline{x}_{u} \cdot \underline{N}_{v}+\underline{x}_{v} \cdot \underline{N}_{u}\right) d u d v+\underline{x}_{v} \cdot N_{v} d v
\end{aligned}
$$

We. know that

$$
x_{u} \cdot N=0 \quad \& \quad x_{v} \cdot N=0
$$

Diff. went. u \& V, we have

$$
\begin{align*}
& \underline{x}_{u u} \cdot \underline{N}+\underline{x}_{u} \cdot \underline{N}_{u}=0 \tag{i}\\
& \underline{x}_{u v} \cdot \underline{N}+\underline{x}_{u} \cdot \underline{N}_{v}=0 \tag{i}\\
& \underline{x}_{v u} \cdot \underline{N}+x_{v} \cdot \underline{N}_{u}=0 \tag{iii}\\
& \underline{x}_{v v} \cdot \underline{N}+\underline{x}_{v} \cdot \underline{N}_{v}=0 \tag{iv}
\end{align*}
$$

From (i)

$$
\underline{X}_{u} \cdot \underline{N u}_{u}=-\underline{X}_{u u} \cdot \underline{N}=e
$$

From (iv) $\underline{x}_{v} \cdot N_{v}=-\underline{x}_{v v} \cdot \underline{N}=g$
7 rom (ii) \& (iii)

$$
\underline{x}_{u} \cdot N_{v}=\underline{x_{v}} \cdot N_{u}=-\underline{x}_{u v} \cdot \underline{N}^{=}=7
$$

$$
\begin{aligned}
{k_{n}}= & -\frac{d u \cdot d \underline{N}}{d s^{2}} \\
& \text { negecting-ive sign } \\
= & \frac{e d u^{2}+27 d u d v+g d v^{2}}{E d u^{2}+2 F d u d v+G d v^{2}}
\end{aligned}
$$

We can also unite,

$$
\begin{aligned}
& f e_{n}=\frac{d s_{n}^{2}}{d s^{2}}, \text { where } \\
& d s_{n}^{2}=e d u^{2}+2 f d u d v+g d v^{2}
\end{aligned}
$$

Which is known as second fundamental form because second ordered derivatives are used-

Q:- $x(u, v)=(A u+a u+\alpha, B u+b v+\beta, C u+c v+\gamma)$ Find first and second Fundamental form.

Sol:-

$$
x(u, v)=(A u+a v+\alpha, B u+b v+\beta,(u+c v+\gamma)
$$

We know that

$$
\begin{aligned}
\underline{x}_{u} \cdot \underline{x}_{u} & =E, \underline{x}_{4} \cdot \underline{x}_{v}=F, \underline{x}_{v} \cdot \underline{x}_{v}=G \\
\underline{N} & =\frac{\underline{x}_{u} \times \underline{x}_{v}}{\left|x_{u} \times x_{v}\right|} \\
\underline{x}_{u} \cdot \underline{N}_{u} & =e, \underline{x}_{4} \cdot \underline{N}_{v}=7, \underline{x}_{v} \cdot \underline{N}_{v}=g \\
\int_{n} & =-\frac{e d u^{2}+27 d u d v+g d v^{2}}{E d u^{2}+2 F d u d v+G d v^{2}}
\end{aligned}
$$

$$
\begin{aligned}
x_{u} & =(A, B ; C) \\
x_{v} & =(a, b, c) \\
E & =x_{u} \cdot x_{u}=A^{2}+B^{2}+c^{2} \\
F & =x_{u} \cdot \underline{x}=a A+b B+c C \\
G & =x_{v} \cdot \underline{x} v=a^{2}+b^{2}+c^{2} \\
\underline{x}_{u} \times x_{v} & =\left|\begin{array}{|cc}
A & \hat{i} \\
a & \hat{k}
\end{array}\right| \\
& =\hat{i} C B C-C b)-\hat{j}(A c-C a)+\hat{k}(A b-B a) \\
& =(B c-C b, C a-A c) A b-B a) \\
I & \left|x_{u} \times x_{v}\right|=\sqrt{(B c-C b)^{2}+(C a-A c)^{2}+(A b-B a)^{2}} \\
N & =\frac{(B C-C b, C a-A C, A b-B a)}{\sqrt{(B C-C b)^{2}+(C a-A c)^{2}+(A b-B a)^{2}}}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \Delta_{u}=(0,0,0)=\underline{N}_{v} \\
& x_{u} \cdot \underline{N}_{u}=\underline{x}_{u} \cdot \underline{N}_{v}=\underline{x}_{v} \cdot \underline{N}_{v}=0 \\
& \int \alpha_{n}=-\frac{0 d u+2(0) d u d v+0 d v^{2}}{\left(A^{2}+B^{2}+C^{2}\right) d u^{2}+2\left(A_{a}+B b+C C\right) d u d v+\left(a^{2}+b^{2}+c^{2}\right) d v^{2}}
\end{aligned}
$$

$$
\int k_{n}=0
$$

Principal Directions
\& principal Cunvatane:-
The dinections on a surface along which the normal curvature attain it's extreme values are called principal directions. The extreme values of normal curvature ane denoted by fr $\&$ K_{2} called principal curvature.

We know that

$$
\int x_{n}=\frac{e d u^{2}+27 d u d v+g d v^{2}}{E d u^{2}+2 F d u d v+G d v^{2}}
$$

To transform it into single panimeter. we divide the denominator and numinator by dur of R.H.S

$$
\begin{align*}
& \alpha_{n}=\frac{e+2 f\left(\frac{d v}{d u}\right)+g\left(\frac{d v}{d u}\right)^{2}}{E+2 F\left(\frac{d v}{d u}\right)+G\left(\frac{d v}{d u}\right)^{2}} \\
& \text { put } \frac{d v}{d u}=\lambda \\
& \int_{n}=\frac{e+27 \lambda+g \lambda^{2}}{E+2 F \lambda+G \lambda^{2}} \tag{1}
\end{align*}
$$

To find extreme values, we Diff. eq. (1) win λ.
www. RanaMaths.com

$$
\begin{aligned}
& \frac{d S_{n}}{d \lambda}=\frac{\left(E+2 F \lambda+G \lambda^{2}\right)(27+2 g \lambda)-\left(E+27 \lambda+g \lambda^{2}\right)(2 F+2 G \lambda)}{\left(E+2 F \lambda+G \lambda^{2}\right)^{2}} \\
& \frac{d S C_{n}}{d \lambda}=\frac{2 E F+4 F \lambda \lambda+2 G-27 \lambda^{2}+2 E g \lambda+44^{2} F g \lambda^{2}+2 g G \lambda^{3}}{\left(E+2 F \lambda \lambda^{2}-2 e G \lambda-47 G \lambda^{2}-2 g G \lambda^{3}\right.} \\
& \frac{d S_{n}}{d \lambda}=\frac{2 E 7-27 G \lambda^{2}+2 E g \lambda+2 F g \lambda^{2}-2 e F-2 e G \lambda}{\left(E+2 F \lambda+G \lambda^{2}\right)^{2}}
\end{aligned}
$$

After adding and subtracting 27F λ.

$$
\begin{aligned}
& \frac{d \delta_{n}}{d \lambda}=\frac{2\left[E 7+F F \lambda+E g \lambda+F g \lambda^{2}\right.}{\left.-e F-7 F \lambda-e G \lambda-F G \lambda^{2}\right]} \\
&\left(E+2 F \lambda+G \lambda^{2}\right)^{2} \\
&=\frac{2[7(E+F \lambda)+g \lambda(E+F \lambda)-(F(e+F \lambda)+G \lambda(e+7 \lambda))]}{\left(E+2 F \lambda+G \lambda^{2}\right)^{2}} \\
&=\frac{2[(E+F \lambda)(7+g \lambda)-(e+7 \lambda)(F+G \lambda)]}{\left(E+2 F \lambda+G \lambda^{2}\right)^{2}}
\end{aligned}
$$

For extreme values we put $\frac{d k_{n}}{d x}=0$

$$
\begin{aligned}
& \Rightarrow(F+F \lambda)(\eta+g \lambda)-(e+z \lambda)(F+G \lambda)=0 \\
& \Rightarrow(F+F \lambda)(7+g \lambda)=(e+7 \lambda)(F+G \lambda)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{e+7 \lambda}{7+g \lambda}=\frac{E+F \lambda}{F+G \lambda} \rightarrow(i) \\
\frac{7+g \lambda}{e+7 \lambda}=\frac{F+G \lambda}{E+F \lambda} \rightarrow(i i)
\end{array}\right\} \Rightarrow(2)
$$

Now eq. (1) can be written as

$$
\begin{align*}
K_{n} & =\frac{e+7 \lambda+7 \lambda+g \lambda^{2}}{E+F \lambda+F \lambda+G \lambda^{2}} \\
& =\frac{e+7 \lambda+\lambda(z+g \lambda)}{E+F \lambda+\lambda(F+G \lambda)} \tag{3}\\
& =\frac{(e+z \lambda)\left[1+\frac{\lambda(7+g \lambda)}{(e+7 \lambda)}\right]}{(E+F \lambda)\left[1+\frac{\lambda(F+G \lambda)}{(E+F \lambda)}\right]}
\end{align*}
$$

using (ii) hear,

$$
\begin{aligned}
& K_{p}=\frac{(e+7 \lambda)\left[\left(1+\frac{(7+7 \lambda)}{(E+7 \lambda)} \lambda\right]\right.}{\left(1+\frac{(7+7 \lambda)}{(E+7 \lambda)} \lambda\right]} \\
& K_{1}=\frac{e+7 \lambda}{E+F \lambda}
\end{aligned}
$$

Now using eq. (3) we can also write as:

$$
f k_{n}=\frac{(f+g \lambda)\left[\frac{e+f \lambda}{7+g \lambda}+\lambda\right]}{(F+G \lambda)\left[\frac{E+F \lambda}{F+G \lambda}+\lambda\right]}
$$

using eq 2 here, we got.

$$
\begin{aligned}
& f_{2}=\frac{(7+g \lambda)\left[\frac{e+7 \lambda}{7+g \lambda}+\lambda\right]}{(F+G \lambda)\left[\frac{e+7 \lambda}{7+g \lambda}+\lambda\right]} \\
& f_{K_{4}}=\frac{7+g \lambda}{F+G \lambda}
\end{aligned}
$$

$18-9-14$
To obtain the value of λ, we solve the eq (2).

$$
\begin{gathered}
\frac{e+7 \lambda}{7+g \lambda}=\frac{E+F \lambda}{F+G \lambda} \\
e F+e G \lambda+77 \lambda+7 G \lambda^{2}=E 7+E g \lambda+F \neq 7 \lambda+F g \lambda^{2} \\
7 G \lambda^{2}-F g \lambda^{2}+e G \lambda-E g \lambda+e F-E F=0 \\
(7 G-F g) \lambda^{2}+(e G-E g) \lambda+e F-E f=0
\end{gathered}
$$

let $\lambda_{1} \& \lambda_{2}$ be two roots of this eq. then $\lambda_{1}+\lambda_{2}=\frac{-b}{a}=\frac{E g-e G}{7 G-F g} \rightarrow$ oas

$$
\lambda_{1} \cdot \lambda_{2}=\frac{c}{a}=\frac{e F-E F}{7 G-F q} \longrightarrow(b)
$$

We bnow that

$$
\left(\lambda_{1}-\lambda_{2}\right)^{2}=\left(\lambda_{1}+\lambda_{2}\right)^{2}-4 \lambda_{1} \lambda_{2}
$$

Atten putting the value of $\lambda_{1}+\lambda_{0} \&$ $\lambda_{1} d_{2}$ from (9) \& (6) We get

$$
\begin{aligned}
& \left(\lambda_{1}-\lambda_{2}\right)^{2}=\left(\frac{E g-E G}{7 G-F g}\right)^{2}-4\left(\frac{E F-E q}{7 G-F q}\right) \\
& \left(\lambda_{1}-\lambda_{2}\right)^{2}=\frac{(E g-e G)^{2}}{(7 G-F g)^{2}}-4 \cdot \frac{e f-E q}{7 G-F g} \\
& \left(\lambda_{1}-\lambda_{2}\right)^{2}=\frac{(E g-E G)^{2}-4(E F-E q)(7 G-F g)}{(7 G-F g)^{2}} \\
& \left(\lambda_{1}-\lambda_{2}\right)=\frac{\sqrt{(E g-E G)^{2}-4(e F-E 7)(7 G-F q)}}{7 G-F g}
\end{aligned}
$$

Adding (a) and (c).

$$
\begin{aligned}
& \text { Adding (a) and } \\
& 2 \lambda_{1}=\frac{E g-e G}{7 G-F g}+\frac{\sqrt{(E g-e q)^{2}-G(e F-F q)(7 G-F g)}}{7 G-F g} \\
& \lambda_{1}=\frac{(E g-e G)+\sqrt{(E g-e G)^{2}-4(e F-E F)(7 G-F g)}}{2(7 G-F g)} \\
& \text { (a) } \Rightarrow \lambda_{2}=\frac{E G-G}{7 G-F g}-\lambda_{1}
\end{aligned}
$$

putting the value of λ_{1} we get

$$
\begin{aligned}
& \lambda_{2}=\frac{E g-e G}{7 G-F g}-\frac{E g-e G+\sqrt{(E g-E G)^{2}-4(e F-E 7)(7 G-F g)}}{2(7 G-F g)} \\
& \lambda_{2}=\frac{(E g-e G)-\sqrt{(E g-e G)^{2}-4(e F-E F)(7 G-F g)}}{2(7 G-F g)}
\end{aligned}
$$

Now,
Subtituting $\lambda=\frac{d V}{d u}$ in eq (4) and then multiplying du', we get.

$$
(7 G-F g) d v^{2}+(e G-E g) d u d v+(e F-E q) d u^{2}=0
$$

Multiplying bey negative.

$$
(F g-7 G) d v^{2}+(E g-e G) d u d v+(E 7-e F) d u^{2}=0
$$

We can write this eq. in determinant form as;
$\therefore \therefore\left|\begin{array}{ccc}d v^{2} & -d u d v & d u^{2} \\ E & F & G \\ e & 7 & \ddot{g}\end{array}\right|=0 \xrightarrow{\square}$

The max. and min values of λ are given as;
$d u=0 \quad(d u \neq 0) \quad \& \quad d v=0(d u \neq 0)$ respectively.

For $d u=0$ eq.(5) becomes.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
d v^{2} & 0 & 0 \\
E & F & G \\
e & f & g
\end{array}\right|=0 \\
& d v^{2}(F g-7 G)=0 \\
& \Rightarrow d v \neq 0 \because F g-7 G=0
\end{aligned}
$$

Now for $d v=0$ er(5 becomes.

$$
\begin{aligned}
& \left|\begin{array}{lll}
0 & 0 & d u^{2} \\
E & F & G \\
e & 7 & g
\end{array}\right|=0 \\
& \Rightarrow d u^{2}(E 7-F e)=0 \\
& \Rightarrow d u \neq 0, E F-F e=0
\end{aligned}
$$

Euler's Theorem
If K is the curvature along any direction and f_{1}, k_{2} are the extreme values the euler's theorem states that

$$
\alpha \alpha=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta
$$

where θ is the angle th
 dinections

15 Note:- we can define a curve on a sun face But converse is not true.
Q:- $x(u, v)=(\sin u \cos v, \sin u \sin v, \cos u)$
Sol-

$$
\begin{aligned}
& x_{u}=(\cos u \cos v, \cos u \sin v,-\sin u) \\
& \text { \& } \underline{x}_{v}=(-\sin u \sin v, \sin u \cos v, 0) \\
& E=\underline{x}_{u} \cdot \underline{x} u=\cos ^{2} u \cos ^{2} v+\cos ^{2} u \sin ^{2} v+\sin ^{2} u \\
& \Rightarrow \quad E=\cos ^{2} u+\sin ^{2} u \\
& \Rightarrow E=1 \\
& F=\underline{x}_{u} \cdot \underline{x}_{v}=-\sin u \sin v \cos u \cos v+\sin u \sin v \cos u \cos v+0 \\
& \Rightarrow \quad F=0 \\
& G=\underline{x}_{v} \cdot \underline{x}_{v}=\sin ^{2} u \sin ^{2} v+\sin ^{2} u \cos ^{2} v+0 \\
& \Rightarrow G=\sin ^{2} u \\
& \underline{x}_{u} \times \underline{x}_{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{j} & \hat{k} \\
\cos u \cos v & \cos u \sin v & -\sin u \\
-\sin u \sin v & \sin u \cos v & 0
\end{array}\right| \\
& \begin{array}{l}
=\hat{i}\left(\sin ^{2} u \cos v\right)-\hat{j}\left(-\sin ^{2} u \sin v\right)+\hat{k}\left(\cos u \cos ^{2} v \sin u+\cos u \sin ^{2} v\right) \\
=\hat{i}\left(\sin ^{2} u \cos v\right)+\hat{j}\left(\sin ^{2} u \sin v\right)+\hat{k}(\sin u \cos u)
\end{array} \\
& =\hat{i}\left(\sin ^{2} u \cos v\right)+\hat{j}\left(\sin ^{2} u \sin v\right)+\hat{k}(\sin u \cos u) \\
& \left|x x_{0} \times x u\right|=\sqrt{\sin ^{4} u \cos ^{2} v+\sin ^{4} u \sin ^{2} v+\sin ^{2} u \cos ^{2} u} \\
& =\sqrt{\sin ^{4} u+\sin ^{2} u \cdot \cos ^{2} u} \\
& =\sqrt{\sin ^{2} u}=\sin u
\end{aligned}
$$

$$
\begin{aligned}
& N=\frac{x_{u} \times x_{v} \mid}{\left|\underline{x}_{4} \times \underline{x}_{v}\right|} \\
& N=\frac{1}{\sin u}\left(\cos v \sin ^{2} u \hat{i}+\sin ^{2} u \sin v \hat{j}+\sin u \cos u \hat{k}\right) \\
& N=(\cos v \sin u, \sin u \sin v, \cos u) \\
& \Delta_{u}=(\cos v \cos u, \cos u \sin v,-\sin u) \\
& \text { \& } N_{v}=(-\sin u \sin v, \sin u \cos v, 0) \\
& e=x_{u} \cdot \underline{N}_{u}=(\cos u \cos v, \cos u \sin v,-\sin u) . \\
& (\cos u \cos v, \cos u \sin v,-\sin u) \\
& \left.\Rightarrow e=\cos ^{2} u \cos ^{2} v+\cos ^{2} u \sin ^{2} v+\sin ^{2} u\right) \\
& \Rightarrow e=\left(\cos ^{2} u+\sin ^{2} u\right) \\
& e=1 \\
& F=x_{u} \cdot N_{v}=(\cos u \cos v, \cos u \sin v,-\sin u) . \\
& (-\sin u \sin v, \sin u \cos v, 0) \\
& \Rightarrow t=(-\sin u \sin v \cos u \cos v+\sin u \sin v \cos u \cos v+0) \\
& \Rightarrow 7=0 \\
& g=\underline{x}_{v} \cdot v_{v}=(-\sin u \sin v, \sin u \cos v, 0) \text {. } \\
& (-\sin u \sin v, \sin u \cos v, 0) \\
& g=\left(\sin ^{2} u \sin ^{2} v+\sin ^{2} u \cos ^{2} v\right) \\
& y=\sin ^{2} u
\end{aligned}
$$

$$
\begin{aligned}
& K_{n}=-\frac{e d u^{2}+2 f d u d v+g d u^{2}}{E d u^{2}+2 F d u d v+G d u^{2}} \\
& K_{n}=-\left(\frac{1 d u^{2}+2(0) d u d v+\left(\sin ^{2}\right) d u^{2}}{1 d u^{2}+2(0) d u d u+\sin ^{2} d u^{2}}\right) \\
& K_{n}=-\frac{\left(d u^{2}+\sin ^{2} d u^{2}\right)}{d u^{2}+\sin ^{2} d u^{2}} \\
& K_{n}=-1
\end{aligned}
$$

Q:- $\underline{x}(u, v)=(v \cos u, v \sin u, v)$
Sol: $-x_{u}=(-v \sin u, v \cos u, 0)$
$\& x_{v}=(\cos u, \sin u, 1)$

$$
\begin{aligned}
& E=\underline{x}_{u} \cdot \underline{x}_{u}=v^{2} \sin ^{2} u+v^{2} \cos ^{2} u \\
\Rightarrow & E=v^{2} \\
& F=\underline{x}_{u} \cdot x_{v}=-v \sin u \cos u+v \sin u \cos v \\
\Rightarrow & F=0 \\
& G=x_{v} \cdot \underline{x}_{v}=\cos ^{2} u+\sin ^{2} u+1 \\
\Rightarrow & G=2
\end{aligned}
$$

$$
\begin{aligned}
x_{u} \times \underline{x}_{v} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-v \sin u & v \cos u & 0 \\
\cos u & \sin u & 1
\end{array}\right| \\
& =\hat{i} v \cos u-\hat{j}(-v \sin u)+\hat{k}\left(-v \sin ^{2} u-v \cos ^{2} u\right) \\
& =(v \cos u, v \sin u,-v)
\end{aligned}
$$

$$
\begin{aligned}
\left|x_{u} \times \underline{x} v\right| & =\sqrt{v^{2} \cos ^{2} u+v^{2} \sin ^{2} u+v^{2}} \\
& =\sqrt{2 v^{2}} \\
& =\sqrt{2} v \\
\underline{2} & =\frac{x_{u} \times \underline{x}_{v}}{\left|x_{u} u \times \underline{x}_{v}\right|} \\
& =\frac{1}{\sqrt{2} v}(v \cos u, v \sin u,-v) \\
& =\frac{1}{\sqrt{2}}\left(\cos u_{9} \sin u,-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now } \underline{N}_{u}=\frac{1}{\sqrt{2}}(-\sin u, \cos u, 0) \\
& \& \underline{N}_{v}=\frac{1}{\sqrt{2}}(0,0,0) \\
& \Rightarrow N_{v}=(0,0,0) \\
& e=x_{u} \cdot N_{u}=(-v \sin u, v \cos u, 0) \cdot 1 \cdot(-\sin u, \cos u, 0) \\
& \Rightarrow e=\frac{1}{\sqrt{2}}\left(v \sin ^{2} u+v \cos ^{2} u\right) \\
& \Rightarrow e=\frac{v}{2}
\end{aligned}
$$

$$
\begin{aligned}
& f=x_{u} \cdot N_{v}=0 \\
& g=x_{v} \cdot N_{v}=0 \\
& K_{n}=-\frac{e d u^{2}+27 d u d v+g d v^{2}}{E d u^{2}+2 F d u d v+G d v^{2}} \\
& S_{n}=-\frac{v / \sqrt{2} d u^{2}+0+0}{v^{2} d u^{2}+0+2 d v^{2}} \\
& K_{n}=\frac{-v d u^{2}}{\sqrt{2\left(v^{2} d u^{2}+2 d v^{2}\right)}}
\end{aligned}
$$

$$
25-09-14
$$

Orthogonal vectors: $\rightarrow \vec{A} \cdot \vec{B}=0$
Onthenormal vectors: $\rightarrow \quad \hat{i} \cdot \hat{j}=0$
Metric Tensor: $\rightarrow g_{a b}=\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)=(E ; F: F G)$
Orthogonality Condition
Two vectors $\xi^{i} \& \eta^{j}$ ane said to be onthogonal if

$$
g_{i j} \xi^{i} \eta^{j}=0
$$

To chectr Orthogonality:-
Let $\xi^{i}=\binom{1}{\lambda_{1}} \quad \& \quad \eta^{j}=\binom{1}{\lambda_{2}}$

Considen

$$
\begin{aligned}
g_{i,} & \mathcal{F}^{i} \eta^{j}=(E F: F G)\binom{1}{\lambda_{1}}\binom{1}{\lambda_{2}} \\
& =\left(E+F \lambda_{1}: F+G \lambda_{1}\right)\binom{1}{\lambda_{2}} \\
& =E+F \lambda_{1}+F \lambda_{2}+G \lambda_{1} \lambda_{2} \\
& =E+\left(\lambda_{1}+\lambda_{2}\right) F+G \lambda_{1} \lambda_{2} \rightarrow(1)
\end{aligned}
$$

We know that

$$
\begin{align*}
\lambda_{1}+\lambda_{2} & =\frac{E g-e G}{7 G-g F} \tag{2}\\
\& \quad \lambda_{1} \lambda_{2} & =\frac{e F-7 E}{7 G-g F} \tag{3}
\end{align*}
$$

Using (2) and (3) in (1) me have

$$
\begin{aligned}
g_{i j} \xi^{i} \eta j & =E+\left(\frac{E g-e G}{7 G-g F}\right) F+\left(\frac{e F-7 \cdot E}{7 G-g F}\right) G \\
& =\frac{7 E G-Q E F+g E F-e G F+E G F-7 E G}{7 G-g F} \\
& =0
\end{aligned}
$$

$\Rightarrow \xi^{i} \& \eta^{j}$ are onthogonal.

21
(21)

- Gaussian \& Mean Canvatune

If F_{1} \& F_{2} are the extreme valuer of the primipal. curvature the guansian curvature is detined as,

$$
K_{G}=f_{1} f_{2} \text { (Product of the principal }
$$ unsature)

and the mean curvature is defined as

$$
f_{C_{n}}=\frac{f_{1}+f_{2}}{2}
$$

S.F. formulae

$$
\begin{aligned}
& t^{\prime}=k n, b^{\prime}=-T n, \underline{n}^{\prime}=T \underline{b}-k t \\
&(b, t, n) \text { are orthenomal. } \\
& \rightarrow \text { For curve. } \\
&\left(x_{u}, x_{v}\right.\rightarrow N) \rightarrow \text { For surface. }
\end{aligned}
$$

\rightarrow In general they are not onthoganal.
because vie don't know $\underline{x}_{4} \& \underline{x}_{v}$ are 1 or not.

We can also write S.F formulae
95

$$
\begin{aligned}
& t^{\prime}=o t+K n+o b \\
& n^{\prime}=-K \underline{b}+o n+T \underline{b} \\
& b^{\prime}=o \underline{t}-T n+o b
\end{aligned}
$$

Gauss_Eq.........29-9-14

let us denote.

$$
\underline{x}_{4}=x_{1}, \underline{x}_{v}=\underline{x}_{2}, \underline{x}_{4 v}=\underline{x}_{12}=x_{21}, \underline{x}_{v v}=\underline{x}_{22}
$$

and wnite

$$
\begin{align*}
\underline{x}_{11} & =\alpha_{1} \underline{x}_{1}+\alpha_{2} \underline{x}_{2}+\alpha_{3} \underline{N} \tag{1}\\
\underline{x}_{12}=\underline{x}_{21} & =\beta_{1} \underline{x}_{1}+\beta_{2} \underline{x}_{2}+\beta_{3} \underline{N} \\
\underline{x}_{22} & =\gamma_{1} \underline{x}_{1}+\gamma_{2} \underline{x}_{2}+\gamma_{3} \underline{N} \tag{3}
\end{align*}
$$

where α 's, β 's \& γ Is ane constants.

$$
\begin{aligned}
g_{i j} & =\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) & \tilde{g}_{i j} & =\left(\begin{array}{ll}
e & 7 \\
7 & g
\end{array}\right) \\
\Rightarrow & g^{i j} & =\frac{1}{E G-F^{2}}\left(\begin{array}{ll}
G & -F \\
-F & E
\end{array}\right) & \tilde{g}^{i j}
\end{aligned}=\frac{1}{e g-7^{2}}\left(\begin{array}{cc}
g & -7 \\
-7 & e
\end{array}\right)
$$

Tabring dot pnoduct with N on both siden of eq.(1).

$$
\begin{gather*}
x_{11} \cdot \underline{N}=\alpha_{1} \underline{x}_{0} \cdot \underline{N}+\alpha_{2} x_{2}+\alpha_{3} \underline{N} \cdot \underline{N} \\
\underline{x}_{11} \cdot \underline{N}=\alpha_{3} \\
\Rightarrow \quad \because \underline{N}=1 \\
\Rightarrow \alpha_{3}=\underline{x}_{11} \cdot \underline{N}=-e \rightarrow \text { (4) } \tag{4}
\end{gather*}
$$

Tahing dor product with Non beth sides of eq.(3)

$$
\begin{aligned}
& x_{2} \cdot N=\beta_{1} x_{0}\left(N+\beta_{2} x_{2} / N+\beta_{3} N \cdot M\right. \\
& \Rightarrow x_{2} N=\beta_{3} \\
& \Rightarrow \beta_{3}=x_{2} \cdot N=-7 \longrightarrow(5)
\end{aligned}
$$

Tabing det product with N on both sides of eq. (3)

$$
\begin{align*}
& \underline{x}_{22} \cdot N=\gamma_{1} x_{1} \cdot N+\gamma_{2} x_{2} \cdot N+\gamma_{3} N \cdot N \\
& \dot{x}_{22} \cdot N=\gamma_{3} \\
\Rightarrow & \gamma_{3}=x_{22} \cdot N=q \longrightarrow \text { (6) } \tag{B}
\end{align*}
$$

We bnow that

$$
\begin{equation*}
\underline{x}_{1} \cdot \underline{x}_{1}=E \tag{7}
\end{equation*}
$$

Diff.cif wint 1 .

$$
\begin{equation*}
\underline{x}_{11} \cdot x_{1}=\frac{1}{2} E_{1} \tag{B}
\end{equation*}
$$

Again diff eq (7) wnt 2

$$
\begin{equation*}
x_{12} \cdot x_{1}=\frac{1}{2} E_{2} \tag{4}
\end{equation*}
$$

Also we b-now that

$$
\begin{equation*}
x_{1} \cdot x_{2}=F \tag{10}
\end{equation*}
$$

Dif7. eq. (0) wint 1 \& 2 we have

$$
\begin{align*}
& x_{11} \cdot x_{2}+x_{1} \cdot x_{21}=F_{1}- \tag{II}\\
& \& \quad x_{12} \cdot x_{2}+x_{1} \cdot x_{22}=F_{22}
\end{align*}
$$

Also.

$$
\begin{equation*}
\underline{x}_{2} \cdot \underline{x}_{2}=G \tag{13}
\end{equation*}
$$

Diff- eq.(13) wat. 1 \& 2 we
have

$$
\left\{\begin{array}{l}
\underline{x}_{21} \cdot \underline{x}_{2}=\frac{1}{2} G_{1} \\
\underline{x}_{22} \cdot \underline{x}_{2}=\frac{1}{2} G_{2} . \tag{10}
\end{array}\right.
$$

Let us denote;

$$
\begin{align*}
& \underline{x}_{1} \cdot \underline{x}_{11}=[1,11]=\frac{1}{2} g_{11,1} \\
& \underline{x}_{1} \cdot \underline{x}_{12}=[1 ; 12]=\frac{1}{2} g_{1,2} \\
& \left.\underline{x}_{1} \cdot \underline{x}_{22}=[1,22]=g_{21,2}-\frac{1}{2} g_{22,1}\right) \tag{16}\\
& \left.\underline{x}_{2} \cdot \underline{x}_{11}=[2,11]=g_{21,2}-\frac{1}{2} g_{11,2}\right] \\
& \underline{x}_{2} \cdot \underline{x}_{21}=[2,21]=\frac{1}{2} \quad g_{21}, 1 \\
& \left.\underline{x}_{2} \cdot \underline{x}_{22}=[2,22]=\frac{1}{2} g_{22,2}\right]
\end{align*}
$$

These are called Christotall symboles of first bind.

Now taking dot product of eq.(1) with $x_{1} \quad \& \quad x_{2}$ we have

$$
\begin{align*}
& \begin{array}{l}
\underline{x}_{1} \cdot \underline{x}_{11}=\alpha_{1} \underline{x}_{1} \cdot \underline{x}_{1}+\alpha_{2} \underline{x}_{1} \cdot \underline{x}_{2}+\alpha_{3} \underline{x}_{1} / N \\
{[1]=\alpha_{1} E+\alpha_{2} F \longrightarrow}
\end{array} \\
& {[1,11]=\alpha_{1} E+\alpha_{2} F} \tag{17}\\
& \text { \& } \quad \underline{x}_{2} \cdot x_{11}=\alpha_{1} F+\alpha_{2} \varepsilon_{1} \\
& {[S l l]=\alpha_{1} F+\alpha_{2} G} \tag{B}
\end{align*}
$$

Maltiplying eq.(7) with F \& env with E we have

$$
\begin{align*}
& {[2,11] E=\alpha_{1} E F+\alpha_{2} G E} \\
& =[1,11] F=\alpha_{1} \notin F+\alpha_{2} F^{2} \\
& {[2,11] E-(1,11) F=\alpha_{2}\left(G E-F^{2}\right)} \\
& \alpha_{2}=\frac{(2,11] E-[1,11] F}{E G-F^{2}} \tag{19}
\end{align*}
$$

we can wirite this

$$
\begin{aligned}
\alpha_{2} & =[3,1] \frac{E}{E G-F^{2}}+[1,11]\left(\frac{-F}{E G-F^{2}}\right) \\
\Rightarrow \quad \alpha_{2} & =[2,11] \mathrm{g}^{22}+[1,11] \mathrm{g}^{21} \longrightarrow \text { (i) }
\end{aligned}
$$

Put eq.(13) in eq. (12).

$$
\begin{aligned}
& {[1,11]=\alpha_{1} E+F\left[\frac{[2,11] E-(1,11] F}{E G-F^{2}}\right]} \\
& \alpha_{1} E=[1,11]-\frac{[2,11] E-[1,11] F^{2}}{E G-F^{2}} \\
& \alpha_{1}=\frac{1}{E} \frac{[1,11] E G-(1,11] F^{2}-[2,11] F E+[111] F^{2}}{E G-F^{2}} \\
& \alpha_{1}=\frac{1}{E} \cdot E[[1,11] G-[2,11]] \\
& E G-F^{2} \\
& \alpha_{1}=\frac{[1,11] G-[2,11] F}{E G-F^{2}} \rightarrow(20
\end{aligned}
$$

we an waite it as

$$
\begin{aligned}
& \alpha_{1}^{\prime}=[i, 11] \frac{G}{E G-F^{2}}+[2,11] \frac{-F}{E G-F^{2}} \\
& \alpha,=[1,11] g^{\prime \prime}+[2,11] g^{12} \rightarrow \text { (ii }
\end{aligned}
$$

Similand taking dot product of $x_{1} \& x_{2}$ with eq. (2). we have,

$$
\begin{aligned}
& \underline{x}_{1} \cdot x_{12}=\beta_{1} \underline{x}_{1} x_{1}+\beta_{2} x_{1} \cdot x_{2}+\beta_{3} \underline{L}_{0}^{x} \cdot N \\
& {[1,12]=\beta_{1} E+\beta_{2} F \longrightarrow(21)} \\
& f[2,12]=\beta_{1} F+\beta_{2} G \longrightarrow(22)
\end{aligned}
$$

Multiplying F with eq.(21) \& E with eqj(2) and we have,

$$
\begin{aligned}
& {[1,12] F=\beta_{1} E F^{\prime}+\beta_{2} F^{2}} \\
& \frac{[2,12] E=\beta_{1} E F+\beta_{2} E G}{[1,12] F-[2,12] E=-\beta_{2}\left(E G-F^{2}\right)} \\
& \beta_{2}\left(E G-F^{2}\right)=(2,12] E-[1,12] F \\
& \beta_{2}=\frac{[2,12] E-[1,12] F}{E G-F^{2}} \\
& \beta_{2}=[2,12] \frac{E}{E G-F^{2}+(1,12) \frac{-F}{E G-F^{2}}} \\
& \beta_{2}=[2,12] \text { OT }+(1,12] g^{21} \xrightarrow{22}
\end{aligned}
$$

x ing G with equ (21) \& F with eq.(22).

$$
\begin{aligned}
& {[1,12] G=\beta_{1} G E+\beta_{2} G / F} \\
& {[2,12] F=\beta_{1} F^{2}+\beta_{2} G F} \\
& {[1,12] G-[2,12] F=\beta_{1}\left(G E-F^{2}\right)} \\
& \beta_{1}=[1,12] \frac{G}{G E-F^{2}}+[2,12] \frac{-F}{G E-F^{2}} \\
& \beta_{1}=[1,12] G^{\prime \prime}+[2,12] G^{12} \rightarrow(i v)
\end{aligned}
$$

Similarly tatring dot product of x_{1} \& x_{2} with eq. (3), we have

$$
\begin{align*}
& \underline{x}_{1} \cdot x_{22}=\gamma_{1} \underline{x}_{1} x_{1}+\gamma_{2} \underline{x}_{1}-x_{2}+\gamma_{3} \underline{x}_{1} \cdot N \\
& {[1,2,2]=\gamma_{1} E+\gamma_{2} F \longrightarrow(23)} \tag{3}\\
& \& \quad[2,22]=\gamma_{1} F+\gamma_{2} G \longrightarrow \text { (24 }
\end{align*}
$$

eq. (23) and (24) \Rightarrow

$$
\begin{aligned}
& {[2,22] E=\gamma_{1} E F+\gamma_{2} E G} \\
& -(1,22] F=\gamma_{1} F F+\gamma_{2} F^{2} \\
& (2,22] E-[1,22] F=\gamma_{2}\left(G E-F^{2}\right) \\
& \gamma_{2}=[2,22] \frac{E}{E G-F^{2}}+[1,22] \frac{-F}{E G-F^{2}} \\
& \gamma_{2}=[2,22] G^{22}+[1,22] \mathrm{g}^{4} \rightarrow(V)
\end{aligned}
$$

also eq u (23) \& (24) \Rightarrow

$$
\begin{aligned}
& {[1,22] G=\gamma_{1} E G+\gamma_{2} F G} \\
& \frac{[2,22] F=\gamma_{1} F^{2}+\gamma_{2} F G}{[1,22] G-[2,22] F=\gamma_{1}\left(E G-F^{2}\right)} \\
& \gamma_{1}=[1,22] \frac{G}{E G-F^{2}}+[2,22] \frac{-F}{E G-F^{2}} \\
& \gamma_{1}=[1,22] \mathrm{g}^{\prime \prime}+[2,22] \mathrm{g}^{\prime 2} \rightarrow \text { (vii }
\end{aligned}
$$

We can wite eq (i), तों (खाए), (स) (v) \& (Iा) as; 02-10-2014

$$
\begin{align*}
& \text { (ii) } \Rightarrow \alpha_{1}=g^{i i}[i, 11] \longrightarrow \text { (VII) } i=1,2 \\
& \text { (i) } \Rightarrow \alpha_{2}=g^{2 i}[i, 11] \longrightarrow \text { (III) } \tag{viIi}\\
& \text { (ii) } \Rightarrow \beta_{1}=g^{\prime i}[i, 12] \longrightarrow \text { (ix) } \tag{ix}\\
& \text { (iii) } \Rightarrow \beta_{2}=g^{2 i}[i, 12] \longrightarrow \text { (x) } \tag{K}\\
& \text { (ii) } \Rightarrow \gamma_{1}=g^{\prime i}[i, 22] \longrightarrow \text { (iii) } \\
& \text { (v) } \Rightarrow \gamma_{2}=g^{2 i}[i, 22] \longrightarrow \text { (ii }
\end{align*}
$$

By combining eq. (VII) \& eq. (vIII)

$$
\begin{aligned}
& \Rightarrow \quad \alpha_{k}=g^{k i}[i \ddot{g} / 1] \longrightarrow \text { (xIII) } k=1,2 \\
& (X) \&(X) \Rightarrow \beta_{K}=g^{\prime i}[i, 12] \longrightarrow \text { (xiv) } \\
& \text { (xi) \& (xii) } \Rightarrow \gamma_{k}=g^{k i}[i, 22] \longrightarrow(x v) \quad, \\
& \alpha_{k}=\Gamma_{11}^{k}, \beta_{k}=\Gamma_{12}^{k}=\Gamma_{21}^{k}, \gamma_{k}=\Gamma_{22}^{k}
\end{aligned}
$$

4
(29)
\therefore Eq. (1)...carsisibe written as

$$
\begin{aligned}
x_{11} & =\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} \underline{N} \quad k=1,2 \\
\Rightarrow x_{11} & =\alpha_{k} \underline{x}_{k}+\alpha_{3} \underline{N} \\
& =\Gamma_{11}^{k} x_{k}-e \underline{N} \\
& =\Gamma_{11}^{k} \underline{x}_{k}-\tilde{T}_{11} \underline{N}(x v i)
\end{aligned}
$$

Similarly (2) \& (3) gives.

$$
\begin{aligned}
\underline{x}_{12} & =\int_{12}^{k} \underline{x}_{k} \tilde{\theta}_{12} \underline{N} \rightarrow \dot{v} \rightarrow i i \\
\& \quad \underline{x}_{22} & =\prod_{22}^{k} \underline{x}_{k}-\tilde{y}_{22} \underline{N} \rightarrow(\text { viii })
\end{aligned}
$$

Combining $(x$ vi), (xvii) \& (xviii).

$$
\underline{x}_{i j}=\sqrt{i j}_{k}^{\underline{x}_{k}-\widetilde{\sigma}_{i j} \underline{N} \quad i, j, k=1,2}
$$

This is general form of equation which is called Gas ers.

Now we will derive Wiengantors eq Wo know that

$$
N \cdot N=1
$$

Diff. wit 1 \& 2 .
\& $\begin{aligned} & \underline{N} \cdot \underline{N}_{1}\end{aligned}=0$
\Rightarrow This shower that \underline{N}_{1} of N_{2} ane 1 to N. And ${ }^{a l s o} N$ is 1 to the plane form by $x_{1} \& x_{2}$.

In ether words N_{1} \& N_{2} will lie in the plane of \underline{x}_{1} \& \underline{x}_{2} and hence can be written as (the vectors $N_{1} \& N_{2}$ witter linear combination of tangent vectors \underline{x}_{1} \& \underline{x}_{2} as)

$$
\begin{align*}
v_{1} & =p_{1} x_{1}+p_{2} x_{2} \tag{1}\\
\& \quad v_{2} & =q_{1} x_{1}+q_{2} x_{2} \tag{2}
\end{align*}
$$

Where p 's o q 's ane constants. Now taking dot product of eq. (I) with x_{1} \& x_{2}.

$$
\begin{array}{r}
N_{1} \cdot x_{1}=P_{1} x_{1} \cdot x_{1}+P_{2} x_{2} \cdot x_{1} \\
e=P_{1} E+P_{2} F \xrightarrow{2} \quad N_{1} x_{2}=P_{1} x_{1} x_{2}+P_{2} x_{2} x_{2} \tag{3}
\end{array}
$$

$$
\Rightarrow \quad 7=P_{1} F+P_{2} G \longrightarrow(4)
$$

Similarly, tationg dot product of eq (2) with $\underline{x}_{1} \& \underline{x}_{2}$.

$$
\begin{align*}
& \underline{v}_{2} \cdot \underline{x}_{1}=q_{1} \underline{x}_{1} \cdot \underline{x}_{1}+q_{2} \underline{x}_{2} \cdot \underline{x}_{1} \\
& 7=q_{1} E+q_{2} F \longrightarrow(5) \tag{5}
\end{align*}
$$

$\&$

$$
\begin{aligned}
\underline{N}_{2} \cdot \underline{x}_{2} & =q_{1} \underline{x}_{1} \cdot \underline{x}_{2}+q_{2} \underline{x}_{2} \cdot \underline{x}_{2} \\
g & =q_{1} f+q_{2} G \longrightarrow
\end{aligned}
$$

(3)

$$
\begin{aligned}
&3) \&(4) \Rightarrow e F=P_{1} E F+P_{2} F^{2} \\
& \overrightarrow{Z E}=P_{1} E F \pm P_{2} E G \\
& e F-7 E=P_{2}\left(F^{2}-E G\right) \\
& \Rightarrow \quad P_{2}=\frac{7 E-E F}{E G-F^{2}}
\end{aligned}
$$

also (3) \& (4) \Rightarrow

$$
\begin{array}{r}
e G=P_{1} E G+P_{2} G F \\
=7 F=-P_{1} F^{2} \pm P_{2} G F \\
e G-7 F=P_{1}\left(E G-F^{2}\right) \\
\Rightarrow \quad P_{1}=\frac{e G-7 F}{E G-F^{2}}
\end{array}
$$

Now (5) \& (6) \Rightarrow

$$
\begin{aligned}
& q F=q_{1} E F+q_{2} F^{2} \\
& g E=-q_{1} F F+q_{2} G E \\
& 7 F-g E=q_{2}\left(F^{2}-G E\right) \\
\Rightarrow & q_{2}=\frac{g E-7 F}{E G-F^{2}}
\end{aligned}
$$

Also (5) \& (6) \Rightarrow

$$
\begin{aligned}
& 7 G=q_{1} E G+q_{2} F G \\
& \pm O F= \pm q_{1} F^{2}+q_{2} F G \\
& 7 G-g F=q_{1}\left(E G-F^{2}\right) \\
& \Rightarrow q_{1}=\frac{7 G-g F}{E G-F^{2}}
\end{aligned}
$$

Now putting these values in eq D \& (2).

$$
\begin{aligned}
& \text { eq(1) } \Rightarrow N_{1}=\left(\frac{e G-F F}{E G-F^{2}}\right) \underline{x}_{1}+\left(\frac{7 E-e F}{E G-F^{2}}\right) \underline{x}_{2} \\
& =\left[e\left(\frac{G}{E G-F^{2}}\right)+H\left(\frac{-F}{E G-F}\right)\right] \underline{x}_{1}+\left(7\left(\frac{E}{E G-F^{2}}\right)+E\left(\frac{F}{E G-F^{2}}\right)\right] \underline{x}_{2} \\
& =\left(g^{\prime \prime} \ddot{g}_{11}+g^{2 \prime} \tilde{g}_{12}\right) x_{1}+\left(g^{22} \tilde{g}_{12}+g^{\prime 2} g_{11}\right) x_{2} \\
& =g^{i 1} \tilde{y}_{1 i} \underline{x}_{1}+g^{i 2 \tilde{g}_{12}} \underline{x}_{2} \quad i=1,2
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=\operatorname{gij}^{i j} \tilde{g}_{i} x_{j} \rightarrow 7 \quad j=1,2 \\
& \text { eq(2) } \Rightarrow \\
& N_{2}=\frac{7 G-g F}{E G-F^{2}} \underline{x}_{1}+\frac{g E-7 F}{E G-F^{2}} \underline{x}_{2} \\
& =\left[\left(\frac{G}{E G-F^{2}}\right) 7+\left(\frac{-F}{E G-F^{2}}\right) g\right] \underline{x}_{1} \\
& +\left[\left(\frac{E}{E G-F^{2}}\right) g+\left(\frac{-F}{E G-F^{2}}\right) 7\right] \underline{x}_{2} \\
& =\left(g^{\prime \prime} \tilde{g}_{21}+g^{2 \prime} \tilde{g}_{22}\right) \underline{x}_{1} \\
& +\left(g^{22} \tilde{g}_{22}+g^{12} \tilde{g}_{21}\right) x_{2} \\
& =g^{i 1} \tilde{g}_{2} i \underline{x}_{1}+g^{i 2} \tilde{g}_{2 i} \underline{x}_{2}[i=1,2] \\
& N_{2}=g^{i j} \tilde{g}_{2 i} \underline{x}_{j} \rightarrow \text { (8) } \quad\{j=1,2\}
\end{aligned}
$$

Combining eq.(2) \& eq. (B) finally we have

$$
N_{k}=g^{i j} \tilde{g}_{k} \underline{x}_{j} \quad k=1,2
$$

Therse ane called weinganton's equs.

Q:-
Find the chisistotiel symbles of $x(u, v)=$ (conucoshiv, sinuceshv, sinh $v)$
Sal:-

$$
\Gamma_{i, j}^{b}=\frac{1}{2} g^{k l}\left(g_{i l, j}+g_{l j, i}-g_{i j}, l\right)
$$

we buce to find

$$
\begin{aligned}
& \Gamma_{11}^{\prime}, \Gamma_{21}^{\prime}=\Gamma_{12}^{\prime}, \Gamma_{22}^{\prime} \\
& \Gamma_{11}^{2}, \Gamma_{21}^{2}=\Gamma_{12}^{2}, \Gamma_{22}^{2} \\
& \underline{x}_{u}=(-\sin u \cosh v, \cos u \cosh v, 0) \\
& \text { \& } \underline{x}_{v}=(\cos u \sinh v, \sin u \sinh v, \cosh v) \\
& E=\underline{x} u \cdot \underline{x} u=\sin ^{2} u \cos ^{2} h v+\cos ^{2} u \cos ^{2} h v+0 \\
& \Rightarrow \quad E=\cos ^{2} h v \\
& F=\underline{x} u \cdot \underline{x} v=-\sin u \cos u \sinh v \cosh v+\sin u \cos u \sinh v \\
& \Rightarrow F=0 \\
& G=x \cdot x v=\cos ^{2} u \sinh ^{2} v+\sin ^{2} u \sinh ^{2} v+\cos ^{2} h v \\
& \Rightarrow \frac{G=\frac{\sin ^{2} h v+\cos ^{2} h v}{(\cosh v} 0}{0} \\
& g_{i j}=\left(\begin{array}{cc}
\cosh v & 0 \\
0 & \sin ^{2} h v+\cos ^{2} h v
\end{array}\right)
\end{aligned}
$$

(35)

$$
\begin{aligned}
& g^{i u}=\left(\begin{array}{cc}
y_{02} h V & 0 \\
0 & \frac{1}{\sin ^{2} h t+\cos ^{2} h v}
\end{array}\right) \\
& \Gamma_{11}^{\prime}=\frac{1}{2} \theta^{u}\left(g_{t, 1}+g_{d t, 1}-g_{l t, l}\right)
\end{aligned}
$$

where $l=1,2$

$$
\begin{aligned}
& \Gamma_{11}^{\prime}=\frac{1}{2} g^{\prime \prime}\left(\theta_{n, 1}+q_{1,1}-\sigma_{n, 1}\right)+\frac{1}{2} g^{2}\left(g_{1,2}^{0}+g_{21,1}-g_{11,2}\right) \\
& \Rightarrow \quad \Pi_{1 \prime}^{\prime}=\frac{1}{2} 0^{\prime \prime} \cdot g_{11,1} \\
& =\frac{1}{2} \cdot\left(\frac{1}{\cos ^{2} h v}\right) \cdot \frac{0}{\rho^{u}}\left(\cos ^{2} h v\right) \\
& \Gamma_{1 \prime}^{\prime}=0 \\
& \Gamma_{12}^{\prime}=\frac{1}{2} g^{l l}\left(g_{1,2}+g_{l 2,1}-g_{12, l}\right) \\
& =\frac{1}{2} g^{\prime \prime}\left(g_{11,2}+g_{2},-g_{12,1}\right)+\frac{1}{2} g^{\prime 2}\left(g_{12,2}+g_{22,1}-g_{12,2}\right) \\
& =\frac{1}{2} g^{\prime \prime}\left(g_{11,2}\right) \\
& =\frac{1}{2} \cdot \frac{1}{\cos ^{2} h v} \cdot \frac{\partial}{\partial v}\left(\cos ^{2} h v\right) \\
& =\frac{1}{y^{\prime} \cos ^{x} h \cdot} \cdot x \cos \hbar t \sinh v \\
& \Omega_{21}^{1}=\tanh v=1_{12}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& P_{22}^{\prime}=\frac{1}{2} g^{\prime l}\left(g_{2,2,2}+g_{l 2,2}-g_{22, l}\right) \\
& T_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left(g v_{122}+g / 2, g_{0}^{d}-g_{22,1)}+\frac{1}{2} g^{\prime 2}\left(g_{22,2}+g_{22,2}-g_{22,2}\right)\right. \\
& =\frac{-1}{2} \cdot g^{\prime \prime} \cdot g_{221} \\
& =\frac{-1}{2} \cdot \frac{1}{\cos ^{2} h v} \cdot \frac{\partial}{\partial u}\left(\sin ^{2} h v+\cos ^{2} h v\right) \\
& 1_{22}^{1}=0 \\
& F_{11}^{2}=\frac{1}{q} g^{2 l}\left(g_{1 l o 1}+g_{l, 1}-g_{11, l}\right) \\
& p_{11}^{2}=\frac{1}{2} g^{2} /\left(g_{11,1}+g_{11,1}-g_{11,1}\right)+\frac{1}{2} g_{22}^{22}\left(g_{0} \mid r_{0}+g / 2,-g_{11,2}\right) \\
& =\frac{-1}{2} 0^{22} \cdot g_{11,2} \\
& =-\frac{1}{2} \cdot \frac{1}{\sin ^{2} h t+\cos ^{2} h v} \cdot \frac{2}{\partial v}\left(\cos ^{2} h v\right) \\
& =\frac{-1}{2\left(\sin ^{2} h v+\operatorname{tos}^{2} h v\right)} \cdot R \text { conhvinht } \\
& \Pi_{11}^{2}=\frac{-\sinh \cdot \cosh }{\sin ^{2} h v+\cos ^{2} h v}
\end{aligned}
$$

$$
\begin{aligned}
& P_{R 2}^{2}=\frac{1}{2} g^{2 l}\left(g_{2}, 2+g_{\ell 2},-g_{12}, l\right) \\
& =\frac{1}{2} g_{0}^{2 \mu}\left(g_{11,2}+g_{12,1}-g_{12,1}\right)+\frac{1}{2} g^{22}\left(g_{2,2}+g_{22}, g_{12,2}\right) \\
& =\frac{1}{2} g^{22} \cdot g_{22,1} \\
& =\frac{1}{2} \cdot \frac{1}{\sin ^{2} h v+\cos ^{2} h v} \cdot \frac{\partial}{\partial u}\left(\sin ^{2} h v+\cos ^{2} h v\right) \\
& \Gamma_{12}^{2}=0 \\
& \Gamma_{22}^{2}=\frac{1}{2} g^{2 l}\left(g_{2 l, 2}+g_{l 2,2}-g_{22, l}\right) \\
& =\frac{1}{2}_{0}^{2} g^{2}\left(g_{21,2}+g_{12,2}-g_{22,1}\right)+\frac{1}{2} g^{22}\left(g_{22,2}+g \nsim 2,2 / 2,2\right) \\
& =\frac{1}{2} g^{22} \cdot g_{2,2,2} \\
& =\frac{1}{2} \frac{1}{\sin ^{2} h v+\cos ^{2} h v} \cdot \frac{\partial}{\partial v}\left(\sin ^{2} h v+\cos ^{2} h v\right) \\
& =\frac{1}{2\left(\sin ^{2} h v+\cos ^{2} h v\right)} \cdot(2 \sinh v(\cosh v+2 \cosh v \sinh v) \\
& =\frac{24 \sinh v \cosh v}{2\left(\sin ^{2} h v+\cos ^{2} h\right)} \\
& \int_{2}^{2}=\frac{2 \sinh v \cos h v}{\sin ^{2} h v+\cos h^{2} h^{v}}
\end{aligned}
$$

(B)

Q:- $x(u, v)=(v \cos u, v \sin u, v)$
Find chostozell symboles.
Sols

$$
\Gamma_{i j}^{k}=\frac{1}{2} g^{c l}\left(g_{i l, j}+g_{l j, i}-g_{i j} l l\right)
$$

We have to find.

$$
\begin{aligned}
& \Gamma_{11}^{\prime}, \Gamma_{12}^{\prime}=\Gamma_{21}^{\prime}, \Gamma_{22}^{\prime}, \quad \Gamma_{11}^{2}, \Gamma_{21}^{2}=\Gamma_{12}^{2}, \Gamma_{22}^{2} \\
& \underline{x}_{u}=(-v \sin u, v \cos u, 0) \\
& \& \underline{x} v=(\operatorname{son} u, \sin u, 1) \\
& E=x u-x_{u}=v^{2} \sin ^{2} u+v^{2} \cos ^{2} u+0 \\
& \Rightarrow E=V^{2} \\
& F=x_{u} \cdot \underline{x_{v}}=-v \sin u \cos v+v \sin u \cos v \\
& \Rightarrow F=0 \\
& G=x v-x=\cos ^{2} u+\sin ^{2} u+1 \\
& G=2 \\
& \begin{array}{l}
g_{i j}=\left(\begin{array}{ll}
V^{2} & 0 \\
0 & 2
\end{array}\right) .
\end{array} \\
& g^{i j}=\left(\begin{array}{cc}
\frac{1}{V^{2}} & 0 \\
0 & 1 / 2
\end{array}\right) \\
& \Rightarrow g_{21}=9^{12}=0=g^{21}=g_{12}
\end{aligned}
$$

$$
r_{l l}^{\prime}=k_{2} g^{l}\left(g_{1 l, 1}+g_{l, 1,1}-g_{11}, l\right)
$$

where $l=1 s^{2}$

$$
\begin{aligned}
\Gamma_{11}^{\prime} & =\frac{1}{2} g^{\prime \prime}\left(g_{11,1}+g_{11,}-g_{11,1}\right)+\frac{1}{2} g_{0}^{\prime 2}\left(g_{12,1}+g_{21,1}-g_{11,2}\right) \\
& =\frac{1}{2} g^{\prime \prime} \cdot g_{11,1} \\
= & \frac{1}{2} \cdot\left(\frac{1}{v^{2}}\right) \cdot \frac{\partial}{r_{1},\left(\nu^{2}\right)} \\
\Gamma_{11}^{\prime} & =0 \\
& \Gamma_{12}^{\prime}=\frac{1}{2} g^{\prime \prime}\left(g_{1,2,2}+g_{2,3}-g_{12,1}\right)
\end{aligned}
$$

whene $l=1,2$

$$
\begin{aligned}
T_{12}^{\prime} & =\frac{1}{2} g^{\prime \prime}\left(g_{1,2}+g_{12}, 1-g_{12,1}\right)+\frac{1}{2} g^{12}\left(g_{12,2}+g_{22,1}-g_{12,2}\right) \\
T_{12}^{\prime} & =\frac{1}{2} g^{\prime \prime} \cdot g_{11,2} \\
& =\frac{1}{2}\left(\frac{1}{v^{2}}\right) \cdot \frac{\partial}{\gamma v}\left(v^{2}\right) \\
& =\frac{1}{2 v^{2}} \cdot 2 v \\
\Gamma_{12}^{\prime} & =\frac{1}{v}=\Gamma_{21}^{\prime}
\end{aligned}
$$

$$
\Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime l}\left(g_{2 l, 2}+g_{l 2,2}-g_{22}, l\right)
$$

where $l=1,2$

$$
\begin{aligned}
\Gamma_{22}^{\prime} & =\frac{1}{2} g^{\prime \prime}\left[v_{0} l_{1,2}+g / 2,2-g_{22,1}\right)+\frac{1}{2} g_{0}^{\prime \prime}\left[l_{22,2}+g_{22,2}-g_{22,2}\right] \\
& =\frac{-1}{2} g^{\prime \prime} \cdot g_{2291} \\
& =\frac{-1}{2} \cdot \frac{1}{12} \cdot\left(\frac{\partial}{r_{0 U}}(2)\right) \\
\Gamma_{2}^{\prime} & =0
\end{aligned}
$$

$$
P_{11}^{2}=\frac{1}{2} g^{2 l}\left(g_{l l, 1}+g_{l 1,1}-g_{11, l}\right)
$$

$$
=\frac{1}{2} g_{0}^{21}\left(g_{11,1}+g_{11+1}-g_{11,1}\right)+\frac{1}{2} g^{22}\left[g / 12,+\frac{g}{0} / 2,-g_{11,2}\right]
$$

$$
=-\frac{1}{2} g^{22} \cdot 811,2
$$

$$
=-\frac{1}{2} \cdot \frac{1}{2} \frac{\partial}{\partial^{v}}\left(v^{2}\right)
$$

$$
=-\frac{1}{4} \cdot 2 V
$$

$$
T_{11}^{2}=\frac{-v}{g}
$$

(4i)

$$
\begin{aligned}
\Gamma_{12}^{2} & =\frac{1}{2} g^{2 l}\left(g_{12,2}+g_{l 2,1}-g_{12, l}\right) \\
& =\frac{1}{2} g_{0}^{2 r}\left(g_{11,2}+g_{12,1}-g_{2,1}\right)+\frac{1}{2} g^{22}\left(g_{12,2}+g_{22,1}-g_{12,2}\right) \\
& =\frac{1}{2} g^{22} g_{22,1} \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\partial}{\partial^{4 u}}(2) \\
\Gamma_{12}^{2} & =0 \\
\Gamma_{22}^{2} & =\frac{1}{2} g^{2 l}\left(g_{12,2}+g_{2,2,2} g_{22, l}\right) \\
& =\frac{1}{2} g^{21}\left(g_{21,2}+g_{12,2} g_{22,1}\right)+\frac{1}{2} g^{2}\left(g_{23,2}+g_{2,2}, g_{22,2}\right) \\
& =\frac{1}{2} g^{22} \cdot g_{22,2} \\
& =\frac{1}{2} \cdot\left(\frac{1}{2}\right) \cdot\left[\frac{\partial}{\partial v}(2)\right] \\
\Gamma_{22}^{2} & =0
\end{aligned}
$$

Nos zeno chaistozell symbols

$$
\begin{gathered}
g_{i j}=\left(\begin{array}{ll}
v^{2} & 0 \\
0 & 2
\end{array}\right) \\
g_{11,2} \neq 0 \\
\Rightarrow \rho_{11}^{2}, \Gamma_{12}^{1}=\Gamma_{21}^{1}, \\
g_{22,2} \neq 0 \quad \Gamma_{22}^{2}=0
\end{gathered}
$$

$$
\binom{111,112,-22}{-112,22,223}
$$

Gauss Godazge Eq.
Gauss derived identities on the basis of the Fact that

$$
\begin{equation*}
\underline{x}_{112}=\underline{x}_{121} \rightarrow(1) \& \quad x_{221}=\underline{x}_{122} \tag{2}
\end{equation*}
$$

we will vise the eq i(1) to derive the Gauss Gedajgi eq. We mow that Gauss eq.

$$
x_{i j}=\Gamma_{c i j}^{k} x_{k}-j_{i j} N
$$

$$
\text { put } i=1, j=1
$$

$$
\begin{aligned}
& x_{11}=\Gamma_{11}^{k} x_{k}-\sigma_{11} \underline{N} \\
& \Rightarrow x_{11}=\Gamma_{11}^{k} x_{k}-e N \\
& D_{1} 7 . \text { win }
\end{aligned}
$$

$$
\begin{align*}
& \text { Diff. win 2. } \tag{4}\\
& x_{112}=\Gamma_{11,2}^{k} x_{1}+\Gamma_{11}^{k} x_{k 2}-e, 2 N-e N_{2}-
\end{align*}
$$

eq(3) can be written as

$$
x_{i j}=\int_{i j}^{e} x_{l}-\tilde{g}_{i j} N
$$

$$
\Rightarrow \underline{x}_{k 2}=F_{k 2}^{l} \underline{x}_{l}-\tilde{y}_{k 2} N
$$

Weingantion cal

$$
\begin{aligned}
N_{k} & =g^{i j} \cdot \tilde{y}_{k i} \underline{x}_{j} \\
\Rightarrow N_{2} & =g^{i j} \cdot{\tilde{y_{2 i}}} \underline{x}_{j}
\end{aligned}
$$

using these equation in eq. (4).

$$
\begin{gathered}
\underline{x}_{1 / 2}=\Gamma_{1,2}^{K} x_{K}+\Gamma_{11}^{k}\left(\sum_{k 2}^{l} \underline{x}_{l}-\tilde{j}_{K 2} N\right)-e_{32} \underline{N} \\
-e g^{i j} \nabla_{2 i} x_{2}
\end{gathered}
$$

Since j \& k ane dummy index.
So we can replace as

$$
\begin{align*}
& \underline{x}_{1,2}=\Gamma_{1,2}^{l} \underline{x}_{l}+\Gamma_{11}^{K} \Gamma_{K 2}^{l} \underline{x}_{l}-\Gamma_{11}^{k} \widetilde{g}_{k 2} \underline{N}-e_{2,2} \underline{N} \\
& -e g^{i l} \tilde{g}_{2 i} \underline{x}_{e} \\
& \underline{x}_{112}=\left(\Gamma_{11,2}^{l}+\Gamma_{11}^{k} \Gamma_{k_{2}}^{l}-e g^{i l} \widetilde{g}_{2 i}\right) \underline{x} l-\left(\Gamma_{11}{\stackrel{F}{\sigma_{k 2}}}+e_{2}\right) \underline{N} \\
& p_{4 t} i=1,2 \quad \because \tilde{g}_{21}=7, \tilde{g}_{22}=g \\
& x_{112}=\left(p_{11,2}^{l}+p_{11}^{k} p_{k_{2}}^{l}-e\left(g^{\prime l} f+q^{2 l} g\right)\right) x_{l} \\
& -\left(\Gamma_{11}^{k} \tilde{g}_{k_{2}}+e_{32}\right) N \tag{5}
\end{align*}
$$

Similarly eq(3) becomes; when $i=1, j=2$

$$
\begin{aligned}
x_{12} & =\Gamma_{12}^{k} x_{k}-\tilde{g}_{12} N \\
& =\Gamma_{12}^{K} x_{k}-7 N
\end{aligned}
$$

Diff wat 1

$$
\underline{x}_{121}=\Gamma_{121}^{k} \underline{x}_{k}+\Gamma_{12}^{k} \underline{x}_{k 1}-7_{11} \underline{N}-7 \underline{N}_{1} \rightarrow(6)
$$

We know that

$$
\begin{array}{rlrl}
& & x_{i j} & =\Gamma_{i j}^{l} x_{l}-\tilde{g}_{i j} N \\
\Rightarrow & \underline{x}_{K 1} & =\Gamma_{l i}^{l} \underline{x}_{l}-\tilde{g}_{K 1} N \\
\& & N_{K} & =g^{i j} \tilde{g}_{k i} x_{j} \\
\Rightarrow & N_{1}=g^{i j} \tilde{g}_{1 i} \underline{x}_{j}
\end{array}
$$

Using these equations in eq .(6)

$$
\begin{aligned}
& \underline{x}_{121}=\Gamma_{1211}^{k} \underline{x}_{k}+\Gamma_{12}^{k}\left(\Gamma_{k 1}^{l} \underline{x}_{l}-g_{k}, \underline{N}\right)-\nabla_{9,1} \underline{N} \\
& -7\left(g^{i j} \tilde{y}_{1 i} \underline{x}_{j}\right)
\end{aligned}
$$

Since b \& j ane dummy index So, we can replace as;

$$
\begin{aligned}
& \underline{x}_{121}=p_{12,1}^{l} \underline{x}_{l}+p_{12}^{k} p_{k 1}^{l} \underline{x} l_{l}-p_{12}^{k} \tilde{g}_{k} N-T_{1,} \underline{N} \\
& -7 \text { gil }_{1 i} \underline{x}_{l} \\
& \underline{x}_{121}=\left(\prod_{12,1}^{l l}+\Gamma_{12}^{k} P_{k 1}^{l}-7 g^{i l} \vec{g}_{1 i}\right) x_{l} \\
& \text { Axtem putting } i=1,2 \\
& \underline{x}_{121}=p_{12,1}^{l}+f_{12}^{k} \Gamma_{R 1}^{l}-7\left(g^{l l} e+g^{2 l} 7\right) \underline{x} l \\
& -\left(\eta_{12}^{k} \tilde{\theta}_{k 1}+7_{11}\right) N-7
\end{aligned}
$$

Alta putting eq． 5 \＆eq（7）in Q⿴囗十⺝刂 we Ale；

$$
\begin{array}{r}
{\left[p_{11,2}^{l}-\Gamma_{12,1}^{l}+\Gamma_{11}^{k} \Gamma_{k 2}^{l}-\Gamma_{12}^{k} \Gamma_{k 1}^{l}-e\left(g^{l \prime} 7+g^{2 l} g\right)+7\left(\operatorname{cgc}^{l}+7^{2} g\right)\right] \underline{x}} \\
+\left(\Gamma_{12}^{k} \tilde{g}_{k 1}+7_{11}-\Gamma_{11}^{k} \tilde{g}_{k 2}-e_{32}\right) N=0
\end{array}
$$

Since $\underline{x}_{1}, \underline{x}_{2} \& N$ are linearly independent． So coepticients of \underline{x}_{1}, x_{2} and N must be zero．Considering the coefficient of x_{1} we have

$$
\begin{aligned}
& \Gamma_{11,2}^{\prime}-\Gamma_{12,1}^{\prime}+\Gamma_{11}^{k} \Gamma_{k 2}^{\prime}-\Gamma_{12}^{7^{k}} \Gamma_{k 1}^{\prime}-e f^{11} 7-e^{21} g \\
& +7 e g^{\prime \prime}+7^{2} g^{21}=0 \\
& \Gamma_{112}^{\prime}-\Gamma_{12,1}^{1}+\Gamma_{11}^{k} \Gamma_{k-2}^{1}-\Gamma_{12}^{k} \Gamma_{k 1}^{1}-\left(e q-7^{2}\right) g^{21}=0 \\
& \left(e g-7^{2}\right) g^{2 /}=\Gamma_{1,2}^{1}-\Gamma_{12,1}^{1}+\Gamma_{11}^{k} \Gamma_{K 2}^{1}-\Gamma_{12}^{k} \prod_{k 1}^{1} \\
& \frac{\left(E-7^{2}\right)(-F)}{E G-F^{2}}=\Gamma_{1 t, 2}^{1}-\Gamma_{12,1}^{1}+\Gamma_{11}^{k} \Gamma_{K 2}^{1}-\Gamma_{12}^{K} \Gamma_{k=1}^{1} \\
& \frac{e g-7^{2}}{E G-F^{2}}=\frac{-1}{F}\left\{\Gamma_{11,2}^{1}-\prod_{12,1}^{1}+\Gamma_{11}^{k} \Gamma_{k 2}^{1}-\prod_{1,2}^{k} \Gamma_{k 1}^{1}\right\}=K
\end{aligned}
$$

Now considering the coefficient of
x_{2} ，we have

$$
\Gamma_{1,22}^{2}-\Gamma_{n 11}^{2}+\Gamma_{11}^{K} \Gamma_{k 2}^{2}-\Gamma_{12}^{k} \Gamma_{k 1}^{2}-e f g^{k^{2}}-\operatorname{eg} g^{22}+e \operatorname{f}^{k^{2}}+7^{2} g=0
$$

$$
\begin{aligned}
& \Gamma_{11,2}^{2}-\Gamma_{12,1}^{2}+\Gamma_{11}^{k} \Gamma_{k 2}^{2}-\Gamma_{12}^{k} \Gamma_{k 1}^{2}-\left(e g-7^{2}\right) g^{22}=0 \\
& \left(e g-7^{2}\right) g^{22}=\Gamma_{11,2}^{2}-\Gamma_{12,1}^{2}+\Gamma_{11}^{k} \Gamma_{k 2}^{2}-\Gamma_{12}^{k} \Gamma_{k 1}^{2} \\
& \frac{\left(e g-7^{2}\right) E}{E G-F^{2}}=\Gamma_{11,2}^{2}-\Gamma_{12,1}^{2}+\Gamma_{11}^{k} \Gamma_{1<2}^{2}-\Gamma_{12}^{k} \Gamma_{k 1}^{2} \\
& \frac{\theta g-q^{2}}{E G-F^{2}}=\frac{1}{E}\left[\Gamma_{11,2}^{2}-\Gamma_{12,1}^{2}+\Gamma_{11}^{k} \Gamma_{k 2}^{2}-\Gamma_{12}^{k} \Gamma_{k 1}^{2}\right]=K
\end{aligned}
$$

Now putting the conefficient of N to be zera, we get,

$$
\begin{gathered}
\Gamma_{12}^{k} \tilde{\delta}_{k 1}+7_{91}-\Gamma_{11}^{k} \tilde{g}_{k 2}-e_{, 2}=0 \quad k=1,2 \\
\Gamma_{12}^{\prime} \tilde{\eta}_{11}+\Gamma_{12}^{2} \tilde{g}_{21}+7_{11}-\Gamma_{11}^{\prime} \widetilde{g}_{12}-\Gamma_{11}^{2} \tilde{g}_{22}-e_{, 2}=0 \\
\Gamma_{12}^{\prime} e+\Gamma_{12}^{2} 7+7_{31}-\Gamma_{11}^{\prime} 7-\Gamma_{11}^{2} g-e_{22}=0 \\
7_{31}-e_{32}+\Gamma_{12}^{\prime} e+7\left(\Gamma_{12}^{2}-\Gamma_{11}^{\prime}\right)-g \Gamma_{11}^{2}=0
\end{gathered}
$$

Tenser is the generalization of vector and scalar Which obeys the coordinate transformation law.
(At can be reduced to vector as well as scalar)

OR
The quantity which remains invariant under co-ondinate transformationA tensor of ranter 1 , is called vector.

A tensor of rant- 1 \& valence $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is called contravariant vector. A tensor of rank 1 \& valence $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is called covariant vector.
A tensor of rank 2 \& valence $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is called Mixed Tensor.
$g_{i j}$

$$
\text { Ranter }=2 \text {, Valence }\left[\begin{array}{l}
0 \tag{ij}\\
2
\end{array}\right] \quad \text { valence }\left[\begin{array}{l}
2 \\
0
\end{array}\right], \text { Rant }=2
$$

Transformation law
The contravariant vector transform according as,

$$
\hat{A}=\frac{\partial x^{\hat{a}}}{\partial x^{b}} A^{b}
$$

and the covaniant vector as

$$
A_{\hat{a}}=\frac{\partial x^{b}}{\partial \hat{x}^{\hat{x}}} A_{b}
$$

Similarly the transformation law for a tensor of rank 2 and valence $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ is given as,

$$
A^{\hat{a} \hat{b}}=\frac{\partial x^{\hat{a}}}{\partial x^{c}} \cdot \frac{\partial x^{\hat{b}}}{\partial x^{d}} A^{c d}
$$

Similarly the tenson Aầ will be transform as

$$
A_{\hat{a} \hat{b}}=\frac{\partial^{c} x^{\hat{c}}}{\partial x^{\hat{a}}} \frac{\partial x^{d}}{\partial x^{B}} A_{c d}
$$

\therefore In the case of a mixed tensor of rasp 2. Then the transformation law becomes

$$
A_{\hat{b}}^{\hat{a}}=\frac{\partial x^{\hat{a}}}{\partial x^{c}} \cdot \frac{\partial x^{d}}{\partial x^{\hat{b}}} \cdot A_{d}^{c}
$$

In general, for a tensor of nantes $(b r+l)$ and valance $\left[\begin{array}{l}k \\ l\end{array}\right]$. The transformation law can be written as

$$
A_{\partial}^{\hat{a}} \hat{c}=\frac{\partial x^{\hat{c}}}{\partial x^{m}}-\frac{\partial x^{2}}{\partial x^{n}} \cdot \frac{\partial x^{p}}{\partial x^{x}} \cdot \frac{\partial x^{q}}{\partial x^{7}} A_{p q}^{m}
$$

Q:- Transform.

$$
g_{a b}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

into plane polar coordinates. Solation: -

$$
\begin{array}{ll}
x=r \cos \theta & \frac{\partial x}{\partial r}=\cos \theta \\
y=n \sin \theta & \frac{\partial x}{\partial \theta}=-r \sin \theta \\
(x, y) & \frac{\partial y}{\partial r}=\sin \theta \\
(x) & \frac{\partial y}{\partial \theta}=r \cos \theta
\end{array}
$$

Knoun wivelemas $\rightarrow x^{a}=(x, y)$
unibaown $\Rightarrow x^{\hat{a}}=(1, \theta)$
The tnansformation is given as,

$$
\begin{aligned}
& g_{\hat{a} \hat{b}}=\frac{\partial x^{c}}{\partial x^{\hat{c}}} \cdot \frac{\partial x^{d}}{\partial x^{b}} g_{c d} \quad \text { a,b,csd }=1,2 \\
& g_{\hat{a} \hat{b}}=\left(\begin{array}{ll}
g_{\hat{\imath}} & g_{\hat{\imath} \hat{2}} \\
g_{\hat{\imath} \hat{\imath}} & g_{\hat{2} \hat{\imath}}
\end{array}\right) \\
& g_{\hat{1}}=\frac{\partial x^{c}}{\partial x^{\hat{c}}} \cdot \frac{\partial x^{d}}{\partial x^{\hat{i}}} g_{c d} \quad c, d=1,2 \\
& =\frac{\partial x^{\prime}}{\partial \hat{x}^{\hat{i}}} \cdot \frac{\partial x^{d}}{\partial \hat{x^{2}}} g_{1 d}+\frac{\partial x^{2}}{\partial x^{\hat{2}}} \cdot \frac{\partial x^{d}}{\partial \hat{x}^{\hat{2}}} g_{2 d} \\
& =\frac{\partial x^{\prime}}{\partial \hat{x}^{\hat{2}}} \cdot \frac{\partial x^{\prime}}{\partial x^{\hat{x}}} g_{11}+\frac{\partial x^{\prime}}{\partial x^{\hat{i}}} \cdot \frac{\partial x^{2}}{\partial x^{\hat{i}}} g_{12}^{\prime}+\frac{\partial x^{2}}{\partial \hat{x}^{2}} \cdot \frac{\partial x^{\prime}}{\partial \hat{x}^{2}} g_{21}^{0} \\
& +\frac{\dot{x}^{2}}{\partial \hat{x}^{?}} \cdot \frac{\partial x^{2}}{\partial x^{\hat{2}}} g_{22} \\
& =\left(\frac{\partial x^{\prime}}{\partial \hat{x}^{2}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial \hat{x}^{2}}\right)^{2} \\
& \because g_{11}=1=g_{22} \\
& =\left(\frac{\partial x}{\partial r}\right)^{2}+\left(\frac{\partial y}{\partial r}\right)^{2} \\
& =\cos ^{2} \theta+\sin ^{2} \theta \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& g_{\eta_{2}}=\frac{\partial x^{2}}{\partial \hat{x}^{\hat{2}}} \cdot \frac{\partial x^{\alpha}}{\partial x^{2}} \delta_{c d} \\
& =\frac{\partial x^{\prime}}{\partial x^{\hat{1}}} \cdot \frac{\partial x^{d}}{\partial x^{2}} g_{1 d}+\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} g_{2 d} \\
& =\frac{\partial x^{\prime}}{\partial x^{\hat{1}}} \cdot \frac{\partial x^{\prime}}{\partial x^{2}} g_{11}+\frac{\partial x^{\prime}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} g_{12}+\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{\prime}}{\partial x_{1}^{2}} g_{0}^{2} / \\
& +\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} g_{22} \\
& =\left(\frac{\partial x}{\partial n}\right) \cdot\left(\frac{\partial x}{\partial \theta}\right)+\left(\frac{\partial y}{\partial x}\right)\left(\frac{\partial y}{\partial \theta}\right) \quad g_{11}=g_{22}=1 \\
& =(\cos \theta)(-r \sin \theta)+(\sin \theta)(n \cos \theta) \\
& =-i \sin \alpha \cos \theta+r \sin \theta \cos \theta \\
& =0=-\gamma_{\hat{2} \hat{i}} \\
& g_{\hat{\Sigma} \hat{Z}}=\frac{\partial x^{c}}{\partial x^{\hat{2}}} \cdot \frac{\partial x_{\hat{d}}}{\partial x^{2}} g_{c d} \\
& =\frac{\partial x^{1}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} g_{1} d+\frac{\partial x^{2}}{\partial x^{2}}-\frac{\partial x^{d}}{\partial x^{2}} \theta_{2 d} d \\
& =\frac{\partial x^{\prime}}{\partial x^{2}} \cdot \frac{\partial x^{\prime}}{\partial x^{2}} g_{11}+\frac{\partial x^{\prime}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} 9 \pi_{12}^{0} \\
& +\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{\prime}}{\partial x^{2}} g_{0}^{2}+\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} g_{12} \\
& =\left(\frac{\partial x^{\prime}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2} \quad g_{11}=1=g_{22} \\
& =\left(\frac{\partial x}{\partial \theta}\right)^{2}+\left(\frac{\partial y}{\partial \theta}\right)^{2} \\
& =(-r \sin \theta)^{2}+(r \cos \theta)^{2} \\
& =R^{2}
\end{aligned}
$$

So, $\quad g_{\hat{a} \hat{b}}=\left(\begin{array}{ll}1 & 0 \\ 0 & n^{2}\end{array}\right)$
Q:- Transform

$$
g_{a b}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

into sphenical polan coondinates.
Solution:-

$$
\begin{gathered}
x^{a}=(x, y, z) \\
x^{\hat{a}}=\left(r, \dot{\theta}^{\prime}, \phi\right) \\
\dot{x}=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \phi
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial x}{\partial r}=\sin \theta \sin \phi, \frac{\partial x}{\partial \theta}=r \cos \theta \cos \phi, \frac{\partial x}{r \phi}=-r \sin \theta \sin \phi \\
& \frac{\partial y}{\partial r}=\sin \theta \sin \phi, \frac{\partial y}{\partial \theta}=r \cos \theta \sin \phi, \frac{\partial y}{\partial \phi}=r \sin \theta \cos \phi \\
& \frac{\partial z}{\partial \mu}=\cos \theta, \frac{\partial z}{\partial \theta}=-r \sin \theta, \frac{\partial z}{\partial \phi}=0
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{\hat{a} \hat{b}}=\frac{\partial x^{c}}{\partial x^{t}} \frac{\partial x^{d}}{\partial x^{2}} g_{d} \quad a, b, c, d t=3,2,3 \\
& g_{\hat{2} \hat{b}}=\left(\begin{array}{lll}
g_{\hat{\imath}} & g_{\hat{i} \hat{2}} & g_{i \hat{3}} \\
g_{\hat{\imath} \hat{1}} & g_{\hat{2} \hat{2}} & g_{\hat{2} \hat{3}} \\
g_{\hat{\imath} \hat{\imath}} & g_{\hat{3} \hat{2}} & g_{\hat{3} \hat{3}}
\end{array}\right) \\
& g_{\hat{i}}=\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{d}}{\partial x^{h}} g_{c d} \\
& =\frac{\partial x^{\prime}}{\partial x^{1}} \frac{\partial x^{d}}{\partial x^{\hat{x}}} g_{1 d}+\frac{\partial x^{2}}{\partial x^{\hat{2}}} \frac{\partial x^{d}}{\partial x^{2}} g_{2 d}+\frac{\partial x^{3}}{\partial x^{2}} \frac{\partial x^{d}}{\partial x^{2}} g_{3 d} \\
& =\frac{\partial x^{\prime}}{\partial x^{\prime}} \cdot \frac{\partial x^{\prime}}{\partial x^{2}} g 11+\frac{\partial x^{\prime}}{\partial x^{\prime}} \cdot \frac{\partial x^{2}}{\partial x^{2}} 9 / 12+\frac{\partial x^{\prime}}{\partial x^{2}} \cdot \frac{\partial x^{3}}{\partial x^{3}} g / 13 \\
& +\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}} g y_{12}^{0}+\frac{\partial x^{2}}{\partial x^{i}} \cdot \frac{\partial x^{2}}{\partial x^{i}} g_{22}+\frac{\partial x^{2}}{\partial \hat{x}^{\hat{2}}} \frac{\partial x^{3}}{\partial x^{2}} g \nabla_{23}^{0} \\
& +\frac{\partial x^{3}}{\partial x^{i}} \cdot \frac{\partial x^{\prime}}{\partial x^{i}} 931+\frac{\partial x^{3}}{\partial x^{i}} \frac{\partial x^{2}}{\partial x^{2}} 932+\frac{\partial x^{3}}{\partial x^{i}} \cdot \frac{\partial x^{3}}{\partial x^{3}} g_{33} \\
& =\left(\frac{\partial x^{i}}{\partial x^{i}}\right)^{2} g_{11}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2} g_{22}+\left(\frac{\partial x^{3}}{\partial x^{i}}\right)^{2} g_{33} \\
& g_{11}=g_{22}=g_{33}=1 \\
& =\left(\frac{\partial x}{\partial x}\right)^{2}+\left(\frac{\partial y}{\partial n}\right)^{2}+\left(\frac{\partial z}{\partial n}\right)^{2} \\
& =\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta \\
& =\sin ^{2} \theta+\cos ^{2} \theta \\
& =1
\end{aligned}
$$

Now

$$
\begin{aligned}
g_{\hat{2} \hat{2}} & =\frac{\partial x^{c}}{\partial x^{2}} \cdot \frac{\partial x^{0}}{\partial x^{2}} g_{c d} \\
& =\frac{\partial x^{\prime}}{\partial x^{2}} \frac{\partial x^{\prime}}{\partial x^{2}} g_{11}+\frac{\partial x^{2}}{\partial x^{2}} \frac{\partial x^{2}}{\partial x^{2}} g_{22}+\frac{\partial x^{3}}{\partial x^{2}} \frac{\partial x^{3}}{\partial x^{2}} g_{33} \\
& =\left(\frac{\partial x^{1}}{\partial x^{2}}\right)^{2} g_{11}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2} g_{22}+\left(\frac{\partial x^{3}}{\partial x^{3}}\right)^{2} g_{33}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{\partial x}{\partial \theta}\right)^{2}+\left(\frac{\partial y}{\partial \theta}\right)^{2}+\left(\frac{\partial \partial}{\partial \theta}\right)^{2} \quad g_{11}=g_{22}=g_{33}=1 \\
& =r^{2} \cos ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta \sin ^{2} \theta+r^{2} \sin ^{2} \theta^{2} \\
& =r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \\
& =r^{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
g_{3 \hat{3}} & =\frac{\partial x^{c}}{\partial x^{3}} \cdot \frac{\partial x^{d}}{\partial x^{3}} g c d \\
& =\frac{\partial x^{\prime}}{\partial x^{3}} \cdot \frac{\partial x^{\prime}}{\partial x^{3}} g_{11}+\frac{\partial x^{2}}{\partial x^{3}} \cdot \frac{\partial x^{2}}{\partial x^{3}} g_{22}+\frac{\partial x^{3}}{\partial x^{3}} \cdot \frac{\partial x^{3}}{\partial x^{3}} g_{33} \\
& =\left(\frac{\partial x^{1}}{\partial x^{3}}\right)^{2} \cdot g_{11}+\left(\frac{\partial x^{2}}{\partial x^{3}}\right)^{2} g_{22}+\left(\frac{\partial x^{3}}{\partial x^{3}}\right)^{2} g_{33} \\
& =\left(\frac{\partial x}{\partial \phi}\right)^{2}+\left(\frac{\partial y}{\partial \phi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2} \quad g_{11}=g_{22}=g_{33}=1 \\
& =r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \cos ^{2} \phi \\
& =r^{2} \sin ^{2} \theta
\end{aligned}
$$

Sog

$$
g_{\hat{a} \hat{b}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

vep ${ }^{s h r y t}$ Now dor cylinderical polan cooxdinates.

$$
\begin{array}{ll}
x=\rho \cos \theta & \\
y=j \sin \theta & x=(x, y, z) \\
z=j & x^{\hat{a}}=(\rho, \theta, z)
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial x}{\partial \rho}=\cos \theta, \quad \frac{\partial y}{\partial \rho}=\sin \theta, \quad \frac{\partial g}{\partial \rho}=0 . \\
& \frac{\partial x}{\partial \theta}=-\rho \sin \theta, \frac{\partial y}{\partial \theta}=\rho \cos \theta, \frac{\partial z}{\partial \theta}=0 \\
& \frac{\partial x}{\partial z}=0 \quad, \frac{\partial y}{\partial z}=0, \frac{\partial z}{\partial z}=1 \\
& g_{i i}=\left(\frac{\partial x^{1}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial x^{2}}\right)^{2} \\
& =(\cos \theta)^{2}+\sin ^{2} \theta+(\theta) \\
& =1 \\
& g_{\hat{z} \hat{z}}=\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial x^{2}}\right)^{2} \\
& =(-\rho \sin \theta)^{2}+(\rho \cos \theta)^{2}+\theta \\
& -\rho^{2} \\
& g_{\hat{3} \hat{3}}=\left(\frac{\partial x^{1}}{\partial x^{3}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{3}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial x^{3}}\right)^{2} \\
& =(0)^{2}+(0)^{2}+1 \\
& =1
\end{aligned}
$$

S_{3}

$$
g_{\hat{a} \hat{b}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & f^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

www. RanaMaths.com

Hssigroment
Q. Tnansform

$$
g_{a b}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

irto Hyper spherical coordinates.
Solution;

$$
\begin{aligned}
& \omega=r \sin \theta \cos \phi \cos \psi \\
& x=r \sin \theta \cos \phi \sin \psi \\
& y=\lambda \sin \theta \sin \phi \\
& y=1 \cos \theta \\
& x^{a}=(\omega, x, y, j) \\
& \hat{x}^{\hat{a}}=(1, \theta, \phi, \psi) \\
& \frac{\partial \omega}{\partial \mu}=\sin \theta \cos \phi \cos \psi, \frac{\partial x}{\partial n}=\sin \theta \cos \phi \sin \psi, \frac{\partial y}{\partial \Omega}=\sin \theta \sin \phi, \frac{\partial}{\partial n}=\cos \theta \\
& \frac{\partial \omega}{\partial \theta}=r \cos \theta \cos \phi \cos \psi, \frac{\partial x}{\partial \theta}=r \cos \theta \cos \phi \sin \psi, \frac{\partial y}{\partial \theta}=r \cos \theta \sin \phi, \frac{\partial z}{\partial \theta}=-r \sin \theta \\
& \frac{r \partial \omega}{\partial \phi}=-n \sin \theta \sin \phi \cos \psi, \frac{\partial x}{\partial \phi}=-n \sin \theta \sin \phi \sin \psi, \frac{\partial y}{\partial \phi}=n \sin \theta \cos \phi, \frac{\partial z}{\partial \phi}=0 \\
& \frac{\partial \omega}{r \psi}=-\mu \sin \theta \cos \phi \sin \psi, \frac{\partial x}{\partial \psi}=n \sin \theta \cos \psi \\
& \frac{\partial y}{\partial \psi}=0=\frac{\partial z}{\partial \psi},
\end{aligned}
$$

$$
\begin{aligned}
& g_{\hat{2} \hat{B}}=\left(\begin{array}{llll}
g_{\hat{i}} & g_{\hat{2}} & g_{\hat{i}} & g_{\hat{1} \hat{4}} \\
g_{\hat{2}} & g_{\hat{2} \hat{2}} & g_{\hat{2} \hat{3}} & g_{\hat{2} \hat{4}} \\
g_{3 \hat{i}} & g_{\hat{3} \hat{2}} & g_{\hat{3} \hat{3}} & g_{\hat{3} \hat{4}} \\
g_{\hat{\imath} \hat{\imath}} & g_{4 \hat{2}} & g_{4 \hat{3}}^{n} & g_{\hat{4} \hat{4}}
\end{array}\right) \\
& g_{a}=\frac{\partial x^{c}}{\partial x^{\hat{x}}} \cdot \frac{\partial x^{d}}{\partial x^{b}} \cdot g_{c d} \quad a, b, d=1,2,3,4 \\
& g_{I}=\frac{\partial x^{c}}{\partial x^{2}} \cdot \frac{\partial x^{\alpha}}{\partial x^{4}} g c d \quad \quad c, d=1,2,3,4
\end{aligned}
$$

After putting the values of;

$$
\begin{aligned}
& g_{12}=g_{13}=g_{14}=g_{21}=g_{23}=g_{24}=g_{31}=g_{32}=g_{34}=g_{41}=g_{42}=g_{43}=0 \\
& g_{11}=g_{22}=g_{33}=g_{44}=1 \\
& g_{\hat{1} \hat{i}}=\frac{\partial x^{1}}{\partial x^{2}} \frac{\partial x^{\prime}}{\partial x^{2}}+\frac{\partial x^{2}}{\partial x^{2}} \cdot \frac{\partial x^{2}}{\partial x^{2}}+\frac{\partial x^{3}}{\partial x^{1}} \cdot \frac{\partial x^{3}}{\partial x^{2}}+\frac{\partial x^{4}}{\partial x^{4}} \cdot \frac{\operatorname{sx}^{4}}{\partial x^{1}} \\
&=\left(\frac{\partial x^{\prime}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial x^{\prime}}\right)^{2}+\left(\frac{\partial x^{4}}{\partial x^{2}}\right)^{2} \\
&=\left(\frac{\partial w}{\partial r}\right)^{2}+\left(\frac{\partial x}{\partial r}\right)^{2}+\left(\frac{\partial y}{\partial r}\right)^{2}+\left(\frac{\partial z}{\partial r}\right)^{2} \\
&=\sin ^{2} \theta \cos ^{2} \phi \cos ^{2} \psi+\sin ^{2} \theta \cos ^{2} \phi \sin ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi \\
&+\cos ^{2} \theta \\
& \sin ^{2} \theta \cos ^{2} \phi\left(\cos ^{2} \psi_{4} \sin ^{2} \psi\right)+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta \\
&=\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
&=\sin ^{2} \theta\left(\cos ^{2} \phi f \sin ^{2} \phi\right)+\cos ^{2} \theta \\
& 1^{\prime} \theta \\
&=\sin ^{2} \theta+\cos ^{2} \theta \\
&=1 \\
& g_{\hat{2} \hat{2}}=\frac{\partial x^{c}}{\partial x^{2}} \cdot \frac{\partial x^{d}}{\partial x^{2}} g_{c d} \quad c, 0 t=1,2,3,4
\end{aligned}
$$

After putting the values

$$
\begin{aligned}
= & \left(\frac{\partial x^{1}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial x^{4}}{\partial x^{2}}\right)^{2} \\
= & \left(\frac{\partial \omega}{\partial \theta}\right)^{2}+\left(\frac{\partial x}{\partial \theta}\right)^{2}+\left(\frac{\partial y}{\partial \theta}\right)^{2}+\left(\frac{\partial g}{\partial \theta}\right)^{2} \\
= & r^{2} \cos ^{2} \theta \cos ^{2} \phi \cos ^{2} \psi+r^{2} \cos ^{2} \theta \cos ^{2} \phi \sin ^{2} \psi \\
& +r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \\
= & r^{2} \cos ^{2} \theta \cos ^{2} \phi\left(\cos ^{2} \psi+\sin ^{2} \psi\right)+r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \\
= & r^{2} \cos ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \\
= & r^{2} \cos ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+r^{2} \sin ^{2} \theta \\
= & r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \\
= & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
= & r^{2} \\
= & \frac{r x^{2}}{\partial x^{3}} \frac{\partial x^{d}}{\partial x^{3}} g \operatorname{cd} c, d=1,2,3,4
\end{aligned}
$$

Alter putting the values

After putting the valuey:

$$
\begin{aligned}
g_{\hat{4} \hat{4}} & =\left(\frac{\partial x^{1}}{\partial x^{4}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{4}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial \hat{x^{2}}}\right)^{2}+\left(\frac{\partial x^{4}}{\partial x^{4}}\right)^{2} \\
& =\left(\frac{\partial \omega}{\partial \psi}\right)^{2}+\left(\frac{\partial x}{\partial \psi}\right)^{2}+\left(\frac{\partial y}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \psi}\right)^{2} \\
& =r^{2} \sin ^{2} \theta \cos ^{2} \phi \sin ^{2} \psi+r^{2} \sin ^{2} \theta \cos ^{2} \phi \cos ^{2} \psi+0+0 \\
& =r^{2} \sin \theta \cos \phi\left(\sin ^{2} \psi+\cos ^{2} \psi\right)
\end{aligned}
$$

$$
=r^{2} \sin ^{2} \theta \cos ^{2} \phi
$$

$$
\begin{aligned}
& g_{\hat{3} \hat{3}}=\left(\frac{\partial x^{1}}{\partial x^{\hat{3}}}\right)^{2}+\left(\frac{\partial x^{2}}{\partial x^{\hat{3}}}\right)^{2}+\left(\frac{\partial x^{3}}{\partial x^{3}}\right)^{2}+\left(\frac{\partial x^{4}}{\partial x^{3}}\right)^{2} \\
& =\left(\frac{\partial \omega}{\partial \phi}\right)^{2}+\left(\frac{\partial x}{\partial \phi}\right)^{2}+\left(\frac{\partial y}{\partial \phi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2} \\
& =r^{2} \sin ^{2} \theta \sin ^{2} \phi \cos ^{2} \psi+r^{2} \sin ^{2} \theta \sin ^{2} \phi \sin ^{2} \psi \\
& +r^{2} \sin ^{2} \theta \cos ^{2} \phi+0 \\
& =r^{2} \sin ^{2} \theta \sin ^{2} \phi\left(\cos ^{2} y+\sin ^{2} \phi\right)+r^{2} \sin ^{2} \theta \cos ^{2} \phi \\
& =r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \cos ^{2} \phi \\
& =r^{2} \sin ^{2} \theta\left(\sin ^{2} \phi y_{1} \cos ^{2} \phi\right) \\
& =r^{2} \sin ^{2} \theta \\
& g_{4 \pi}=\frac{\partial x^{c}}{\partial x^{\hat{4}}} \cdot \frac{\partial x^{d}}{\partial x^{4}} \cdot g_{c d} \quad c, d=1,2,3,4
\end{aligned}
$$

59
(59)

13-1t-
\qquad
\qquad
\qquad
\qquad
\qquad

Sepanatile Spare:
A) spane Ω is said to be sepradile it thene exists a countably intinte sabspace of it whase elosune is entine space.

Connected Space:-
A spuce Ω is said to be conneited if thene does not exist $A_{s} B \subset \Omega$ such that

$$
A \cup B=\Omega \quad \text { and } \quad A \cap \bar{B}=\bar{A} \cap B=\Phi
$$

Housdonz7 Space:
A space Ω aiss asmid to
be houndonit if $\forall x, y \in \Omega$ such that $x \neq y$ neighhounhoods $\eta_{1}(x), \eta_{2}(y)$ such that

$$
\eta_{1}(x) \cap \eta_{2}(y)=\phi
$$

Manitald:-
The manizald is a generaligation of usual suntace on which we pentorm ditterential OR

A manitold M_{n} of dimension n, is a reparable, corkected \& housdonft space with a homeo morphism from each
element at ilis open ball caven into R^{n} (π^{n} is uclidian n dim.)

Compact Manizald.
A manifuld is said to be compart it thene existe a Finite open caver.

Pana Campact Manifold."
A maritaold is said to be para compact if thene is a zinite netinement of it.

Example:-
cincle, sphene, tomus ete Tonus \Rightarrow libe tube of cycle.

Homeomorphisms-
A function $7: x \rightarrow y$ b/w two topalogical. space, $\left(x, T_{x}\right) \&\left(y, T_{y}\right)$ is chiselled a homeomorphism if it has the following properties:
(i) -7 is bijective ($1-1$ \& onto)
(ii):-7 is continuous.
$\therefore \because \because$ (iii): The inverse Function 7^{-1} is continuous
(7 is an open mapping)
We say that x \& y are hameomorphic.
"Coordinate Patch"

$$
20-11-14
$$

dee the open coven by
 97 "I" is finite then the open coven is said to be finite. 27 I is countable then the open cover is said to has a locally finite refinement. Thus in these cases, the space is compact or paracompact. 97 I is uncountable \& thence is no choice of open coven where I can become countable, the space is called non-compact. Each U_{i} is called - coordinate patch.

Condinatization:-
The homeomorphism ${7_{i}}_{i}: u_{i} \rightarrow \mathbb{R}^{n}$ is called coondimatization. It is defined as

$$
\begin{aligned}
7_{i}(P) & =\left(x^{1}, x^{2}, x^{3}, \cdots, x^{n}\right) \\
& =x^{i} \quad \quad \because i=1,2,3, \ldots n
\end{aligned}
$$

Here x^{i} ane called coordinates of P in \mathbb{R}^{n}

The pain $\left(u_{i}, f_{i}\right)$ is called coordinate chant.

The collection of all chants ie $\left\{\left(\mu_{i}, f_{i}\right)\right\}_{i \in I}$ is called "Atlas".

Since U_{i} ane open \& also $\bigcup_{i \in I} U_{i}=M_{n}$, it is obvious that $\forall u_{i} \exists$
u_{j} such that

$$
u_{i} \cap u_{j} \neq \phi
$$

Let us asume that $p \in U_{i} \cap U_{j}$ \& let $7 ;$ \& 7 for the respective coondinatization such that

$$
{f_{i}}_{i}(P)=x^{a} \quad \& \quad 7_{j}(P)=x^{a}
$$

Thus we have tow sets of coondinates for the same point P

To be able to deal with the se we must be able to convent 7 nom one set of coordinates to other -

This is where the fact that the homeomorphism is bijective is needed. Due to this bijectiveness propenty $\exists \quad 7_{i}^{-1}$ such that $\left.\left(7_{i} \circ \mathcal{F}_{i}^{-1}\right) P\right)=P$

Now we considen

$$
\begin{aligned}
&\left.\left(7_{j} \circ 7_{i}^{-1}\right) \circ f_{i}(P)=7 ;\left(\frac{z_{i}^{-1}}{0} 7_{i}\right) P\right) \\
& \Rightarrow \quad\left(7 ; \circ f^{-1} i\right) x^{a}=7 j(P) \\
&=x^{a}
\end{aligned}
$$

$$
\because \text { Asscialative pupenty }
$$

This shows that $7, \circ 7_{i}^{-1}$ is the mapping which transform x^{a} to $x^{\hat{a}}$.

Assignment:- Find out the mapping which transform x^{a} to x^{a} :

Let $p \in u_{i} \cap u_{j}$
Let 7 ; \& 7 ; for the respective ocondinatization such that

$$
7_{i}(P)=x^{a} \quad \& \quad z_{j}(P)=x^{\hat{a}}
$$

To be able to deal with these we must be able to convent from one set of coordinates to athens This:
is where the tact that the homeomorphism is bijective is needed, because of this property of bijectiveness $\exists 7^{-1} ;$ such that

$$
\left(7_{j}^{-1} \circ 7,\right)(p)=p
$$

Now we consider

$$
\begin{aligned}
& \left(7_{i} \circ 7_{j}^{-1}\right) \circ 7_{j}(P)=7 ;\left(7_{j}^{-1} \circ 7_{j}\right)(P) \\
\Rightarrow & \left(7 ; \circ 7_{j}^{-1}\right) x^{a}=7_{i}(P) \\
\Rightarrow & \left(7 i \circ 7_{j}^{-1}\right) x^{a}=x^{a}
\end{aligned}
$$

This show that $7 ; 07^{1} j$ is the mapping which thanstorm x^{a} to x^{a}.
"Differentiable Manifold"
A manizald is said to be differentiable it the homeomorphism is differentiable. A differentiable manifold is called as. "ditzeomorphism"

If the homeomorphism is K-time differentiable then the manifold is called. $C^{K}-$ mani ald.

An finitly differentiable manifold is called c^{∞}-manitald.

If the homeomorphism is analytic \& not only intinitly differentiable then the masitold is called C^{p}-manitold.

A C.manitald is not ditfenentiable in usual sense but it can be dittentiable in the sense of generalized function.

Example: $|x|$ is not differentiable at $x=0$ but all other points it is differentiable. Derivation:-
Let us consider a differentiable manitald M_{n}. A derivation ξ is a. mapping, given as

$$
\underset{1}{ }: M_{n} \longrightarrow M_{n}
$$

such that

$$
\xi: P \longrightarrow Q
$$

when $P, Q \in U_{i}$
It is not passible to deal property with derivation taking points such that che belongs to coordinate patch \& other lien out side it (or in thea coordinate paid).

Now we discuss the coondinatization of derivation, denoted by $-\xi(7)$ instead of 7 (k) such that

$$
\xi(7): 7(P) \longrightarrow 7(Q)
$$

MA we write $f(p)=x^{a} \quad \& F(a)=y^{a}$ and treat the operator $\xi(7)$ as an additive operator, then

$$
\xi(z)=y^{a}-x^{a}
$$

So, that

$$
\begin{aligned}
\xi(z)+7(p) & =y^{a}-x^{a}+x^{x} \\
& =y^{a}=z(Q)
\end{aligned}
$$

Thus coondinatization of the derivation is exactly the same as the components of a vector in Eucledian geometry.

Now we can define the addition of two derivations ξ \& \mathcal{F},

$$
\left(\xi_{p}+\eta_{p}\right)(7)=\xi_{p}(7)+\eta_{p}(7)
$$

and scalar multiplication ar;

$$
\left(\lambda \xi_{p}\right)(7)=\lambda \xi_{I}(7), \quad \lambda \in \mathbb{R}
$$

Thus the set of derivations at p forms a vector space. It is denoted D

There is a complete vector space of denivation at each point of manifold. The collection of all such spaces $\forall p \in M_{n}$ called tangent bundle. We will not be dealing with the entine collection but at a given point P.

Consequently, we will write ξ instead of $s p$ and D instead of D_{p}.
"Dual Derivation"
we define dual derivation. denoted by $\underline{\alpha}$, as a mapping

$$
\begin{aligned}
\alpha: D & \longrightarrow \mathbb{R} \\
i=R & \longrightarrow \mathbb{R}
\end{aligned}
$$

It is generally written as

$$
\underline{\alpha} \cdot \underline{\xi}=\underline{\underline{\alpha}} \underline{\alpha}=n \in \mathbb{R}
$$

Again we define the addition of two dual derivations as;

$$
\begin{aligned}
(\alpha+\beta)! & =\alpha \cdot \underline{\xi}+\beta \cdot \underline{ } \\
& =n_{1}+n_{2} \quad n_{1,1}, n_{2} \in \mathbb{R} \\
& =n \in \mathbb{R} \quad
\end{aligned}
$$

The scalar multiplication as,

$$
\begin{aligned}
(\lambda \underline{\alpha}) \cdot \xi & =\lambda(\underline{\alpha} \xi) & & \lambda \in \mathbb{R} \\
& =\lambda\left(\Omega_{0}\right) & & \Omega_{1} \in \mathbb{R}
\end{aligned}
$$

Thus the set of dual derivation forms a vector oventhe'ziell." \mathbb{R}. forms a vector space iv e is denoted by D^{*}.

It is worth mentioning here that we can define a complex manifold with \mathbb{R} evenguthene replaced by (I). The vector space D can be multiply together e.g. $D \times D$ is a space where elements ane of the form $(\{, 7)$ such that $\xi, \eta \in D$.

This product is not a vector space itself an linearity is not hold. Assignment: - Show that the cross product is not linear.

Tensor Product
A vector space can be defined from these spaces, by defining a product which conserve linearly.

This product is called Tensor product denoted by $\mathcal{Q} \otimes D$ \& defined as

$$
D \otimes D=D \times D / C
$$

where $C=\{\lambda(\xi, 7)=(\lambda \xi, \lambda, z)$ s.t $\xi, 7 \in \mathbb{R}, \lambda \in \mathbb{R}$
[Assignment:- Show that $\mathcal{D} \otimes D$ is linear.] Similarly we can defined $R(x) D^{*}$, $D^{*} \otimes \mathcal{D}^{*} \cdot$ eco. In igeneiral;, a vector: space v_{l}^{k} of valance $\left[\begin{array}{l}k \\ l\end{array}\right]$ and rant $(k+l)$ can be defined as

$$
V_{l}^{k}=\frac{D \otimes D \otimes \cdots \otimes D(\otimes) \frac{l-t i m e s}{k-\text { times }}}{D^{*} \otimes \cdots R^{*}}
$$

Where there ane b-derivations and l-dual dentuations.

An element belonging to V_{t}^{K} is called a tensor of valance $\left[\begin{array}{l}k \\ i\end{array}\right]$ \& Rant $(p+l)$ The tenser are defined as manifold. The tenser are defined as
"Contraction"
A contraction of a tensor is an opencter or operation which reduces the rant by 2 \& valance by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ by letting ane of the dual derivation act an one of the derivation.

$$
T_{a d e}^{a b}=A^{b} d e
$$

The manipolation of tensor is greatly simplified with the help of abstract index notation. The space of derivations along with an index label ($B 2, a$) is written as $T^{\text {p}}$, so that $(\xi, a)=\xi^{q}$ and called the space of contravariant vectors. It can be written with any ether label e.g $\xi^{b} \in T^{\underline{b}}, \xi^{c} \in \mathcal{T}^{\leq}$etc.

It is noted that we have only change the label while the derivation remains the same. Similarly the space. of covariant vector is defined by, Abstract index give the elements lite $\alpha_{a}, \bar{\beta} q$ etc.

Generally, the space of tensions of rant $(b+l)$ and valance $\left[\begin{array}{l}b \\ 1\end{array}\right]$ is
defined as

$$
r^{a \cdots c}{ }_{d}=r^{a}\left(x \cdots q ^ { c } \otimes \tau _ { d } \left(\infty \cdots T_{z}\right.\right.
$$

where $\left(\left\{, \ldots, c_{\}}\right)=b,(\{d, \ldots, 7)=l\right.$
Notes- A Scalar is a tensor of ranter O and valance $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
"Index Substitution"
we denotes the index substitution as $\delta_{\underline{b}}^{a}$ and define as a tensor which changes the index label without changing the derivation (or dual derivation) given as

$$
\delta_{\underline{b}}^{a}: T^{\underline{b}} \longrightarrow T^{a}
$$

s.t $\delta_{\underline{b}}^{a}\left(\xi^{b}\right)=\xi^{a} \in \tau^{a}$

Similarly $\delta_{\underline{b}}^{\underline{a}}: \tau_{\underline{a}} \longrightarrow \tau_{\underline{b}}$
$s \cdot t \quad \delta_{\underline{b}}^{a}\left(\alpha_{a}\right)=\alpha_{\underline{b}} \in T_{b}$
For a mixed tensor

$$
\delta_{\underline{\underline{b}}}^{\underline{a}}: \tau_{\underline{\underline{b}}}^{\underline{b}} \longrightarrow \tau
$$

Where T is the space of vealan Function.

Thar $\left(8_{b}^{2} 5^{b}\right) \alpha_{a}=5^{3} \alpha_{a}=\xi \cdot \alpha$ which is scalar wee see the 8 just replace one label by another-

Following this notation the components of i^{2} in a coordinate system, Previously whiten as $\stackrel{(q)}{1}$ will be written as \overbrace{i}^{a}.

97 i: $P \rightarrow a$ and $f(p)=x^{a}, q(a)=y^{a}$
then

$$
I(7)=\sum_{1}^{0}=y^{2}-x^{2}
$$

So, the coondianatization is then written an 8_{a}^{a}, Thus

$$
\delta_{a}^{a}: T^{a} \longrightarrow \mathbb{R}^{n}
$$

such that

$$
\delta_{a}^{a}\left(\xi^{a}\right)=\xi^{a} \in \mathbb{R}^{n}
$$

We car also doitine the inverse of condinatigation an $\delta_{a}^{3}: \mathbb{R}^{n} \longrightarrow T^{2}$
such that

$$
S_{a}^{a}\left(\xi^{a}\right)=\xi^{a} \in T^{-a}
$$

(Self) is to be noted here that ℓ^{9} is defined on manifold while $f^{a}(a=1,2, \cdots, n)$ is defined in \mathbb{R}^{n}. Obviously δ_{a}^{a} plays the role of basis vector. (e. $\xi=\xi^{a} \underline{a}$)

As we can write,

$$
\begin{aligned}
\alpha_{a} \xi^{a} & =\alpha_{a} \xi^{a} \\
& =\alpha_{a}\left(\xi^{a} \delta_{a}^{a}\right) \\
\alpha_{a} \delta_{a}^{a} & =\left(\alpha_{a} \delta_{a}^{a}\right) \xi^{a} \\
\alpha_{a} \delta_{a}^{a} & =\alpha_{a}
\end{aligned}
$$

Similarly,

$$
\alpha_{a}=\delta_{\underline{a}}^{a} \alpha_{a}
$$

Thus we have

$$
\begin{aligned}
& \delta_{a}^{a}: T_{a} \longrightarrow \mathbb{R}^{n} \\
\& & \delta_{\underline{a}}^{a}: \mathbb{R}^{n} \longrightarrow T_{a} \quad \text { Respectively. }
\end{aligned}
$$

"Affine Connection" $27-11-14$

The concept of derivation needs to be generalized in the abstract space (manitold) In particular we need to generalize, the gradiant operate or $\nabla \quad\left(\nabla=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}\right)$ for a curved space. Let us write this gradiant operator as ∇_{a} and require that 7 or any scalar 7 unction say, 7 the affine connection is given $a_{n} \delta_{a}^{a} \nabla_{a} 7=7, a=\frac{\partial 7}{\partial x^{a}}$ (where"," denote r panting(derivative).

However, there is no guaranty that V_{a} acting on some tensor
give is partial derivative.
It is required that it soaker satisfice the usual dittenentiation aWes. ie $\underline{\nabla} \cdot(A+\underline{B} \times C)=\nabla \underline{A}+(\nabla \underline{B}) x \leq$

$$
+B \times(\underline{B})
$$

Further it should not act on the index substitution ie.

$$
\nabla_{a}\left(\delta_{a}^{b}\right)=0
$$

It is clean that

$$
\left.\nabla_{a}+p\right)=\nabla_{a} x^{a}=\frac{\partial x^{a}}{\partial x^{2}}=\delta_{a}^{a}
$$

which is basis vector. for covariant.
As we know that,

$$
\begin{aligned}
& \xi(f(p))=\xi^{a}=\xi^{a} \delta^{a} \\
&=\xi^{a} \\
& \xi(7(p))=\xi_{\underline{a}} x^{a} \nabla_{a} 7(p) \\
& \Rightarrow \xi=\xi^{a} \nabla_{\underline{g}}
\end{aligned}
$$

Thun we can replace derivation \& by the contraction of cont rave riant vector ξ^{a} with the affine connection $\nabla /$. of the derivation lies in the intersection of two coordinate
patch $u_{i} \& u_{j}$ with component $\xi^{a} \& \xi^{\hat{a}}$
then

$$
\begin{gathered}
\dot{\xi}^{\hat{a}}=\delta_{a}^{\hat{a}} \xi^{\underline{a}}=\delta_{\underline{a}}^{\hat{a}} \delta_{a}^{a} \xi^{a} \\
=\delta_{a}^{a} \xi^{a}
\end{gathered}
$$

$\Rightarrow \delta_{a}^{\hat{a}}$ is transformation matiix
from x^{a}-7rame to x^{a}-7rame
Similanly

$$
\xi^{a}=\delta_{\hat{a}}^{a} \xi^{\hat{a}}
$$

$\Rightarrow \delta_{\hat{a}}^{a}$ is tnanstormation nathin from $x^{\hat{a}}$ trame to x^{a}-zrame
(S) Considen the operator (zox scalen zunction)

$$
\begin{equation*}
\frac{\partial}{\partial x^{a}}=\delta_{a}^{a} \nabla_{\underline{a}} \tag{1}
\end{equation*}
$$

Also we bnow that

$$
\frac{\partial}{\partial x^{a}}=\delta_{a}^{a} \nabla_{a} \longrightarrow D
$$

By chain rule

$$
\begin{equation*}
\frac{\partial}{\partial x^{a}}=\frac{\partial x^{a}}{\partial x^{a}} \cdot \frac{\partial}{\partial x^{a}} \tag{3}
\end{equation*}
$$

Computing (1) \& (2) in (5) we have

$$
\delta_{\hat{q}}^{\frac{q}{q}} \nabla_{\underline{q}}=\frac{\partial x^{a}}{\partial x^{\hat{a}}} \cdot \delta_{a}^{a} \nabla_{a}
$$

Metric Tender.
Def. 1):- The metric tenon is defined by a mapping given by $g_{a \underline{b}}: \tau^{\underline{b}} \longrightarrow \mathbb{R}$ such that it define the length square of a vector as

$$
g_{a b} \xi^{\underline{a}} \xi^{b}=|\xi|^{2}=\xi^{2} \in \mathbb{R}
$$

Def. 2):- We can also define metric tensor by an other way as $\mathcal{O}_{\underline{a} b}: \tau^{a} \longrightarrow \tau_{\underline{b}}$
ie

$$
\operatorname{g}_{\underline{a} b}\left(\xi^{\underline{a}}\right)=\xi_{\underline{b}}
$$

This means that comesponding to every contravariant vector metric tensor assigns a covariant vector
Def. 3): - The third way of defining metric tensor as a quantity which appears in the first fundamental form, relating the ane length $\left(d^{2}\right)$ to $d x$ (where $x=x(u, v)$ is a surface) as

$$
\begin{aligned}
& d s^{2}=d x \cdot d x \\
& d s^{2}=g_{a b} d x^{a} d x^{b}
\end{aligned}
$$

If $\overbrace{}^{a}$ is a constant vector then

$$
\begin{equation*}
\nabla c\left(\xi^{\underline{a}}\right)=0 \tag{D}
\end{equation*}
$$

then $\nabla_{\underline{c}}\left(\xi_{\underline{b}}\right)=0$

$$
\begin{aligned}
& \nabla_{c}\left(g_{a b} \xi^{a}\right)=0 \\
& \Rightarrow \nabla_{c}\left(q_{a b}\right) \xi^{a}+g_{s b} \nabla_{c}\left(q^{a}\right)=0 \\
& \Rightarrow \nabla_{c}\left(g_{a b}\right) \xi^{a}=0 \\
& \text { as } e^{a} \neq 0 \Rightarrow \nabla_{c}\left(g_{a b}\right)=0
\end{aligned}
$$

(Artine connection acting on metric tensor gives us genes.

The inverse of metric tensor $g_{\Delta p}$ is denoted by, $\theta^{a k}$ \& we have

$$
g^{a s} g_{b}=\delta \frac{a}{b}
$$

we brow that $\left[g_{a b} \varepsilon^{b}=\xi a\right.$
Multiplying by $g^{\text {as }}$ on both sides

$$
\begin{aligned}
& g^{a \leq} q_{a_{b}} \varepsilon^{b}=g^{a c} \sum_{a} \\
& \\
& \delta_{b}^{c} \xi^{b}=g^{a s} \xi_{a} \\
& \\
& \xi^{a}=g^{a c} \xi_{a} \\
& \Rightarrow g^{a c} \xi_{a}=\xi^{c}
\end{aligned}
$$

It is required that at every manifold there exists the metric tensor as well as its inverse.

Q:- Prove that $\nabla_{\subseteq}\left(g^{\underline{a} b}\right)=0$
Ans:- we know that $\nabla_{巨}\left(\delta_{\underline{d}}^{q}\right)=0$

$$
\Rightarrow \nabla_{c}\left(g^{2 b} g_{b \underline{d}}\right)=0
$$

$$
\begin{gathered}
g^{a b} \nabla_{y}\left(\theta_{b-1}\right)^{0}+g_{b l} \nabla_{c}\left(g^{a b}\right)=0 \\
g_{b d} \nabla_{c}\left(g^{a b}\right)=\cdots
\end{gathered}
$$

as $O_{k d} \neq 0$ so $\nabla_{c}\left(g^{a k}\right)=0$
"Covariant Derivative"
Let us now consider the action of affine connection ∇_{b} on a genuine vector ξ^{q}, and have

$$
\begin{equation*}
\nabla_{\underline{b}}\left(\xi^{a}\right)=\nabla_{\underline{b}}\left(\delta_{a}^{a} \xi^{a}\right) \tag{1}
\end{equation*}
$$

It is noted that \sum^{a} are the components of $\mathcal{\xi}^{\underline{a}}$ but ane scalar quantities.

Multiply (1) by δ_{b} b on both sides.

$$
\begin{aligned}
& \delta_{\frac{b}{b}}^{\frac{b}{b}}\left(\xi^{\underline{a}}\right)=\delta \frac{b}{b} \nabla_{\underline{b}}\left(\delta^{\frac{a}{a}} \xi^{a}\right) \\
& =\delta^{\frac{b}{b}} \delta^{\frac{a}{a}} \nabla_{\underline{b}}\left(\xi^{a}\right)+\left\{\delta_{b}^{b} \nabla_{\underline{b}}\left(\delta \frac{a}{a}\right)\right\} \xi^{a} \\
& =\delta_{a}^{a} \nabla_{b}\left(\xi^{a}\right)+\left(\delta \frac{b}{b} \nabla_{b} \delta^{\frac{a}{a}}\right) \mathcal{\xi}^{a} \\
& =\delta_{a}^{\frac{a}{a}} \xi_{, b}^{a}+\left(\delta \frac{b}{b} \nabla_{\underline{b}} \delta_{a}^{\frac{a}{a}}\right) \xi^{a}
\end{aligned}
$$

Agar multiplying by δ_{Q}^{c} on both sides...

$$
\begin{gather*}
\text { Agar multiplying } \\
\left.\delta_{\underline{a}}^{c} \delta_{b}^{b} \nabla_{b} e^{a}=\delta_{a}^{c} \delta_{a}^{a} e_{, b}^{\frac{a}{a}}+\left(\delta_{a}^{c} \delta_{b}^{b} \nabla_{b} \delta_{a}^{a}\right)\right\}^{a} \tag{2}\\
\delta_{; b}^{c}=\varepsilon_{b, b}^{6}+\Gamma_{a b}^{c} \varepsilon^{a}>(2)
\end{gather*}
$$

where $\Gamma_{a}{ }^{c}$ ane called correction symbols.
where ";" denotes a covariant derivative \& "," is the partial derivative.

The extra term on right hand side of eq. (2) comes from the derivative of the basis vector.

Since cartesion basis vector $\hat{i}, \hat{j}, \hat{k}$ are constant vectors- S_{0} all the connection symbols becomes zeno. However there are many spaces in which the cartesian coordinates can not be used.

In non-cartesian coordinates (curvilinear coordinates) the all connection symboles are not zero as the basis vectors are not constant.

It is obvious that $: \nabla_{b}\left(\delta_{a}^{c}\right)=0 \quad 8-12-14$

- ing δ_{b}^{b}

$$
\begin{aligned}
& \delta_{b}^{b} \nabla_{\underline{b}}\left(\delta_{a}^{c}\right)=0 \\
& \delta_{b}^{b} \nabla_{\underline{b}}\left(\delta_{\underline{a}}^{c} \delta_{a}^{a}\right)=0 \\
& \delta_{a}^{a} \delta_{b}^{b} \nabla_{\underline{b}}\left(\delta_{\underline{a}}^{c}\right)+\delta_{\underline{a}}^{c} \delta_{b}^{b} \nabla_{b}\left(\delta_{a}^{q}\right)=0 \\
& \delta_{a}^{a} \delta_{b}^{b} \nabla_{\underline{b}}\left(\delta_{\underline{a}}^{c}\right)+\Gamma_{a b}^{c}=0 \\
& \Rightarrow \delta_{a}^{a} \delta_{b}^{b} \nabla_{\underline{b}}\left(\delta_{\underline{a}}^{c}\right)=-\Gamma_{a b}^{c}
\end{aligned}
$$

Now

$$
\nabla_{b}\left(\alpha_{\underline{a}}\right)=\nabla_{b}\left(\delta_{\underline{a}}^{c} \alpha c\right)
$$

$$
\nabla_{b}\left(\alpha_{a}\right)=\delta_{a}^{c} \nabla_{b}\left(\alpha_{c}\right)+\left(\nabla_{\underline{L}}\left(\delta_{a}^{c}\right)\right) \alpha_{c}
$$

x ing By $\delta_{a}^{a} S \frac{b}{b}$

$$
\begin{aligned}
& \delta_{a}^{a} \delta_{b}^{b} \nabla_{b}\left(\alpha_{a}\right)=\delta_{a}^{c} \delta_{a}^{a} \delta_{b}^{b} \nabla_{b}\left(\alpha_{c}\right) \\
& +\left\{\delta_{a}^{a} \delta_{b}^{b} \nabla_{b}\left(\delta_{s}^{c}\right)\right\} \alpha_{c} \\
& \alpha_{a ; b}=\alpha_{a, b}-\Gamma_{a b}^{c} \alpha_{c}
\end{aligned}
$$

Thus for a mined tensor T_{b}^{l} we have

$$
T_{b ; c}^{a}=T_{b, c}^{a}+\Gamma_{c d}^{a} T_{b}^{d}-\Gamma_{b c}^{d} T_{d}^{a}
$$

In general for a tensor of naut $(k+l)$ \& valance $\left[\begin{array}{l}k \\ l\end{array}\right]$ we have

$$
\begin{aligned}
& T_{d \cdots \gamma_{j p}}^{a \cdots c}=T_{d \cdots z, p}^{a-c}+\Gamma_{p \alpha}^{a} T^{\alpha-c} d \cdots \neq+\cdots+ \\
& +\Gamma_{p \alpha}^{c} T_{d \cdots \gamma}^{\alpha \cdots \alpha}-p_{p}^{\alpha} \tau_{\alpha \cdots \neq-\cdots}^{a \cdots-\Gamma_{p 7}^{\alpha} T_{d \cdots \alpha}^{q \cdots c} .}
\end{aligned}
$$

Example:-

$$
4-12=14
$$

Find covariant derivative of

$$
A^{a}=\binom{n \theta}{M \theta} \text { went } g_{\text {plane }}^{g_{a}}=\left(\begin{array}{cc}
1 & 0 \\
0 & n^{2}
\end{array}\right)
$$

Sols: We brow that $x^{a}=\left(1^{\prime}, Q^{2}\right)$

$$
\begin{aligned}
& A_{j b}^{a}=A_{, b}^{a}+\Gamma_{b c}^{a} A^{c} \\
& A \Gamma_{a b}^{c}=\frac{1}{2} \theta^{c l}\left(g_{l b, a}+g_{a l b}-g_{a b}, l\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\Gamma_{22}^{\prime}=-2, \Gamma_{12}^{2}=\frac{1}{\mu} & \\
A_{51}^{\prime}=A_{11}^{\prime}+\Gamma_{1 c}^{\prime} A^{c} & g_{22,1}=2 \sim \\
=A_{21}^{\prime}+\Gamma_{0}^{\prime} A_{0}^{\prime}+\Gamma_{8}^{\prime} A^{2} & o \neq \Gamma_{22}^{\prime}, \Gamma_{12}^{2} \neq 0 \\
& =\theta
\end{array}
$$

$$
\begin{aligned}
& A_{32}^{\prime}=A_{22}^{\prime}+\Gamma_{2 C}^{\prime} A^{c} \\
& =A_{, 2}^{\prime}+\Gamma_{0}^{\prime \prime} A^{\prime}+\Gamma_{22}^{\prime} A^{2} \\
& =n+(-n)\left(\frac{n}{\theta}\right) \\
& =\frac{\theta n-n^{2}}{\theta}=n-\frac{n^{2}}{\theta} \\
& A_{j 1}^{2}=A_{21}^{2-}+\Gamma_{1 C}^{2} A^{c} \\
& =A_{11}^{2}+\Gamma_{0}^{2 / 11} A^{1}+\Gamma_{12}^{2} A^{2} \\
& =\frac{1}{\theta}+\left(\frac{1}{x}\right) \frac{x}{\theta} \\
& =\frac{2}{\theta} \\
& A_{; 2}^{2}=A_{2,2}^{2}+\Gamma_{2 C}^{2} A^{C} \\
& =A^{2}, 2+\prod_{21}^{2} A^{2}+\Gamma_{22}^{2} A^{2} \\
& =-\frac{n}{\theta^{2}}+\frac{1}{D 2}(\alpha \theta) \\
& =\frac{\theta^{3}-\mu}{\theta^{2}}
\end{aligned}
$$

Q. Fond cevariont denivatike of

$$
T_{b}^{a}=\left(\begin{array}{ccc}
n & \theta & \phi \\
\lambda \theta & \theta \phi & \lambda \phi \\
0 & \phi & \lambda \theta
\end{array}\right)
$$

in soherical polen condinates ise

$$
q_{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2 \theta}
\end{array}\right)
$$

$$
\Rightarrow \frac{p^{c}}{a b}=\delta_{a}^{c} \delta_{b}^{e} \nabla_{b} \delta_{a}^{a}
$$

connection symbole
Q:- whethen connection symbole thansform libe a tenscen or not?

Ansin We bnow that

$$
\Gamma_{a b}^{c}=\delta_{a}^{c} \delta_{b}^{b} \nabla_{\underline{b}} \delta_{a}^{a} \longrightarrow(1)
$$

Now considen the comection symbols in \hat{x} - 7rame.

$$
\begin{align*}
& \Gamma_{\hat{a} \hat{b}}^{\hat{c}}=\delta_{\hat{a}}^{\hat{c}} \delta_{\hat{b}}^{k} \cdot \nabla_{\underline{b}}(\delta \hat{a}) \\
& =\delta_{\underline{a}}^{\hat{c}} \delta_{\hat{b}}^{\underline{b}} \nabla_{\underline{b}}\left(\delta_{a}^{a} \delta_{\hat{a}}^{a}\right) \\
& =\delta_{a}^{a} \delta_{a}^{c} \delta_{\hat{b}}^{b} \nabla_{\underline{b}}\left(\delta_{a}^{a}\right)+\delta_{a}^{a} \delta_{a}^{\hat{c}} \delta^{\frac{b}{b}} \nabla_{\underline{b}} .\left(\delta_{\hat{a}}^{a}\right) \\
& =\delta_{\hat{a}}^{a} \delta_{a}^{a} \delta_{\hat{b}}^{\hat{b}} \delta_{\underline{c}}^{\underline{a}} \delta_{\underline{b}}^{b} \delta_{\underline{a}}^{c} \delta_{b}^{b} \nabla_{\underline{b}}\left(\delta_{\vec{a}}^{a}\right)+\delta_{a}^{\hat{c}} \nabla_{\hat{b}}\left(\delta_{\hat{a}}^{a}\right) \\
& =\delta_{\hat{a}}^{a} \delta_{c}^{\hat{c}} \delta_{\hat{b}}^{b} \Gamma_{a b}^{c}+\frac{\partial \hat{c}^{\hat{c}}}{\partial x^{a}} \cdot \frac{\partial}{\partial \hat{x}}\left(\frac{\partial x^{a}}{\partial x^{\hat{a}}}\right) \\
& =\delta_{a}^{a} \delta_{c}^{\hat{c}} \delta_{\hat{b}}^{b} \Gamma_{a b}^{c}+\frac{\partial x^{c}}{\partial x^{\hat{a}}} \cdot\left(\frac{\partial x^{a} x^{a}}{\left.\partial \hat{x^{\hat{b}} \partial \hat{x}}\right)}\right. \tag{2}
\end{align*}
$$

The eq (2) shows that the connection symbols don't thanstorm as tensor. In general, condinates system ane not constant So, $\frac{\partial x^{\hat{c}}}{\partial x^{a}} \neq 0$

$$
F\left(x^{4}\right)=A x^{4}+B
$$

So, $\quad \frac{\partial^{2} x^{9}}{\partial x^{\hat{a}} \partial x^{6}}=0$
"The eq.(2), shows that the second. team on R.HS will disappear it the transformation from $x^{\hat{2}}$-frame to x^{2} frame is linear.

Then obviously, $\quad \Gamma_{\hat{a} \hat{b}}^{\hat{c}}=\delta_{c}^{\hat{c}} \delta_{\hat{a}}^{a} \delta_{\hat{b}}^{b} \Gamma_{a b}^{c}$ which mean the connection symbols will transform as tensor.

Torsion Tenson

$$
11-12-m
$$

Now, we define a quantity with the help of connection symbol,

$$
\begin{equation*}
T_{a b}^{c}=\Gamma_{a b}^{c}-\Gamma_{b a}^{c} \tag{3}
\end{equation*}
$$

Now, we will 'che to whether the quantity $T_{a b}^{c}$ is a tensor or not.

Consider,

$$
T_{\hat{d} \hat{b}}^{\hat{c}}=\Gamma_{\hat{a} \hat{b}}^{\hat{c}}-\Gamma_{\hat{b} \hat{a}}^{\hat{c}}
$$

Using eq
$T_{\hat{a} \hat{b}}^{\hat{c}}=\delta_{c}^{\hat{c}} \delta_{\hat{a}}^{a} \delta_{\hat{b}}^{b} \Gamma_{a b}^{c}+\frac{\partial x^{\hat{c}} \partial^{2} x^{a}}{\partial x^{\hat{a}} \partial^{\hat{a}} \partial x^{\hat{a}}}-\delta_{c}^{\hat{c}} \delta_{i}^{a} \delta_{b}^{b} \Gamma_{b a}^{c}-\frac{\partial x^{\hat{c}}}{\partial x^{b}} \frac{\partial^{2} x^{b}}{x^{\hat{a}} \partial x^{\hat{a}}}$

$$
\begin{aligned}
& C_{a \leftrightarrow b} \\
& =\delta_{c}^{\hat{c}} \delta_{\hat{a}}^{a} \delta_{b}^{b}\left(\Gamma_{a b}^{c}-\Gamma_{b a}^{c}\right)+\frac{\partial x^{\hat{c}}}{\partial x^{b}} \partial^{2} x^{b} x^{b} \partial x^{\hat{a}}-\frac{\partial^{\hat{c}}}{\partial x^{b}} \frac{\partial^{2} x^{k}}{\partial x^{h} \partial x^{\hat{a}}} \\
& =\hat{\delta}_{c}^{\hat{c}} \delta_{\hat{a}}^{4} \delta_{b}^{b} T_{a b}^{c}+\frac{\partial x^{\hat{a}}}{\partial x^{b}}\left(\frac{\partial^{2} x^{1}}{\partial x^{h} \partial x^{\hat{2}}}-\frac{\partial^{2} x^{2}}{x^{3} \lambda x^{\hat{a}}}\right)
\end{aligned}
$$

$$
\Rightarrow T_{\hat{a} \hat{b}}^{\hat{c}}=\delta_{c}^{\hat{c}} \delta_{\hat{c}}^{a} \delta_{\hat{b}}^{b} T_{a b}^{c}
$$

This sheen that $T_{\text {ab }}^{c}$ is a tension quantity and is called torsion tenser.
9). General Relativity we will consider only these spaces which are torsion Free ie $T_{a b}^{c}=0$

$$
\begin{aligned}
\text { eq. (3) } & \Rightarrow \Gamma_{a b}^{c}-\Gamma_{b c}^{c}=0 \\
& \Rightarrow \Gamma_{a b}^{c}=\Gamma_{b a}^{c}
\end{aligned}
$$

That is, the connection symbols become symetric w.n.t lower indexis \& then called chistozell symbols.

Hints
Q:- Find the christotall symbols of a). Flare polar coordinates.

$$
\begin{aligned}
& x^{4}=(a, \theta) \\
& g_{a b}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \quad \overbrace{22,1}=2 r
\end{aligned}
$$

Non-zer christotall symbols will be

$$
\Gamma_{22}^{1} \& \Gamma_{12}^{2}=\Gamma_{21}^{2}
$$

Spleve of unity nadius
on S^{2}.
$g_{a b}=\left(\begin{array}{ll}1 & 0 \\ e & \sin ^{2} c\end{array}\right)$
(ii):- On the sentace of a pprese af nadius "a".

$$
\begin{aligned}
x^{4} & =(\theta, \phi) \\
U_{0 b} & =\left(\begin{array}{cc}
a^{2} & 0 \\
0 & a^{2} \\
\sin ^{2} \theta
\end{array}\right) \quad \int_{221}=a^{2} \sin 2 \theta
\end{aligned}
$$

Nor-zens chaistozall symboles will be,

$$
\Gamma_{22}^{1} \& \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}
$$

(iii) Splesical polan coondinates.

$$
\begin{aligned}
& x^{a}=(n, \theta, \phi) \\
& g_{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & n^{2} & 0 \\
0 & 0 & 2 \sin 0
\end{array}\right)
\end{aligned}
$$

$$
g_{231}=2 n
$$

$$
g_{33,1}=2 \pi \sin ^{2} \theta
$$

Nen-zers chistotall symbols $g_{33,3}=r^{2} \sin 2 \theta$ will be

$$
\Gamma_{22}^{\prime}, \Gamma_{12}^{2}, \Gamma_{33}^{1}, \Gamma_{13}^{3}, \Gamma_{33}^{2}, \Gamma_{23}^{3}
$$

(iv): - Cylindenical polar cooadinates

$$
\begin{gathered}
x^{a}=(f, \theta, z) \\
g_{a_{b}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \rho^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

$$
g_{22,1}=2 f
$$

Non-zem chsistotall symboln will be

$$
\Gamma_{22}^{1}, \Gamma_{12}^{2}
$$

Q.- Woun out covaniant denivative of

$$
\text { (i) }=A_{a b}=\left(\begin{array}{ll}
r & r / \theta \\
\theta & \theta
\end{array}\right)
$$

in plan pular coondinates.

$$
\text { (ii): } T_{b}^{a}=\left(\begin{array}{ccc}
r \cos \theta & n \sin \phi & 1 \\
\cos \theta \sin \phi & \sin \theta \sin \phi & 1 \\
\cos \phi & r \cos \phi & 0
\end{array}\right)
$$

In sphenical polar coondinates.

Chaistofell Symbols by using Covariant. derivative?

In general relativity, we require that covariant derivative of the metric tensor vanishes at every point of the manifold.

$$
\begin{equation*}
g_{a b ; c}=0 \Rightarrow g_{a b, c}-\Gamma_{a c}^{d} g_{d b}-\Gamma_{b c}^{d} g_{d a}=0 \tag{1}
\end{equation*}
$$

Similarly

$$
\begin{align*}
& g_{c b ; a}=0 \Rightarrow g_{c b, a}-\Gamma_{b a}^{d} g_{d c}-\Gamma_{c a}^{d} g_{d b}=0 \tag{2}\\
& g_{a c ; b}=0 \Rightarrow g_{a c, b}-\Gamma_{c b}^{d} g_{d a}-\Gamma_{a b}^{d} g_{d c}=0 \tag{3}
\end{align*}
$$

Now en (2) $+(3)$ - (1), we have

$$
\begin{gathered}
g_{c b_{g} a}+g_{a c, b}-g_{a b, c}-\Gamma_{b a}^{d} g_{d d}-\Gamma_{c q}^{d} g_{d b}-\Gamma_{c b}^{d} g_{d a}-\Gamma_{a b}^{d} g_{d c} \\
+\Gamma_{a c}^{d} d_{d b}+\Gamma_{b c}^{d} d_{d a}=0 \\
2 \Gamma_{a b}^{d} g_{d c}= \\
g_{c b, a}+g_{a c b}-g_{a b, c} \\
g_{d c} \Gamma_{a b}^{d}=
\end{gathered}
$$

Multiplying by $g^{\text {sec }}$

$$
\begin{aligned}
& g^{e e} g d c \Gamma_{a b}^{d}=\frac{1}{2} g^{e c}\left(g_{c b, a}+g_{a c, b}-g_{a b}, c\right) \\
& \delta_{d}^{e} \Gamma_{a b}^{d}=1 / 2 g^{e}\left(g_{c b, a}+g_{a c, b}-g_{a b, c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{a b}^{e}=12{ }^{c e c}\left(q^{\prime}+b, a+g_{a c, b}-9 a b, c\right) \\
& e \\
& \Gamma_{a b}^{c}=\left(2 g^{c e}\left(g_{c b, a}+g_{a c, b}-g_{a b, E}\right)\right.
\end{aligned}
$$

"Curve on Manitold"
It is necessary to genenalige the concept of space unve in an anbitrany manifold. A curve is denoted by " Y " is de tined a, $\gamma:[0,1] \longrightarrow M_{n}$ and is given by

$$
\gamma(\lambda)=p \in M_{n} \quad \forall \lambda \in[0,1]
$$

The $f(0)$ is the initial/stanting point of the cure \& γ il is the Final/ending point of the curve-
A manitold is said to be Are wise connected if. there exist a curve for every pain of point of manifold"

The λ is called parameter of the curve We can change the parameter so that choosen parameterhas x_{0} infinite value at the stating er ending points (or both).

Let us consider a point on some curve γ, parameterized by λ - Let $P_{0}(\lambda$. and $P_{\lambda}(\lambda)$ be two neighbouring points on this curve r. let there be a derivation $\mathcal{\xi}$ at point P_{0} which is tangent to the carve at P_{0}. Let we consider a coondinatizationt from open (or coordinate) patch containing the curve γ to \mathbb{R}^{n} \& assume that

$$
f_{0}(P)=x_{0}^{a} \text { and } f_{0}\left(P_{\lambda}\right)=x_{\lambda}^{a}
$$

Let us conviden another mapping " f " such that $\quad 7_{P_{0}}(\lambda)=7_{0}\left(P_{\lambda}\right)$ \qquad
Now we define the tangent vector e^{a}

$$
\delta_{a}^{a}+\frac{\partial x^{a}}{\partial x^{a}} \quad 93
$$

to the coondinatizcel curve in \mathbb{R}^{*} at $70\left(P_{0}\right)$, as usual, by

$$
\begin{align*}
\xi^{a} & =\left.\frac{d x^{a}}{d \lambda}\right|_{x^{2}=x_{0}^{a}}=\left.\frac{d 7_{p_{0}}(\lambda)}{d \lambda}\right|_{\lambda=\lambda_{0}} \\
& =\lim _{\lambda \rightarrow \lambda_{0}} \frac{7_{p_{0}(\lambda)-7_{p_{0}}(\lambda \cdot)}^{\lambda-\lambda_{0}}}{} \tag{2}
\end{align*}
$$

Also, we blow that

$$
\begin{aligned}
\xi^{a} & =\xi^{a} \delta_{\underline{a}}^{a}=\left.\xi^{a} \nabla_{a} x^{a}\right|_{x^{a}=x_{0}^{a}} \\
& =\xi^{a} \nabla_{a} \tau_{0}\left(p_{0}\right) \\
& =\left.\mathcal{S}^{a} \nabla_{\underline{a}} 7_{p_{0}}(\lambda)\right|_{\lambda=\lambda_{0}} \quad \longrightarrow
\end{aligned}
$$

Comparing (2) \& (3) we have,

$$
\begin{aligned}
& \xi^{a} \nabla_{\underline{a}}=\frac{d}{d \lambda} \\
\Rightarrow & \underline{\xi}=\frac{d}{d \lambda} \quad \because \xi=\mathcal{E}^{a} \nabla_{\underline{a}}
\end{aligned}
$$

This is the tangent vector at P_{0} on the montiold. 97 we use arc length parameter instead of λ. Then the tangent I becomes a unit tangent vector. This derivative is called Intrinsic Derivative and denoted by $D_{\mathcal{B}}$ (derivative dong I)

When we tare intrinsic derivative of. a tensor I. We define

$$
\underset{\xi}{D}(I)=\sum_{\underline{i}}(I)=\xi^{a} \nabla_{a}(I)
$$

$97 \quad I=T \frac{b \cdots d}{\text { an cm }}$ then

$$
\frac{D}{\xi}(I)=\mathcal{F}^{a} \nabla_{a} T_{-m}^{b \cdots c d}
$$

In components form,

$$
D_{I}(T)_{b \ldots m}^{b \ldots d}=\sum^{a} T_{b \ldots m ; a}^{b \ldots d}
$$

"Lie Derivative"
Lie uss a mathernaticion.
Now we define Lei Derivative wont $\{$ as a linear operator denoted by \mathcal{L}. which operates according to Leibnitz rule. Further it acts as $\frac{d}{d_{d}}$. It becomes intrinsic derivative when acting on a scalar Junction. ie

$$
\underset{S}{\mathcal{L}}(7)=\underset{S}{D}(7)
$$

Then obviowly;

$$
\underset{\underline{\varepsilon}}{\underset{\underline{L}}{ }}[\eta(7)]=\frac{d}{d \lambda}[\eta(7)]=\xi[\eta(7)] \rightarrow(1)
$$

Where η is a denivation and 7 is the coondinitization.

By Leibnitz Nule,

$$
\begin{aligned}
& \underset{\xi}{\mathcal{L}}[7(7)]=\underset{\underline{E}}{\mathcal{L}}(7) 7+7 \underset{\underline{E}}{\mathcal{L}}(7) \\
& \Rightarrow[\underset{\underline{E}}{\mathcal{L}}(\eta)] 7=\underset{\xi}{\mathcal{L}}[7(7)]-7 \underset{\underline{L}}{\mathcal{L}}(7) \\
& \because E=\xi^{g} \nabla_{g} \\
& =\left\{[7(7)]-\eta \sum(7)\right] \quad \eta=\eta^{b} \nabla_{b} \\
& =\sum^{\underline{a}} \nabla_{\underline{a}}\left[\eta^{\underline{b}} \nabla_{\underline{b}}(7)\right]-\eta^{a} \nabla_{\underline{a}}\left[\sum^{\underline{b}} \nabla_{\underline{b}}(7)\right] \\
& =\left\{^{9}\left\{\left(\nabla_{\underline{a}} \eta^{\underline{b}}\right) \nabla_{\underline{b}}(7)+\eta^{\underline{b}} \nabla_{\underline{a}} \nabla_{\underline{b}} 7\right\}\right. \\
& -\eta^{\underline{a}}\left[\left(\nabla_{\underline{a}} e^{\underline{b}}\right) \dot{\nabla}_{\underline{b}}(7)+e^{\underline{b}} \nabla_{\underline{a}} \nabla_{\underline{b}} \eta\right] \\
& =q^{\underline{a}}\left(\nabla_{\underline{a}} \eta^{\underline{b}}\right) \nabla_{\underline{b}}(7)+e^{\underline{a}} \eta^{\underline{b}} \nabla_{\underline{\underline{a}}} \nabla_{\underline{b}} 7 \\
& -\eta^{a}\left(\nabla_{\underline{a}} \xi^{\underline{b}}\right) \nabla_{\underline{b}}(7)-\xi^{\underline{b}} \eta^{a} \nabla_{\underline{a}} \nabla_{\underline{b}} 7 \\
& =\sum^{\underline{a}}\left(\nabla_{a} \eta^{\underline{b}}\right) \nabla_{\underline{b}}(7)-\eta^{\underline{a}}\left(\nabla \underline{a}\left\{^{\underline{b}}\right) \nabla_{b}(7)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\varepsilon^{a}\left(\nabla_{\underline{a}} \eta^{b}\right)-\eta^{3}\left(\nabla_{a} \xi^{b}\right)\right] \nabla_{b}(7) \\
& +\sum^{a} \eta^{\underline{b}}\left(\nabla_{\underline{a}} \nabla_{\underline{b}}-\nabla_{\underline{b}} \nabla_{\underline{a}}\right) 7 \\
& =\left[\xi^{a}\left(\nabla_{a} \eta^{b}\right)-\eta^{a}\left(\nabla a \xi^{b}\right)\right] \nabla_{b}(7)+\xi^{a} \eta^{b} \sim_{a \underline{b}}^{0} 7 \\
& \Rightarrow\left[d_{i}^{q}\right] 7=\left[\varepsilon^{a}\left(\nabla_{a} \eta^{b}\right)-\eta^{\underline{a}}\left(\nabla_{a} e^{b}\right)\right] \nabla_{\underline{b}} 7 \\
& \Rightarrow\left[\begin{array}{l}
d_{\xi} q
\end{array}\right]=\left[e^{a}\left(\nabla_{a} \eta^{b}\right)-\eta^{a}\left(\nabla_{a} \xi^{b}\right)\right] \nabla_{\underline{b}} \quad 16 \frac{12}{14} \\
& \Rightarrow \mathcal{E}_{\xi} \eta=A^{\underline{b}} \nabla_{\underline{b}} \\
& \text { =A abele } \\
& A^{\underline{b}}=\xi^{\underline{a}}\left(\nabla_{\underline{a}} \eta^{\underline{b}}\right)-\eta^{\underline{a}}\left(\nabla_{\underline{a}} \xi^{\underline{b}}\right)
\end{aligned}
$$

Which shows that the action of Lie Denivative Cpenaton on a derivation yeilds another derivation.

Also we can write,

$$
\left[\begin{array}{ll}
1 & 7 \\
\underline{q} &]^{b}=\xi^{a}\left(\nabla_{\underline{a}} \eta^{b}\right)-\eta^{a}\left(\nabla_{\underline{a}} e^{\underline{b}}\right) .
\end{array}\right.
$$

In component form;

$$
\left[{\underset{\underline{s}}{ }}_{{\underset{\xi}{2}}} \eta\right]^{b}=\xi^{a} \eta_{; a}^{b}-\eta^{a} \xi_{; a}^{b}
$$

Using formula of corivariant derivatives
we have

$$
\begin{aligned}
& =\xi^{a}\left(\eta_{, a}^{b}+\Gamma_{c a}^{b} \eta^{c}\right)-\eta^{a}\left(\xi_{, a}^{b}+\Gamma_{c a}^{b} \xi^{c}\right) \\
& =\xi^{a} \eta_{a,}^{b}+\Gamma_{c a}^{b} \xi^{a} \eta^{c}-\eta^{a} \xi_{, a}^{b}-\Gamma_{c a}^{b} \xi^{c} \eta^{a}
\end{aligned}
$$

$$
\begin{aligned}
& =\xi^{a} \eta_{, a}^{b}+\Gamma_{c a}^{b} \xi^{a} \eta^{c}-\eta^{a} \xi_{0 a}^{b}-\Gamma_{a c}^{b} \sum^{a} \eta^{c} \\
& =\xi^{a} \eta_{, a}^{b}-\eta^{a} \xi_{9 a}^{b}
\end{aligned}
$$

Lie derivative of a contrevaniant vector.

Let us see what comes out From the lie derivative of a dual derivation α_{c} (er . . Letariant vector) assume that

$$
\alpha_{c} \eta^{\subseteq}=F \text { (some scalar function) }
$$

Then

$$
\begin{align*}
\mathcal{L}_{\underline{Q}}[F] & ={\underset{Q}{q}}_{\operatorname{D}}^{Q}[F]=\{[F] \\
& =\xi^{a} \nabla_{\underline{a}}[F] \\
& =\xi^{a} \nabla_{\underline{a}}\left(\alpha_{\underline{c}} \eta^{c}\right) \\
& =\xi^{a}\left(\nabla_{\underline{a}} \alpha_{\underline{c}}\right) \eta^{c}+\xi^{a}\left(\nabla_{\underline{a}} \eta^{c}\right) \alpha_{\underline{c}} \tag{1}
\end{align*}
$$

Also we can write,

$$
\begin{aligned}
& \mathcal{E}_{\underline{I}}^{\mathcal{L}}[F]={\underset{\Sigma}{2}}_{\mathcal{L}}\left[\alpha_{c} \eta^{c}\right] \\
& =\alpha_{\leq}\left[\begin{array}{ll}
d & \eta^{-} \\
e_{1} & \eta^{-}
\end{array}\right]\left[\begin{array}{ll}
\underset{q}{0} & \alpha_{\leq}
\end{array}\right] \eta^{c} \\
& \Rightarrow\left[\begin{array}{l}
\left.\left.\mathcal{L} \alpha_{c}\right] n^{c}=\mathcal{L}_{\xi}[F]-\alpha_{c}\left[\mathcal{L}_{\xi}^{-} \eta^{c}\right]\right]
\end{array}\right.
\end{aligned}
$$

By patting eq. (1) we have

$$
\begin{aligned}
& {\left[\frac{L}{1} \alpha_{c}\right] \eta^{c}=\sum^{a}\left(\nabla_{a} \alpha_{c} \eta^{c}+\xi_{1}^{a}\left(\nabla_{a} \eta^{c}\right) \alpha_{c}\right.} \\
& -\alpha_{c}\left(\dot{\xi}_{\xi}^{a} \nabla_{a} \eta^{s}-\eta^{a} \nabla_{a} \xi^{s}\right) \\
& =\xi^{a}\left(\nabla_{g} \alpha_{c}\right) \eta^{c}+\xi^{a}\left(\nabla_{a} \eta^{c}\right) \alpha_{c} \\
& -\xi^{a}\left(\nabla_{g} \eta^{c}\right) \alpha_{c}+\alpha_{c} \eta^{a}\left(\nabla_{\underline{g}} \xi^{c}\right) \\
& \left.=\xi^{3}\left(\nabla_{s} \alpha_{c}\right)^{n}+\alpha_{a}\left(\nabla_{c}\right\}^{a}\right) \eta^{c} \\
& {\left[\begin{array}{l}
\mathcal{L} \\
\underline{\xi}
\end{array} \alpha_{c}\right] \eta^{q}=\left[\xi^{a}\left(\nabla_{a} \alpha_{c}\right)+\alpha_{a}\left(\nabla_{e} \xi^{a}\right)\right] \eta^{q}} \\
& \Rightarrow \quad \mathcal{L} \alpha_{\leq}=\varepsilon^{a}\left(\nabla_{\subseteq} \alpha_{c}\right)+\alpha_{q}\left(\nabla_{\leq} \xi^{a}\right) \\
& \text { in unvement form } \frac{d}{f}\left[\alpha_{c}\right]=\sum_{i}^{a} \alpha_{c ; a}+\alpha_{a} \sum_{j c}^{a}
\end{aligned}
$$

In general for a mixed tensor of ramp $(b+l)$ and valance $\left[\begin{array}{l}b \\ l\end{array}\right]$ the Lie derivative can be written as

$$
\begin{aligned}
& -T_{d \cdots z}^{a \cdots p} \nabla_{p} \xi^{c}+T_{p \cdots z}^{a \cdots \nabla_{d} \xi^{p}+. ~} \\
& \cdots+T_{\underline{d} \cdots \underline{a} \nabla_{z} e^{\rho}}^{\underline{p}}
\end{aligned}
$$

In component form;

$$
\begin{aligned}
& +T_{p \neq}^{a \cdots c} e_{d d}^{p}+\cdots+T_{d \cdots p}^{a \cdots c} \leqslant_{q}^{p}
\end{aligned}
$$

Hint
\#\#:- Wont out the lie derivative of

$$
T_{a b}=\left(\begin{array}{ccc}
p \lambda & n^{q} & p q \\
p^{2} & n^{2} & q^{2} \\
p / n & n / q & q / p
\end{array}\right) \text { along } \sum^{a}=\left(\begin{array}{l}
p-q \\
q-\lambda \\
n-p
\end{array}\right)
$$

Here $x^{a}=(p, q, r)$
Sols-

$$
\begin{aligned}
& A_{a b}=\left[\mathcal{L}_{\hat{q}} T\right]_{a b}=T_{a b, c} \sum^{c}+T_{c b} \sum_{, a}^{c}+T_{a c} \bar{T}_{g b}^{c} \\
& A_{11}=T_{11, c} \sum^{c}+T_{c 1} \mathcal{T}_{, 1}^{c}+T_{1 c} e_{, 1}^{c}
\end{aligned}
$$

Put $c=1,2,3$.

$$
\begin{aligned}
& A_{11}=T_{1,1} \xi^{1}+T_{11,2} \xi^{0}+T_{11,3} \xi^{3}+T_{11} \xi_{, 1,1}^{1}+T_{21} \xi_{01}^{2,} \\
& +T_{31} G_{91}^{3}+T_{11} \xi_{1,1}^{1}+T_{12} \stackrel{e}{101}_{20}^{10}+T_{13} \Theta_{91}^{3} \\
& =T_{11,1} \mathcal{S}^{1}+T_{11,3} \mathcal{S}^{3}+2 T_{11} \xi_{1,1}^{1}+\left(T_{31}-T_{13}\right) \mathcal{S}_{1,1}^{3} \\
& =n(p-q)+p(n-p)+2 \wedge p(1)+\left(\frac{p}{n}-p q\right)(-1) \\
& =p R-q n+p R-P^{2}+2 p r-\frac{p}{n}+P q \\
& =4 P n-q n+P Q-P^{2}-\frac{p}{2}
\end{aligned}
$$

$$
\begin{aligned}
& A_{12}=T_{12, c} \xi^{c}+T_{e 2} \mathcal{F}_{91}^{c}+T_{16} \leqslant_{, 2}^{c} \\
& =T_{12,1} \dot{i}^{1}+T_{12,2} \dot{\xi}^{2}+T_{12,3} \dot{j}^{3}+T_{12} E_{, 1}^{1} \\
& +T_{22} \odot_{91}^{2 / 0}+T_{32} \Theta_{91}^{3}+T_{11} \Theta_{5,2}^{1}+T_{12} \mathcal{S}_{92}^{2} \\
& +T_{13} \text { Kind }_{02}^{30^{\circ}} \\
& =T_{12,2} \dot{\xi}^{2}+T_{12,3} \xi^{3}+T_{12} \sum_{, 1}^{1}+T_{32} \xi_{, 1}^{3} \\
& +T_{11} \sum_{i, 2}^{1}+T_{12} \xi_{, 2}^{2} \\
& =n(q-n)+q(n-p)+n q(1)+\frac{r}{q}(-1) \\
& +P n(-1)+n q(1) \\
& =n^{2} q-n^{2}+\lambda^{2}-q \rho+n^{2} q-\frac{n}{q}-N p+\lambda q \\
& =4 n q-q p-n p-n^{2}-\frac{n}{q} \\
& A_{B}=T_{B, C} \sum^{c}+T_{C B} \sum_{91}^{c}+T_{1 C} \leqslant, c \\
& =T_{13,1} \xi^{\prime}+T_{13,2} \xi^{2}+T_{12,3} \xi^{0}+T_{13} \widetilde{\xi}_{01}^{\prime}+T_{23} \sum_{01} \pi^{\circ} \\
& +T_{33} \xi_{21}^{3}+T_{11} \xi_{23}^{170}+T_{12} \xi_{, 3}^{2}+T_{13} \mathcal{F}_{23}^{3} \\
& =q(p-q)+p(q-n)+p q(1)+\frac{q}{p}(-1)+n q(-1) \\
& +p q(1) \\
& =p q-q^{2}+p q-p r+p q-\frac{q}{p}-1 q+p q \\
& =4 p q-p^{2}-q A-\frac{q}{p}-q^{2}
\end{aligned}
$$

next do yourself.
 whe shall y ues disainetion gquation
 thenkns. Whe boman thate the Tawisat? Jemies for $\&$ furution of ane yearister is givien as

$$
f(a+h)=7(x)+\frac{h}{2} f^{\prime}(a)+\frac{A^{2} f^{\prime}(a)}{21}+\cdots
$$

Put anh $=\lambda$ and $a=i$, then

$$
\begin{aligned}
& F(\lambda)=F(\lambda \cdot)+\frac{(\lambda-\lambda)}{4} F^{\prime}\left(\lambda_{0}\right)+\frac{(\lambda-\lambda \cdot)^{2}}{2} \overrightarrow{1}\left(\lambda_{0}\right)+\cdots \\
& \text { ato }=0 \\
& =D^{0}+(a,)+\frac{(A-\lambda \theta}{1} D^{2} 7(\lambda)+\frac{(\lambda-\lambda)^{2}}{2!} D^{2} \frac{7}{2}(\theta)+. \\
& =\left[D^{\sigma}+\frac{(\lambda-\lambda \cdot}{1!} D^{2}+\frac{(\lambda-\lambda)^{2}}{2!} D^{2}+\cdots\right] \text { ((do) } \\
& =\left[\sum_{n=1}^{\infty} \frac{\left(x-\lambda_{0}\right)^{n}}{n_{i}} D^{n}\right] 7\left(\lambda_{0}\right) \\
& =e^{\left.(\lambda-)_{0}\right) D} 7\left(\lambda_{0}\right) \\
& \because e^{x}=1+x+\frac{x^{2}}{2+3}+\frac{x^{3}}{24} \\
& =\exp [(\lambda-\lambda) \theta)] f(d \theta)
\end{aligned}
$$

Similosily, for a Powation of sevenal vastabler, we cer winite an

$$
7\left(x^{2}\right)=\left[\exp \left[x^{2}-x^{2}\right\} \frac{2}{2 x^{2}}\right]+\left(x^{2}\right) .
$$

Now use we dole to detine praniliel hasipel anst bei trinsport

A tenson will be parallely transpocted along a curve with tangent vector $\stackrel{7}{7}^{\underline{a}}$ when we neplace pantial derivative eperator in eq (1) with intinsic denivative openton i.e De.

Then eq-(1) becomes,

Similanly, the tenson. I will be lei tramponted if we replace partial decirative openaton in eq (1) with Lei derivative operaton i.e $\underset{\Sigma}{ }$

$$
\frac{\mathcal{L}}{1} a \cdots \leq\left(x^{a}\right)=\left[\exp \left(x^{a}-x_{0}^{a}\right) \underset{\underline{d}}{\mathcal{d}}\right] T_{d \cdots z}^{a \cdots s}\left(x_{0}^{a}\right)
$$

A tenson is said to be constant if its denivative is zero. It is obvious that it may be constant wint one derivativel and not wht an other. We say that it is invariant under parallel transpont it it's intriosic denivative is gene-ire

$$
I\left(x^{a}\right)=I\left(x_{0}^{a}\right) \Leftrightarrow\left[\frac{D}{\xi}(I)=0\right.
$$

In component form we can write

$$
T_{d \ldots z}^{\prime \prime}\left(x^{a}\right)=T^{a} \cdots \leq z\left(x_{0}^{a}\right)
$$

Similarly it is said to be invariant under Lei transport it

$$
\frac{\mathcal{L}}{I}\left(x^{a}\right)=I\left(x_{0}^{a}\right) \Leftrightarrow \underset{\underline{L}}{\mathcal{L}}(I)=0
$$

In component form.

$$
{\underset{q}{d-7}}_{d-c}^{d a}\left(x^{a}\right) T_{d-z}^{a-\leq}\left(x_{0}^{a}\right)
$$

Geodesic \& Geodesic Equation
The shortest available path: between two points on the manitold is called Geodesic. This is the generalization. of Euclidean Theorem that states ae The shortest path between two points is a straight. line"

Consider the curve such that the intrinsic derivative of the tangent vector to this curve is gene.
ie The tangent vector is parallely. thansponted along the curve.

In other wordy we say that www.RanaMaths.com
the desivative of the vector remain same.

Dit is, therefore, the straightest available path in the manitald. Thus

$$
\begin{aligned}
& \frac{D}{i}(\underline{\xi})=0 \Rightarrow \underline{\xi}(\underline{I})=0 \\
& \xi^{a} V_{a}\left(\xi^{k}\right)=0
\end{aligned}
$$

In component torn.

$$
\begin{align*}
& \xi^{a} \sum_{i j a}^{k}=0 \\
\Rightarrow & \xi^{a}\left(e_{1, a}^{b}+\Gamma_{a b}^{b} \sum_{a^{a}}^{b}\right)=0 \tag{F}
\end{align*}
$$

We know that $\xi^{a} \xi_{0 a}^{c}+\Gamma_{a b}^{c} \xi^{a} \xi^{b}=c$

$$
\begin{aligned}
\mathcal{S}^{a} & =e^{a} \delta_{\underline{a}}^{2}=\mathcal{q}^{a} \nabla_{a} \\
& x^{a} \\
& =\frac{d}{d s} x^{a}=x^{a} \longrightarrow(2)
\end{aligned}
$$

Now consider

$$
\begin{aligned}
\sum^{a} e_{9}^{b} & =\frac{d x^{a}}{d s} \cdot \frac{d}{d x^{a}} E^{b} \\
& =\frac{d}{d s}\left(\frac{d x^{b}}{d s}\right) \\
& =\frac{d^{2} x^{b}}{d s^{2}}=\ddot{x}^{b}
\end{aligned}
$$

That en (1) became $d s^{2}$

$$
\begin{array}{r}
\left(\dot{x}^{b}+\Gamma_{a c}^{c} \dot{x}^{a} \dot{x}^{b}=0\right. \\
\text { Geode }
\end{array}
$$

Geodesic eq.
"Geodesic Eq By using
Euler-Lagrange Equation."
We can also derive the Geodesic equation by using the Eulu-Lagnange eq. given as if is ans ane genenaliged coordinates given as \& is ane generalized velocities

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\left(\frac{\partial L}{\partial q / A}\right)=0^{\prime} L^{\prime} \text { is Lagrangian. }
$$

I shown dimensions.

Enter Langnomge eq. $k \cdot E$ responsible for motion al particle or under Kinetic and potential energy of particle

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{\partial L}{\partial \dot{q}^{n}}\right)-\left(\frac{\partial L}{\partial q^{n}}\right)=0 \tag{1}
\end{equation*}
$$

We brow that

$$
d s^{2}=g_{a b} d x^{a} d x^{b}
$$

Dividing by $d s^{2}$.

$$
1=g_{a b} \dot{x}^{a} \dot{x}^{b}
$$

Taring " 1 " as lagrangian ie

$$
L=1=g_{a b}\left(x^{d}\right) \dot{x}^{a} \dot{x} \cdot
$$

Now eq. (1) can be written as

$$
\begin{equation*}
\frac{d}{d S}\left(\frac{\partial L}{\partial \dot{x}^{d}}\right)-\left(\frac{\partial L}{\partial x^{d}}\right)=0 \tag{3}
\end{equation*}
$$

from eq. (造).

$$
\frac{\partial L}{\partial x^{d}}=g_{a-\text { bod }} \dot{x}^{a} \dot{x}^{b}
$$

$$
\begin{aligned}
& \text { Lagrangian }=L=T-V \\
& { }_{\mu \cdot E} \uparrow \text { r.P.E }
\end{aligned}
$$

$$
\begin{aligned}
\& \frac{\partial}{\partial x^{d}} & =g_{a n}\left[\frac{\dot{x}^{a}}{\partial \dot{x}^{b}} \frac{\partial x^{d}}{\partial \dot{x}^{a}} \frac{\dot{x}^{d}}{x^{b}}\right] \\
& =g_{a b} x^{a} \delta_{d}^{b}+g_{a b} \delta_{d}^{a} \dot{x}^{b} \\
& =g_{a d} \dot{x}^{a}+g_{d b} \dot{x}^{b} \rightarrow(5)
\end{aligned}
$$

Dita eq(6) whts.

$$
\begin{align*}
\frac{d}{d s}\left(\frac{\partial}{\partial \dot{x}^{d}}\right)=G_{d d} \ddot{x}^{a} & +g_{d b} \ddot{x}^{b}+\frac{d}{d s}\left(g_{a d}\right) \ddot{x}^{a} \\
& +\frac{d}{d s}\left(g_{d b}\right) x^{2}
\end{align*}
$$

Now censider

$$
\begin{aligned}
\frac{d}{d s}\left[g_{d b}\left(x^{c}\right)\right] & =\frac{\partial}{\partial x^{a}}\left(\partial_{d b}\right) \frac{d x^{4}}{d s} \\
& =g_{d b_{0} a} \dot{x}^{a}
\end{aligned}
$$

Similanly

$$
\frac{d}{d s}\left[g_{n d}(x)\right]=\frac{\partial}{\partial x^{k}}\left(g_{n d}\right) \frac{d x^{b}}{d s}=\operatorname{gad}_{a d, b} \dot{x}^{b}
$$

So, eq. (6) becomes,

$$
\frac{d}{d s}\left(\frac{\partial L}{\partial \dot{x}^{d}}\right)=g_{a d} \ddot{x}+g_{d b} \ddot{x}^{b}+g_{a d,} \tilde{z}^{a \cdot b}+g_{d b, a} \ddot{x}^{a \cdot b}
$$

Use eq(4) and eq (7) in eq(3).
ω_{e} have

$$
\begin{aligned}
& \theta_{a d} \ddot{x}^{a}+q_{14} \ddot{x}^{b}+g_{a b, b} x^{a} x^{b}+q_{b_{g} a} x^{a} \dot{x}^{b}-g_{a b p} x^{a} \ddot{x}^{b}=0 \\
& \operatorname{Dad}_{a d} \ddot{x}^{a}+\partial_{d b} \ddot{x}^{b}+\left[\int_{a d_{p} b}+g_{d o, a}-\int_{a b, d}\right] \dot{x}^{a} \ddot{x}^{b}=0
\end{aligned}
$$

Multiplying by $1 / 2 f^{d}$.

$$
\begin{aligned}
& \frac{1}{2} g^{c d} \int_{a d} \ddot{x}^{a}+\frac{1}{2} g^{c d} g_{b d} \ddot{x}^{a b}+\frac{1}{2} g^{c d}\left[g_{a d, b}+g_{d b, a}-g_{a b}, d \dot{x}^{a} \dot{x}^{b}=\right. \\
& \frac{1}{2} \delta_{a}^{c} \ddot{x}^{a}+\frac{1}{2} \delta_{b}^{c} \dot{x}^{0 b}+\Gamma_{a b}^{c} \dot{x}^{a} \dot{x}^{b}=0 \\
& \\
& \frac{1}{2} \ddot{x}^{c}+\frac{1}{2} \ddot{x}^{c}+\Gamma_{a b}^{c} \dot{x}^{a} \dot{x}^{a b}=0 . \\
& \\
& \ddot{x}^{c}+\Gamma_{a b}^{c} \dot{x}^{a} \ddot{x}^{b}=0
\end{aligned}
$$

Example:- Wont out the 13-01-2015 geodesic eq on a sphere of radius " a ".

Sol:- We know that the metric tensor for a sphere of radius ' a ' is given by

$$
\begin{gathered}
g_{a b}=\left[\begin{array}{ll}
a^{2} & 0 \\
0 & a^{2} \sin ^{2} \theta
\end{array}\right] \\
x^{a}=(\theta, \phi)
\end{gathered}
$$

For non-zene chnistozall symboles.

$$
\begin{aligned}
g_{22,1}=2 a^{2} & \sin \theta \cos \theta \\
& \Rightarrow \Gamma_{22}^{\prime}, \Gamma_{12}^{2}
\end{aligned}
$$

We know that

Now

$$
p_{a b}^{c}=\frac{1}{2} f^{c e}\left[g_{a e, b}+g_{e b, a}-g_{a b, e}\right]
$$

$$
\Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime e}\left[g_{2 e_{32}}+g_{e 2,2}-g_{22, e}\right]
$$

$$
\begin{aligned}
& \Gamma_{22}^{\prime}=\frac{-1}{2} \text { git } n_{22,1} \\
& \Gamma_{22}^{1}=-\frac{1}{2} \cdot\left(\frac{1}{6}\right)(2 \% \sin \theta \cos \theta) \\
& \Gamma_{22}^{\prime}=-\sin \theta \cos \theta
\end{aligned}
$$

Now

$$
\begin{aligned}
& \Gamma_{12}^{2}=\frac{1}{2} g e\left[g_{e 2,1}+g_{1 e, 2}-g_{2}, e\right] \\
& \Gamma_{12}^{2}=\frac{1}{2} g^{1}\left[g_{12,1}+g_{11,2}-g_{12,1}\right]^{2} \frac{-1}{22}\left[g_{22,1}+g / 12,2 / 12,2\right] \\
& \Gamma_{12}^{2}=\frac{1}{2} g^{22} g_{22,1} \\
& \Gamma_{12}^{2}=\frac{1}{2}\left(\frac{1}{a^{2} \sin ^{2} \theta}\right) \cdot\left(2 q_{2}^{2} \sin \theta \cos \theta\right) \\
& {\left[\Gamma_{12}^{2}=\cot \theta\right.}
\end{aligned}
$$

we binow Geodesic eq

$$
x^{c}+\Gamma_{a b}^{c}+x^{a} x^{b}=0
$$

For $c=1$

$$
\begin{array}{ll}
\ddot{x}^{\prime}+\Gamma_{a b}^{\prime} \dot{x}^{a} \dot{x}^{\prime \prime}=0 \\
\ddot{x}+\Gamma_{22}^{\prime} x^{2} \dot{x}^{2}=0 \quad \text { because } \Gamma_{11}^{\prime}=\Gamma_{12}^{\prime}=\Gamma_{21}^{\prime}=0
\end{array}
$$

$\ddot{\theta}-\sin \theta \cos \theta\left(\dot{\phi} \phi^{\prime}\right)=0$
$\ddot{\theta}-\sin \theta \cos \theta \dot{\phi}^{2}=0$
For $c=2$

$$
\ddot{x}^{2}+\Gamma_{a b}^{2} \dot{x}^{a} \dot{x}^{b}=0
$$

$\ddot{x}^{2}+\Gamma_{12}^{2} \ddot{x}^{1} \dot{x}^{2}+\Gamma_{21}^{2} \dot{x}^{2} \ddot{x}^{1}=0 \quad$ because $\Gamma_{11}^{2}=\Gamma_{L 2}^{2}=0$
$\ddot{\phi}+\cot \theta \quad \dot{\phi} \ddot{\theta}+\cot \phi \dot{\theta}=0$

$$
\begin{equation*}
\dot{\phi}+2 \cot \theta \quad \phi^{\circ} \theta=0 \tag{2}
\end{equation*}
$$

Multiplying eq (2) by $\sin ^{2} \theta$.
$\sin ^{2} \theta \ddot{\phi}+2 \sin \theta \cos \theta \dot{\phi} \theta^{\circ}=0$

$$
\left(\sin ^{2} \theta \cdot \dot{\phi}^{0}\right)^{0}=0
$$

Integrating by S.

$$
\begin{aligned}
& \sin ^{2} \theta \cdot \phi=h(\text { constant }) \\
& \dot{\phi}=h \operatorname{cosec}^{2} c \theta
\end{aligned}
$$

Again integrating gives,

$$
\phi=h \operatorname{cosec}^{2} \theta \delta+h_{1}
$$

As $\dot{\phi}=h \operatorname{cosec}^{2} \theta$
Now

$$
\frac{d}{d s}=\frac{d \phi}{d s} \cdot \frac{d}{d \phi}=\phi^{\prime} \frac{d}{d \phi}=\left(h \operatorname{cosec}^{2} \theta\right) \frac{d}{d \phi}
$$

Now.

$$
\begin{align*}
\ddot{\theta} & =\frac{d}{d s} \cdot \frac{d \theta}{d s} \\
& =\left(h \operatorname{cosec}^{2} \theta \frac{d}{d \phi}\right)\left(h \operatorname{cosec}^{2} \theta \frac{d \theta}{d \phi}\right) \tag{3}
\end{align*}
$$

eq. (1) becomes

$$
\left(h \operatorname{cosec}^{2} \theta \frac{d}{d \phi}\right)\left(h \operatorname{cosec}^{2} \theta \frac{d \theta}{d \phi}\right)-\sin \theta \cos \theta\left(h \operatorname{cosec}^{2} \theta\right)^{2} \theta
$$ Diving by h^{2} conecice.

$$
\begin{equation*}
\left(\frac{d}{d \phi}\right)\left(\operatorname{cosec}^{2} \theta \frac{d \alpha}{d \phi}\right)-\cot \theta=0 \tag{4}
\end{equation*}
$$

Put $\cot \theta=u$

$$
\begin{aligned}
& \frac{d u}{d \phi}=-\operatorname{cosec}^{2} \theta \cdot\left(\frac{d \theta}{d \phi}\right) \\
& \operatorname{cosec}^{2} \theta \frac{d \theta}{d \phi}=-\frac{d u}{d \phi}
\end{aligned}
$$

eq.(4) becomen.

$$
\begin{aligned}
& \frac{d}{d \phi}\left(-\frac{d u}{d \phi}\right)-u=0 \\
& \frac{d^{2} u}{d \phi^{2}}+u=0 \\
\Rightarrow & u=c_{1} \cos \phi+c_{2} \sin \phi \\
& \cot \theta=A \cos (\phi+B) \\
& \theta=\cot ^{-1}[A \cos (\phi+B)] \\
\Rightarrow & \left.c_{1} \cos \phi+c_{2} \sin \phi=A \cos \phi+B\right) \\
& =A \cos \phi \cos B-A \sin \phi \sin B
\end{aligned}
$$

$$
D^{2}= \pm C \quad,
$$

By comparing,

$$
\begin{aligned}
& C_{1}=A \cos B \longrightarrow \text { i) } \\
& C_{2}=-A \sin B \longrightarrow \text { (ii) }
\end{aligned}
$$

Dividing eq (ii) by eq (i)

$$
\begin{aligned}
& -\tan B=\frac{c_{2}}{c_{1}} \\
& B=-\tan ^{-1}\left(\frac{c_{2}}{c_{1}}\right)
\end{aligned}
$$

By squaring and adding ii \& (ii)

$$
\begin{aligned}
& A^{2}=C_{1}^{2}+C_{2}^{2} \\
& A=\sqrt{C_{1}^{2}+C_{2}^{2}}
\end{aligned}
$$

So,

$$
\theta=\cot ^{-1}\left[\left(\sqrt{c_{1}^{2}+c_{2}^{2}}, \cos \left(\phi-\tan ^{-1}\left(\frac{c_{2}}{c_{1}}\right)\right)\right]\right.
$$

Exercise:- 1):- Wontrout Geodesic eq -1-15 in a 7 lat space in n-dimensional cartesian space.
2):- Wontrout Geodesic eq. For

$$
g_{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & n^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right) \quad x^{a}=(n, \theta, \phi)
$$

Solution:-(1) We know that

$$
\ddot{x}^{c}+\Gamma_{a b}^{c} \ddot{x}^{a} \dot{x}^{b}=0
$$

for flat space

$$
g_{a_{b}}=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 1 & 6 & 0 \\
0 & 0 & 1 & \cdots \\
0 \\
0 & 0 & 0 & \cdots
\end{array}\right)
$$

Since all $g_{a b, c}=0$
So, $\Gamma_{a b}^{c}=0$
Thus

$$
\begin{aligned}
& \ddot{x}^{c}+(0)\left(\dot{x}^{a}\right)\left(\dot{x}^{b}\right)=0 \\
\Rightarrow & { }_{x}^{c}=0
\end{aligned}
$$

On integrating, we have

$$
\dot{x}^{\dot{c}}=\alpha^{c}(\text { constant })
$$

Again integrating.

$$
x^{c}=\alpha^{c} s+\beta^{c}
$$

For

$$
\begin{gathered}
\Gamma_{12}^{2}, \Gamma_{22}^{\prime} \in g_{22,1}=2 \Lambda \\
\Gamma_{13}^{3}, \Gamma_{33}^{\prime} \in g_{33,1}=2 \times 2 \sin ^{2} \theta \\
\Gamma_{23}^{3}, \Gamma_{33}^{2} \in g_{33,2}=2 n^{2} \sin \theta \cos \theta \\
\Gamma_{a b}^{c}=\frac{1}{2} g^{d}\left[g_{l b, a}+g_{a l, b}-g_{a b, l}\right] \\
\Gamma_{22}^{1}, \Gamma_{12}^{2}=\Gamma_{21}^{2}, \Gamma_{33}^{1}, \Gamma_{13}^{3}=\Gamma_{31}^{3}, \Gamma_{33}^{2}, \Gamma_{23}^{3}=\Gamma_{32}^{3} \\
\\
\text { www.RanaMaths.com }
\end{gathered}
$$

$$
\Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime l}\left[g_{22,2}+g_{21,2}-g_{22, l}\right]
$$

so

$$
\text { foo } l=2,3 \Rightarrow g^{13}=f^{12}=0
$$

$$
\begin{aligned}
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left[g / / 2,2+g_{2} / 1,2-g_{22,1}\right] \\
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left(-g_{22,1}\right) \\
& \Gamma_{22}^{\prime}=\frac{1}{2}(1)(-2 n) \\
& \Gamma_{22}^{\prime}=-n
\end{aligned}
$$

$$
\begin{aligned}
\text { Now } r_{12}^{2} & =\frac{1}{2} g^{2 l}\left[g_{22,1}+g_{12,2}-g_{12, l}\right] \\
\Gamma_{12}^{2} & =\frac{1}{2} g^{22}\left[g_{22,1}+g_{12,2}-g_{12,2}\right] \\
\Gamma_{12}^{2} & =\frac{1}{2} g^{22} g_{22,1} \\
\Gamma_{12}^{2} & =\frac{1}{\%}\left(\frac{1}{r^{2}}\right)(x r) \\
\Gamma_{\Gamma}^{2} & \left.=\frac{1}{r}\right] \\
\Gamma_{13}^{2} & =\frac{1}{2} g^{2 l}\left[g_{l 3,3}+g_{3 l, 3}-g_{33, l}\right] \\
\Gamma_{32}^{2} & =\frac{1}{2} g^{22}\left[g_{2, g_{3}, 3}+g_{31,3}-g_{33,2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{33}^{2}=\frac{-1}{2} \gamma^{22} g_{33,2} \\
& \Gamma_{33}^{2}=\frac{1}{2}\left(\frac{1}{n^{2}}\right)\left(2 n^{2} \sin \theta \cos \theta\right) \\
& \Gamma_{33}^{2}=-\sin \theta \cos \theta \\
& \Gamma_{23}^{3}=\frac{1}{2} g^{3 l}\left[g_{2 l, 3}+g_{23,2}-g_{23, l}\right] \\
& \Gamma_{23}^{3}=\frac{1}{2} g^{33}\left[g_{23,3}+g_{33,2} g 25,3\right] \\
& \Gamma_{23}^{3}=\frac{1}{2} g^{33} g_{33,2} \\
& \Gamma_{23}^{3}=\frac{1}{2}\left(\frac{1}{x^{2}-\sin ^{2} \theta}\right)\left(x^{2} n^{2} \sin \theta \text { cosc }\right) \\
& \Gamma_{23}^{3}=\cot \theta . \\
& \Gamma_{13}^{3}=-\frac{1}{2} g^{3 l}\left[g_{1,, 3}+g_{l 3,1}-g_{13, l}\right] \\
& \Gamma_{13}^{3}=\frac{1}{2} g^{33}\left[g_{13}, 3+g_{33,1}-g_{1}, 3\right] \\
& p_{13}^{3}=\frac{1}{2} g^{33} g_{3,3,1} \\
& \Gamma_{13}^{3}=\frac{1}{2} \frac{1}{r^{2} \sin ^{2} \theta}\left(2 a \sin ^{2} \theta\right) \\
& {\left[{ }_{43}^{3}=\frac{1}{\mu}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{33}^{\prime}=\frac{1}{2} g^{l l}\left[g_{13,3}+g_{3 l, 3}-g_{33, l}\right] \\
& \Gamma_{33}^{\prime}=\frac{1}{2} g^{\prime \prime}\left[g_{13,3}+g_{31,3}-g_{33,1}\right] \\
& \Gamma_{33}^{1}=-\frac{1}{2} g^{\prime \prime} g_{33,1} \\
& \Gamma_{33}^{\prime}=-\frac{1}{2}(1)\left(2 N \sin ^{2} \theta\right) \\
& \Gamma_{33}^{\prime}=-n \sin ^{2} \theta
\end{aligned}
$$

For $C=1$

$$
\begin{align*}
& \ddot{x}^{\prime}+\Gamma_{b}^{\prime} \dot{x}^{a} \dot{x}^{b}=0 \\
& \ddot{x}^{\prime}+\Gamma_{22}^{\prime} \dot{x}^{2} \dot{x}^{2}+\Gamma_{33}^{\prime} \dot{x}^{3} \dot{x}^{3}=0 \\
& \ddot{r}-n \dot{\theta}^{2}-n \sin ^{2} \theta \dot{\phi}^{2}=0 \tag{1}
\end{align*}
$$

For $c=2$

$$
\begin{align*}
& \ddot{x}^{2}+\Gamma_{a b}^{2} \dot{x}^{a} \dot{x}^{b}=0 \\
& \ddot{x}^{2}+2 \Gamma_{12}^{2} \dot{x}^{\prime} \dot{x}^{2}+\Gamma_{33}^{2} \dot{x}^{3} \dot{x}^{3}=0 \\
& \dot{\theta}^{2}+\frac{2}{n} \dot{\theta} \dot{n}-\sin \theta \cos \phi \dot{\phi}^{2}=0 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { For } c=3 \\
& \dot{x}^{3}+\Gamma_{2 b}^{3} \dot{x}^{a} \dot{x}^{b}=0 \\
& \dot{x}^{3}+2 \Gamma_{31}^{3} \dot{x}^{\prime} \dot{x}^{3}+2 \Gamma_{2}^{3} \dot{x}^{2} \dot{x}^{3}=0 \\
& \ddot{1}+\frac{2}{n} \dot{p} x+2 \cot \theta \dot{\theta}=0 \tag{3}
\end{align*}
$$

Q.

Wenb-aut Geadesic ay for

$$
g_{a b}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \rho^{i} & 0 \\
0 & 0 & 1
\end{array}\right), \quad x^{a}=(9, \theta, z)
$$

Solwher:- $\quad g_{22,1}=1$

$$
\Gamma_{22}^{1}, \Gamma_{12}^{2}=\Gamma_{21}^{2}
$$

we brow that

$$
\begin{aligned}
& \dot{x}^{c}+\Gamma_{a p}^{k} \dot{x}^{a} \dot{x}^{b}=0 \\
& \& \Gamma_{a b}^{c}=\int_{\frac{1}{2}} g^{c l}\left[g_{a l, b}+g_{l b, a}-g_{a b, l}\right] \\
& \left.\Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime} \right\rvert\,\left[g_{2 l, 2}+g_{l 2,2}-g_{22, b}\right] \\
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left[g_{21,2}+g_{12,2}-g_{22,1]}\right] \quad \because g^{\prime 2}=0 \\
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left[-g_{22,1]}\right. \\
& \Gamma_{22}^{\prime}=\frac{1}{2}(1)(-1) \\
& \Gamma_{22}^{\prime}=-\frac{1}{2} \\
& \Gamma_{12}^{2}=\frac{1}{2} g^{2 l}\left[g_{11,2}+g_{12,2}-g_{12, l}\right] \\
& T_{12}^{2}=\frac{1}{2} g^{22}\left[g_{2,2}+g_{22,2}-g / 12,2\right] \\
& \Gamma_{12}^{2}=\frac{1}{2} g^{22} g_{22,1}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{12}^{2}=\frac{1}{2}\left(\frac{1}{\rho}\right)(1) \\
& \Gamma_{12}^{2}=\frac{2}{\rho}
\end{aligned}
$$

For $C=1$

$$
\begin{align*}
& \ddot{x}+\Gamma_{a}^{\prime} \dot{x}^{a} \dot{x}=0 \\
& \ddot{j}+\Gamma_{22}^{\prime} \dot{x}^{2} \dot{x}^{2}=0 \\
& \dot{j}+\left(\frac{-1}{2}\right) \dot{\theta} \dot{\theta}=0 \\
& 2 \ddot{j}-\dot{\theta}^{2}=0 \\
& 2 \ddot{j}=\dot{\theta}^{2} \tag{1}
\end{align*}
$$

For $C=-2$

$$
\begin{align*}
& \dot{x}^{2}+\Gamma_{a b}^{2} \dot{x}^{a} \dot{x}^{b}=0 \\
& \dot{\theta}+2 p_{2}^{2} \dot{x}^{\prime} \dot{x}^{2}=0 \\
& \dot{\theta}+2\left(\frac{1}{p \rho}\right) \dot{\rho} \dot{\theta}=0 \\
& \dot{\rho} \dot{\theta}+\dot{\theta} \dot{\theta}=0 \tag{2}
\end{align*}
$$

For $c=3$

$$
\begin{array}{ll}
\ddot{x} \ddot{ }^{3}+\Gamma_{a b}^{3} \dot{x}^{a} \dot{x}^{b}=0 & \because \Gamma_{a b}^{3}=0 \\
\ddot{x}^{3}=0 \\
\ddot{z}=0 & \text { (3) } \tag{3}
\end{array}
$$

On Integrating,

$$
\dot{z}=h(\text { constant })
$$

again intignating-1

$$
\begin{aligned}
z= & h s+h_{1} \\
\operatorname{eq}(2) \Rightarrow & \rho \ddot{\theta}+d \dot{\theta}=0 \\
& (\rho \dot{\theta})^{\circ}=0
\end{aligned}
$$

$O_{n} \quad$ Intogratinls

$$
\begin{aligned}
& \rho \theta=K(\text { constant }) \\
& \theta=\frac{K}{\rho}
\end{aligned}
$$

Agairs antegrating,

$$
\begin{aligned}
& \theta=\frac{k}{\rho} s+k_{1} \\
& 2 \ddot{\rho}=\theta^{2} \\
& 2 \dot{\rho}=\left(\frac{k}{\rho}\right)^{2} \\
& 2 \rho^{2} \ddot{\rho}=k^{2}
\end{aligned}
$$

Considen

$$
\frac{d}{d s}=\frac{d v}{d s}-\frac{d}{d \theta}=\frac{k}{f} \frac{d}{d t}
$$

$$
\text { \& } \ddot{f}=\frac{d}{d s} \cdot \frac{d \rho}{d s}=\left(\frac{k}{f} \frac{d}{d \theta}\right)\left(\frac{k}{g} \frac{d \rho}{d \theta}\right)
$$

$$
\dot{\rho}=\frac{k^{2}}{f^{2}} \frac{d^{2} f}{d \theta^{2}}
$$

$$
\begin{gathered}
2 f^{2}\left(\frac{k^{2}}{f^{2}} \frac{d^{2} f}{d \theta^{2}}\right)=k^{2} \\
\frac{d^{2} \rho}{d \theta^{2}}=\frac{1}{2} \\
\frac{d \rho}{d \theta}=\frac{1}{2} \theta+M \\
\rho=\frac{1}{2}\left(\frac{\theta^{2}}{2}\right)+M \theta+M / \\
\rho=\frac{\theta^{2}}{4}+M \theta+M
\end{gathered}
$$

Put $\theta=\frac{k}{\rho} \rho+R_{1}$

$$
\begin{aligned}
& \rho=\frac{1}{4}\left(\frac{k}{f} s+K_{1}\right)^{2}+M\left(\frac{K}{\rho} s+K_{1}\right)+M_{1} \\
& \rho=\frac{1}{4} \frac{K^{2}}{\rho^{2}} s^{2}+\frac{1}{4} K_{1}^{2}+\frac{1}{2} \frac{K K_{1}}{\rho} \rho+\frac{M K}{\rho} S+M K_{1}+M_{1} \\
& \rho=\frac{K^{2}}{4 f^{2}} S^{2}+\left(\frac{K K_{1}}{2 f}+\frac{M K}{f}\right) S+\frac{1}{4} K_{1}^{2}+M K_{1} M_{1} \\
& \rho=A S^{2}+B(S+C
\end{aligned}
$$

When $A=\frac{k^{2}}{4 f^{2}}$

$$
\begin{aligned}
\beta & =\frac{k k_{1}}{2 \rho}+\frac{M k}{g} \\
\& c & =\frac{1}{4} K_{1}^{2}+M K_{1}+M_{1}
\end{aligned}
$$

Cunvatune on Mantel. $19-15$

We brows that a local measure of the curvature of mandoll may be obtain by the difference blu the san Af the angles of a triangle drawn in the manifold \& π-radian. The sides of triangles ane oftcounge the genderic. Another way to measure the curvature is to see the extend to which a pravilellegoim chases over or stags open.
mathematically we will calculate

$$
\left\{\begin{array}{l}
a \\
i ; d ;- \\
j ; c ; d
\end{array}\right.
$$

Let $\rho_{c}^{\hat{3}}=T_{c}^{a}$
and

$$
\begin{aligned}
& \xi_{i c j d}^{a}=\left(\xi_{i}^{a} ; c\right)_{; d}=\left(T_{c}^{a}\right)_{j d}=T_{c ; d}^{a} \\
& =T_{c}^{a}, d+\Gamma_{c l b}^{a} T_{c}^{b}-\Gamma_{c d}^{b} T_{b}^{a} \\
& =\left(\xi_{j c}^{a}\right), d+\Gamma_{d b}^{a} \varsigma_{i c}^{b}-\Gamma_{c d}^{b} \xi_{; b}^{a} \\
& =\left(\xi_{c}^{a}+\Gamma_{c e}^{a} \xi^{\ell}\right), d+\Gamma_{d b}^{a}\left[\xi_{c c}^{b}+\Gamma_{c e}^{b} \xi^{e}\right) \\
& -\Gamma_{c d}^{b}\left(\xi_{y b}^{a}+R_{e}^{a} \xi^{e}\right)
\end{aligned}
$$

$$
\begin{align*}
&= \xi_{, c, d}^{a}+\Gamma_{c e, d}^{a} \xi^{e}+\Gamma_{c e}^{a} \xi_{, d}^{e} \\
&+\Gamma_{d b}^{a} \xi_{, c}^{b}+\Gamma_{d b}^{a} \Gamma_{c e}^{b} \xi^{e}-\Gamma_{c d}^{b} \xi_{, b}^{a} \\
&-\Gamma_{c d}^{b} \Gamma_{b e}^{a} \xi^{e} \longrightarrow(1) \tag{1}
\end{align*}
$$

Similanly we can ar nite.

$$
\begin{align*}
\xi_{j d ; c}^{a} & =\xi_{, d, c}^{a}+\Gamma_{d e, c}^{a} \xi^{e}+\Gamma_{d e}^{a} \xi_{, c}^{e} \\
& +\Gamma_{c b}^{a} \xi_{d d}^{b}+\Gamma_{c b}^{a} \Gamma_{d e}^{b} \xi^{e}-\Gamma_{d c}^{b} \xi_{, b}^{a}-\Gamma_{d c}^{b} \Gamma_{b e}^{a} \xi^{e} \tag{2}
\end{align*}
$$

By (2) - (1)

$$
\begin{aligned}
& \xi_{i d d ; c}^{a}-\xi_{i, c ; d}^{a}=\left\{, d, c+\Gamma_{d e, c}^{a} \xi^{e}+\Gamma_{d e}^{a} \xi_{x c}^{e}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\xi, a / 1, d-\Gamma_{c, d}^{a}\right\}^{e}-\Gamma_{c e}^{a}\left\{, d-\Gamma_{d b}^{a} \xi_{, c}^{b}\right. \\
& -\Gamma_{d b}^{a} \Gamma_{\mathrm{ce}}^{b} \xi^{e}+\Gamma_{c d \rho}^{b} \sigma_{r, b}^{a}+\Gamma_{c d}^{b} \Gamma_{b e}^{a} \xi^{e} \\
& =\Gamma_{d e j c}^{a} \xi^{e}+\Gamma_{d b}^{a} \xi_{c}^{b}+\Gamma_{c e}^{a} / F_{, d}^{e}+\Gamma_{c b}^{a} \Gamma_{d e}^{b} \xi^{e} \\
& -\Gamma_{c e, d}^{a} \xi^{e}-\Gamma_{c e}^{a} \xi_{0 d}^{\ell}-\Gamma_{d b}^{a} \xi_{x}^{b}-\Gamma_{d b}^{a} \Gamma_{c e}^{b} \xi^{e} \\
& =\left(\Gamma_{d e, c}^{a}-\Gamma_{c e}^{a}, d+\Gamma_{c b}^{a} \Gamma_{d e}^{b}-\Gamma_{d b}^{a} \Gamma_{c e}^{b}\right) \xi^{e} \\
& =R_{\text {ecd }}^{a} \xi^{e} \\
& =R_{b c d}^{a} \xi^{b}
\end{aligned}
$$

Here $R_{\text {bed }}^{4}$ is called Riemamn Warinture tensoi efor simply cunvature
tenson.
Example:- Worbrout non-zeno components of $R_{b c d}^{a}$ for the metric tensor.

$$
\begin{aligned}
& g_{a b}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
0 & \imath^{2}
\end{array}\right) \\
& g_{a b}=\left(\begin{array}{ll}
a^{2} & 0 \\
0 & a^{2} \sin ^{2} \theta
\end{array}\right)
\end{aligned}
$$

Rici Tenson
The rici tensor is obtained by. contracting finst and thind indices of the siemann cunvature as

$$
\begin{aligned}
R_{b d} & =R_{b a d}^{a} \\
& =\Gamma_{b d, a}^{a}-\Gamma_{b a, d}^{a}+\Gamma_{e a}^{a} \Gamma_{b d}^{e}-\Gamma_{e d}^{a} \Gamma_{a b}^{d}
\end{aligned}
$$

Rici Scalan is denoted by R and de tined as

$$
\begin{aligned}
& R \text { as } R g^{b d} R_{b d} \\
& =g^{\prime \prime} R_{11}+g^{22} R_{22}+g^{33} R_{33}+g^{44} R_{44} A_{g^{\prime \prime \prime}}^{\prime \prime}
\end{aligned}
$$

Example:- Wonbout Rici Scalin For a sphere of radius " a ".

Solution:- $\quad g_{a b}=\left(\begin{array}{ll}a^{2} & 0 \\ 0 & a^{2} \sin ^{2} a\end{array}\right)$

$$
\begin{aligned}
& g_{22,1}=2 a^{2} \sin \theta \cos \theta \Rightarrow \Gamma_{22}^{\prime}, \Gamma_{12}^{2} \\
& \Gamma_{a b}^{c}=\frac{1}{2} g^{c l}\left[g_{a l, b}+g_{l b, a}-g_{a b, l}\right] \\
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{l l}\left[g_{2 l, 2}+g_{l 2,2}-g_{22, l}\right] \\
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left[g / 1,2+g_{12,2}-g_{22,1}\right] \\
& \Gamma_{22}^{\prime}=\frac{-1}{2} g^{\prime 1} g_{22,1} \\
& \Gamma_{22}^{\prime}=\frac{-1}{2}\left(\frac{1}{a^{2}}\right)\left(2 a^{2} \sin \theta \cos \theta\right) \\
& \Gamma_{22}^{\prime}=-\frac{\sin \theta \cos \theta}{} \\
& \Gamma_{12}^{2}=\frac{1}{2} g^{2 l}\left[g_{1 l, 2}+g_{l 2,1}-g_{12, l}\right] \\
& \Gamma_{12}^{2}=\frac{1}{2} \cdot g^{22}\left[g_{12} / 2+g_{22,1}-g_{12,2}\right] \\
& \vdots
\end{aligned}
$$

We krow that

$$
\begin{aligned}
& R=g^{\prime \prime} R_{11}+g^{22} R_{22} \\
& R_{b d}=\Gamma_{b d, a}^{a}-\Gamma_{b a, d}^{a}+\Gamma_{e a}^{a} \Gamma_{b d}^{e}-\Gamma_{e d}^{a} \Gamma_{a b}^{e} \\
& R_{11}=\Gamma_{0}^{a} r_{1, a}^{a}-\Gamma_{a, 1}^{a}+\Gamma_{e a}^{a} \Gamma_{0}^{e}-\Gamma_{e}^{a} \Gamma_{a t}^{e} \\
& =-\Gamma_{12,1}^{2}-\Gamma_{e 1}^{2} \Gamma_{21}^{e} \\
& =-\Gamma_{121}^{2}-\Gamma_{21}^{2} \Gamma_{21}^{2} \\
& =-\left(-\operatorname{cosec}^{2} \theta\right)-(\cot \theta)(\cot \theta) \\
& =\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \\
& \Rightarrow R_{11}=1 \\
& R_{22}=\Gamma_{22, a}^{a}-\Gamma_{2 a, 2}^{a}+\Gamma_{e}^{a} \cdot \Gamma_{22}^{e}-\Gamma_{e 2}^{a} \Gamma_{a 2}^{e} \\
& =\Gamma_{22,1}^{\prime}-\Gamma_{1}^{\prime}, \Gamma_{0}^{\prime}-\Gamma_{2,2}^{4}+\Gamma_{12}^{2} \Gamma_{22}^{\prime}-\Gamma_{12}^{a} \Gamma_{a 2}^{\prime}-\Gamma_{22}^{a} a_{a 2}^{2} \\
& =\Gamma_{22,1}^{\prime}+\Gamma_{12}^{2} \Gamma_{22}^{\prime}-\Gamma_{12}^{2} / \Gamma_{22}^{\prime}-\Gamma_{22}^{\prime} \Gamma_{12}^{2} \\
& =\Gamma_{22,1}^{\prime}-\Gamma_{22}^{\prime} \Gamma_{12}^{2} \\
& =-[\sin \theta(-\sin \theta)+\cos \theta \cos \theta]-(-\sin \theta \cos \theta)(\cot \theta) \\
& =\sin ^{2} \theta-\operatorname{coth}^{2} \theta+\cos ^{2} \theta \\
& \Rightarrow \quad R_{22}=\sin ^{2} \theta
\end{aligned}
$$

Se,

$$
\begin{aligned}
& R=\frac{1}{a^{2}} \cdot(1)+\frac{1}{a^{2} \sin ^{2}(a)}\left(\sin ^{2}(0)\right. \\
& R=\frac{1}{a^{2}}+\frac{1}{a^{2}} \\
& R=\frac{2}{a^{2}} \quad \text { Answen }
\end{aligned}
$$

Propentien of Rremam 0_{0} 22-1-15
cunvature tensisss,

$$
R_{a t c d}=q_{a e} R_{b c d}^{e}
$$

(i):-

$$
\begin{aligned}
R_{a b c d} & =-R_{b a, c d} \\
& =-R_{a b d c} \\
& =R_{b a d c} \\
& =R_{c d a b}
\end{aligned}
$$

Bianchi Finst Idesstity:-

$$
R_{[b c d]}^{a}=0
$$

Bianchi Second Identity:-

$$
R_{b}^{a}[d ; e]=0
$$

Symetare Bracheti-

$$
A(a b)=\frac{A_{p}+A_{p a}}{2!}
$$

Shew Symetric Bracbet:-

$$
\begin{array}{r}
A_{[a b c]}=\frac{1}{3!}\left[A_{q b c}+A_{b c a}+A_{c a b}-A_{a \leq}-A_{c b}\right. \\
\left.-A_{b \underline{a}}\right]
\end{array}
$$

$A\left[a_{1} \quad a_{n}\right]=\frac{1}{n_{1}}[$ Sum steven permutation- Sum of odd permutation.]
Associative Propenty:-

$$
A[\underline{a}[\underline{b} \leq]]]=A_{[[\underline{a} b] \leq]}=A_{[\underline{a} b \leq]}
$$

Einstein Tensor
Consider

$$
\begin{aligned}
& R_{b}^{a}[c d ; e]=\frac{1}{3!}\left[R_{b c d ; e}^{a}+R_{b d e ; c}^{a}+R_{b e c j d}^{a}\right. \\
& \left.-R_{b c e ; d}^{a}-R_{b d c j e}^{a}-R_{b e d ; c}^{a}\right] \\
& R_{b[c d ; e]}^{a}=\frac{1}{3!}\left[R_{b c d j e}^{a}+R_{b d e ; c}^{a}+R_{b e c ; d}^{a}\right. \\
& \left.+R_{b e c ; d}^{a}+R_{b c d ; e}^{a}+R_{b d e ; c}^{a}\right]
\end{aligned}
$$

By Bronchi Second Identity.

$$
\begin{aligned}
& R_{b[(d ; e]}^{a}=0 \Rightarrow \\
& \quad \frac{2}{6}\left[R_{b c d ; e}^{a}+R_{b d e c}^{a}+R_{b e c ; d}^{a}\right]=0 \\
& \Rightarrow R_{b c d ; e}^{a}+R_{b d e ; c}^{a}+R_{b e c}^{a} ; d
\end{aligned}
$$

Contracting $a \& C$.

$$
R_{\text {bad;e }}^{a}+R_{b d e ; a}^{a}+R_{b e a ; d}^{a}=0
$$

$$
\begin{aligned}
& R_{\text {bdje }}+R_{\text {bdeja }}^{a}-R_{\text {becjed }}^{a}=0 \\
& R_{b o l j e}-R_{b e j d}+R_{\text {bdeja }}=0
\end{aligned}
$$

Multiplying by $e^{\text {bi }}$

$$
\begin{aligned}
& g^{b 4} R_{b d j e}-g^{b 7} P_{\text {bejd }}+g^{b 7} R_{\text {beleg } a}=0 \\
& R^{7} d_{j e}-R_{e j d}^{7}+R_{\text {deja }}=g
\end{aligned}
$$

Conctracting 7 \& e.

$$
\begin{aligned}
& R_{d ; e}^{e}-R_{e, d}^{e}+R^{a e} d e ; a \\
& R_{d ; e}^{e}-R_{e 3 d}^{e}+R_{e d ; a}^{a}=0
\end{aligned}
$$

$$
\begin{align*}
& R_{d ; a}^{a}-R_{a ; d}^{a}+R_{d ; a}^{a}=0 \\
& 2 R_{d ; a}^{a}-R_{j d}=0 \\
& 2 R_{d ; a}^{a}-\delta_{d}^{a} R_{; a}=0 \\
& R_{d ; a}^{a}-\frac{1}{2} \delta_{d}^{a} R_{; a}=0 \\
& \left(R_{d}^{a}-\frac{1}{2} \delta_{d}^{a} R\right)_{j a}=0 \\
& G_{d ; a}^{a}=0 \tag{1}
\end{align*}
$$

where $G_{d}^{9}=R_{d}^{a}-\frac{1}{2} \delta_{d}^{a} R^{\text {is called }}$ Eingtein tenser.

Multiplying $g_{a c}$ with (1)

$$
\begin{aligned}
& g_{a c} G_{b}^{a}=g_{a c} R_{b}^{a}-\frac{1}{2} g_{a c} \delta_{b}^{a} R \\
& G_{b c}=R_{b c}=\frac{1}{2} g_{b c} R
\end{aligned}
$$

Now Multiplying by $g^{b c}$ with eq (1).

$$
\begin{aligned}
& g^{b c} G_{b}^{a}=g^{b c} R_{b}^{a}-\frac{1}{2} g^{b c} \int_{b}^{a} R \\
& G^{a c}=R^{a c}-\frac{1}{2} g^{a c} R
\end{aligned}
$$

Curvature Invariants
The Riemann tensor is useful for determining where the singulanity is essential or coordinate. It the curvature become infinite (∞) the singularity is called essential.

$$
\begin{aligned}
& \text { Since we know that } \\
& R_{b c d}^{a}=\left\{\begin{array}{l}
a \\
b d
\end{array}\right\}_{, c}-\left\{\begin{array}{l}
a \\
b \cdot c
\end{array}\right\}_{g d}+\left[\begin{array}{l}
a \\
e c
\end{array}\right\}\left\{\begin{array}{l}
e \\
b d
\end{array}\right\} \\
& -\left\{\begin{array}{l}
a \\
e d
\end{array}\right\}\left\{\begin{array}{l}
e \\
b c c
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& g_{a b}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& g_{\hat{a b} n}=\left(\begin{array}{ll}
1 & 0 \\
0 & \sin ^{2} \theta
\end{array}\right) \\
& \text { gi } \theta=0, \pi \text { then it } \\
& \text { will bc singular. }
\end{aligned}
$$

Where $\left\{\begin{array}{l}a \\ b c\end{array}\right\}=\int_{b c}^{c^{a}}$ is expressed in coordinates teams.
consequently these will effed riemann tension components. However scalar quantities ane invariant under coordinates transformation, such ais we construct Ricci scalar From Ricmam curvature tensor.

It is obvious that infinity many scalars can be construct From Reed However symmetry consideration can be used to shew that the ne are only Finite number of independent scalars. All the other can be expressed in team of these scalans.

The simplest sealam can be construct as;

$$
\begin{aligned}
& R_{1}=g^{a b} R_{a b}=R \\
& R_{2}=R_{c d}^{a b} R_{a b}^{c d} \\
& R_{3}=R_{c d}^{a b} R_{e q}^{c d} R_{\text {ab }}^{e^{\prime}} \text { and so on }
\end{aligned}
$$

These ane called Curvature Invariants.

The points where the curvature invariants becomes infinite ane called essential singular point.

97 curvature invariants are Finite then singularity is called coordinate, singularity.

Hent
For example:-

$$
g_{a b}=\left(\begin{array}{ll}
a^{2} & 0 \\
0 & a^{2} \sin ^{2} \theta
\end{array}\right)
$$

which is singular at $\theta=0, \pi$
But

$$
R=\frac{2}{a^{2}}
$$

Which is finite at $\theta=0, \pi$.
So, $\theta=0, \pi$ are the coordinate singularity.
Qi- Find the nature of the singularity of a right cone.

Ans:- We bow that for right
Cone,

$$
\begin{aligned}
& x(u, v)=(u \cos v, u \sin v, u) \\
& \Rightarrow \quad x_{u}=(\cos v, \sin v, 1) \\
& \& \quad x_{v}=(-u \sin v, u \cos v, 0)
\end{aligned}
$$

$$
\begin{aligned}
& E \equiv x_{u} \alpha_{u}=\cos ^{2} v+\sin v+1 \\
& \Rightarrow E=2 \\
& F= x_{u} \cdot x v=u \sin v \operatorname{son} v+u \cos v \sin v \\
& \Rightarrow F=0 \\
& G=x_{v} \cdot x_{v}=u^{2} \sin ^{2} v+u^{2} \cos ^{2} v \\
& \Rightarrow G=u^{2}
\end{aligned}
$$

So, $\hat{J}_{a b}=\left(\begin{array}{cc}2 & 0 \\ 0 & u^{2}\end{array}\right), \quad x^{a}=(u, v)$
Which is singulas at $u=0$.

$$
\begin{aligned}
& a_{22,}=2 u \\
& \Gamma_{a 1}^{c}=\frac{1}{2} g^{c l}\left[g_{l b, a}+g_{a l, b}-g_{a b, l}\right] \\
& \Gamma_{22}^{\prime}=\frac{1}{2} g^{\prime \prime}\left[g_{12,2}+g_{2 l, 2}-g_{22, l}\right] \\
&=\frac{1}{2} g^{\prime \prime}\left[g_{12,2}+g_{21,2}-g_{22,1}\right] \\
&=\frac{1}{2} g^{\prime \prime}\left[-\theta_{2,2}\right] \\
&=\frac{1}{2} \cdot\left(\frac{1}{3}\right)(-2 u) \\
& l_{22}^{\prime}\left.=\frac{-u}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Gamma_{12}^{2} & =\frac{1}{2} g^{2 l}\left[g_{2,2,1}+g_{12,2}-g_{12,2}\right] \\
& =\frac{1}{2} g^{22}\left[g_{2,2,1}+g_{12,2}-g_{12,2}\right] \\
& =\frac{1}{2} g^{22}\left[g_{2,2,1}\right] \\
& =\frac{1}{2} \cdot\left(\frac{1}{u^{2}}\right) \cdot(2 u) \\
\Gamma_{1 / 2}^{2} & =\frac{1}{u}
\end{aligned}
$$

We b-now that

$$
\begin{aligned}
& R=g^{\prime \prime} R_{11}+g^{22} R_{22} \\
& \& \\
& R_{b d}=\Gamma_{b d, a}^{a}-\Gamma_{b a, d}^{a}+\Gamma_{e a}^{a} \Gamma_{b d}^{e}-\Gamma_{e d}^{a} \Gamma_{a b}^{e} \\
& R_{11}=\Gamma_{1 / a}^{a}-\Gamma_{1 a_{1},}^{a}+\Gamma_{e a}^{1} \Gamma_{1}^{e}-\Gamma_{e 1}^{a} \Gamma_{a 1}^{e} \\
&=-\Gamma_{12,1}^{2}-\left[\Gamma_{e 1}^{1} \Gamma_{11}^{a}+\Gamma_{e 1}^{2} \Gamma_{21}^{e}\right] \\
&=-\Gamma_{12,1}^{2}-\Gamma_{1}^{2} \Gamma_{21}^{2} \\
&=-\left(-u^{-1-1}\right)-\left(\frac{1}{u}\right)\left(\frac{1}{u}\right) \\
&=\frac{1}{u^{2}}-\frac{1}{u^{2}} \\
&=0
\end{aligned}
$$

$$
\begin{aligned}
R_{22} & =\Gamma_{22, a}^{a}-\Gamma_{2 a, 2}^{a}+\Gamma_{c a}^{a} \Gamma_{22}^{a}-\Gamma_{c 2}^{a} \Gamma_{a 2}^{a} \\
& =\Gamma_{221}^{1}+\left[\Gamma_{12}^{2} \Gamma_{22}^{1}\right]-\left[\Gamma_{12}^{a} \Gamma_{a 2}^{1}+\Gamma_{22}^{a} \Gamma_{a 2}^{2}\right] \\
& =\Gamma_{22,1}^{1}+\Gamma_{12}^{2} \Gamma_{22}^{\prime}-\Gamma_{12}^{2} \Gamma_{22}^{1}-\Gamma_{22}^{1} \Gamma_{12}^{2} \\
& =\Gamma_{22,1}^{1}-\Gamma_{22}^{\prime} \Gamma_{12}^{2} \\
& =\frac{-1}{2}-\left(\frac{-\alpha}{2}\right)\left(\frac{1}{4}\right) \\
& =\frac{-1}{2}+\neq \\
& =0
\end{aligned}
$$

So

$$
\begin{aligned}
& R=g^{\prime \prime}(0)+g^{22}(0) \\
& R=0 .
\end{aligned}
$$

which is finite at $u=0$
So, $u=0$ is the coondinate singulanity.

Geodesic Deviation
Let us consider two Families of Geodesic with tangent vector t
ie

$$
t[t]=0
$$

In components Arm

$$
\begin{equation*}
t^{b} t^{a}+b=0 \text {. } \tag{1}
\end{equation*}
$$

p is Sepenstion. vector.
Let P be the vector field Joining the two Geodesics. Then P is Lei transported along t ie P remains invariant under Lei transport. Thus

$$
t[\underline{P}]=P[\underline{L}]
$$

In components 7 arm;

$$
\begin{aligned}
& \Rightarrow \quad t^{a} p_{j a}^{b}=p^{a} t_{j a}^{b}>0 \\
& \because \alpha_{j}^{\eta^{b}}=\sum_{j a}^{a}-\eta^{a} \leqslant_{j a}^{b}=0
\end{aligned}
$$

However P needs not be parallel transported along \pm, ie

$$
\begin{equation*}
t(P) \neq 0 \tag{3}
\end{equation*}
$$

If we consider P as position vector. Then we can write the
accelanation vector an

$$
\begin{equation*}
\underline{A}=\ddot{P}=\frac{d^{2} \rho}{d s^{2}}= \pm[t(P)] \tag{1}
\end{equation*}
$$

- In darmpohents form eq(4) implies that

$$
A^{a}=t^{c}\left(t^{b} p^{a} ; b\right) ; c
$$

Using eq (2).

$$
\left.\begin{array}{l}
A^{a}=t^{c}\left(P^{b} t^{a} ; b\right) ; c \\
A^{a}=t^{c}\left(p^{b} t^{a} ; b ; c+P_{; c}^{b} t^{a} ; b\right) \\
A^{a}=t^{c} p^{b} t^{a} ; b ; c+t^{c} p_{j c}^{b} t^{a} ; b \\
2
\end{array}\right] \begin{aligned}
& A^{a}=t^{c} p^{b} t^{a} ; b ; c+P^{c} t^{b} ; c t_{;}^{a} ; b
\end{aligned}
$$

we bnow

$$
\begin{aligned}
& \left(t^{b} t^{a} ; b\right)_{; c}=t_{; c}^{b} t_{; b}^{a}+t^{b} t_{j b ;}^{a} \\
& \Rightarrow t_{i c}^{b} t^{a} ; b=\left(t^{b} t^{a} ; b\right) ; c-t^{b} t^{a} ; b_{i} \\
& A^{c_{n}}=t^{c} p^{b} t^{a} ; b ; c+p^{c}\left[\left(t^{b} t^{a} / b\right) ; c \quad t^{b} t ; b ; c\right] \\
& A=t^{c} p^{b} t_{j}^{a} b_{j} c-p^{c} t^{b} t^{a} b_{j}^{c} \\
& \text { By eq (1) } \\
& \tau b \leftrightarrow c \\
& A^{a}=t^{c} p^{b} t_{j b ; c}^{a}-p^{b} t^{c} t_{j c ; b}^{a} \\
& A^{a}=t^{c} \rho^{b}\left[t_{j b}^{a}, c-t^{a} ; c, b\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{a}=t^{c} P^{b}\left[R_{d b c}^{a} t^{d}\right] \\
& A^{a}=t^{d} R_{d b c}^{a} P^{b} t^{c}
\end{aligned}
$$

This grves Geodesic Devations.
We can detine Tidal Foree
∞

$$
F_{T}^{a}=m A^{a} \text { areodesic Deviation }
$$

Killing Vectors (or Issmethies)
An isometry is a
diactien along with the metric tenson is lis transported. If K is an isometry then

$$
\begin{equation*}
\alpha g=e \tag{1}
\end{equation*}
$$

using index notation we can white

$$
\begin{align*}
& g_{2 b ; c} K^{c}+g_{c b} K_{; a}^{c}+g_{a c} K_{; b}^{c}=0 \tag{2}\\
\Rightarrow & k_{b ; a}+K_{a ; b}=0 \longrightarrow \text { (3) } \tag{3}\\
\Rightarrow & K(a ; b)=0 \longrightarrow(4)
\end{align*}
$$

The equation (1) \longrightarrow (4) are different Farms of Killing Equations. Any vector satistying these equations is called Mulling lector or Irometay.

Case I: As for the case of Hat space all the chinistotiel symbols becanies zero. So the equation (4) simply becomes

$$
\begin{gather*}
K_{(a, b)}=0 \\
\Rightarrow \quad K_{a, b}+K_{b, a}=0
\end{gather*}
$$

when $a=b$.

$$
\begin{equation*}
K_{a, a}=0 \tag{6}
\end{equation*}
$$

Now diffenentiate oquation (5) wa i x^{a}

$$
\begin{aligned}
& K_{a, b a}+K_{b, a n}=0 \\
& K_{a, a b}+K_{b}, a c, 0 \\
& \left(K_{a}, a\right), b+K_{b, a a}=0
\end{aligned}
$$

by Eq. (6)

$$
\Rightarrow \quad K_{b, a a}=0
$$

On integnating.

$$
K_{b, a}=C_{b a}
$$

Again Integnatings

$$
K_{b}=C_{b a} x^{a}+D_{b}
$$

Similarly,

$$
k_{a, b b}=0
$$

on integnating,

$$
K_{a, b}=C_{a b}
$$

Again,
Eq.(5) becomes

$$
C_{a b}=-C_{b a}
$$

\Rightarrow Cab is shew symetric in it's indices.

An general, we have $\frac{n(n-1)}{2}$ independent components of Cab in an n-dimensional space. There connespord to rotation metrix. There are also x-independent components at Da which correspond to translation.

Thus in geneal pilling vectors depends upon $n+\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$ independent components in a flat n-dimensional space.

Case II: Now we consider the curvilinear coordinates for which all the chistozell symbeles ane not genro. In this case, it is more convenient to beep the killing vectors. in contravarient form give as in Eq (2)

$$
\begin{gathered}
g_{c b} K_{; a}^{c}+g_{a c} K_{; b}^{c}=0 \\
g_{c b}\left[K_{2 a}^{c}+\Gamma_{d a}^{c} K^{d}\right]+g_{a c}\left[K_{; b}^{c}+\Gamma_{d b}^{c} K^{d}\right]=0 \\
g_{c b} K_{9 a}^{c}+g_{c b} \Gamma_{d a}^{c} K^{d}+g_{a c} K_{9 b}^{c}+g_{a c} \Gamma_{d b}^{c} K^{d}=0 \\
g_{c b} K_{9 a}^{c}+g_{a c} K_{, b}^{c}+\left[g_{c b} \Gamma_{d a}^{c}+g_{a c} \Gamma_{d b}^{c}\right] K^{d}=0 .,-1
\end{gathered}
$$

Now consider,

$$
\begin{aligned}
g_{c b} \Gamma_{d a}^{c} & =g_{c b}\left(\frac{1}{2}\right) g^{c e}\left[g_{d e, a}+g_{e a, d}-g_{d a, e}\right] \\
& =\frac{1}{2} \delta_{b}^{e}\left[g_{d e, a}+g_{e a, d}-g_{d a, e}\right] \\
& =\frac{1}{2}\left[\delta_{b}^{e} g_{d e, a}+\delta_{b}^{e} g_{e a, d}-\delta_{b}^{e} g_{d a, e}\right] \\
& =\frac{1}{2}\left[g_{d b, a}+g_{b a, g}-g_{d a, b}\right]
\end{aligned}
$$

Similarly,

$$
g_{a c} \Gamma_{d b}^{c}=\frac{1}{2}\left[g_{a b, d}+g_{d a, b}-g_{d t b, a}\right]
$$

Eq. (2) becomes.

$$
\begin{aligned}
& \operatorname{O}_{c b} k_{, a}^{c}+g_{a c} k, b+\frac{1}{2}\left[\int_{d b, a}+g_{b a, d}-g_{d a \leftrightarrow b},\right. \\
& \left.+g_{a b}, d+g_{d a, b}-8 d b=a\right] k=0 \\
& \Rightarrow g_{c b} K, a+g_{a c} K_{, b}^{c}+\frac{1}{2}\left[g_{a b, d}+g_{a b, d}\right] K=0 \\
& g_{c b} K_{, a}^{c}+g_{a c} K_{g b}^{c}+g_{a b, d} K^{d}=0
\end{aligned}
$$

replace od with c.

$$
K_{a b}: g_{a b, c} K^{c}+g_{c b} k_{, a}^{c}+g_{a c} K_{, b}^{c}=0
$$

These ane called the killing Equations in conkanient form.

Q:-
Workout the billing: Eg for

$$
q_{a b}=\left(\begin{array}{ll}
1 & 0 \\
0 & r^{2}
\end{array}\right) \quad x^{0}=(r, 0)
$$

and also solve the killing
Equations.
Solution:- We know that

$$
\begin{align*}
& \text { Kab: } \quad g_{a b, c} K^{c}+g_{c b} K_{, a}^{c}+g_{a c} K_{, b}^{c}=0 \\
& k_{11}: g_{11, c} k^{c}+g_{c 1} k_{, 1}^{c}+g_{1 c} k_{, 1}^{c}=0 \\
& g_{11} k^{\prime}+g_{11}, k^{2}+g_{11} k_{, 1}^{\prime}+g_{11} k_{, 1}^{\prime}=0 \\
& 2 g_{11} k_{1}^{\prime}=0 \\
& 2(1) k_{91}^{\prime}=0 \\
& \Rightarrow \quad K_{11}^{\prime}=0 \\
& \Rightarrow K^{\prime}=A(\theta) \tag{1}\\
& -K_{21}=K_{12}: g_{12}, c K^{c}+g_{c, 2} K_{, 1}^{c}+g_{1 c} K_{, 2}^{c}=0 \\
& g_{22} k_{21}^{2}+g_{11} k_{22}^{1}=0 \\
& n^{2} K_{11}^{2}+(1) K_{, 2}^{\prime}=0 \\
& K_{, 2}^{\prime}+r^{2} K_{, 1}^{2}=0 \tag{2}\\
& K_{22}: g_{22, c} K^{c}+g_{2 c} K_{32}^{c}+g_{2 c} K_{2}^{c}=0
\end{align*}
$$

$$
\begin{aligned}
& g_{22}, 1 k^{\prime}+2 g_{22} k_{32}^{2}=0 \\
& 2 n k^{\prime}+2 r^{2} k_{2}^{2}=0
\end{aligned}
$$

Divolyng $2 n$

$$
\begin{equation*}
K^{\prime}+\Omega K_{, 2}^{2}=0- \tag{3}
\end{equation*}
$$

Differentiate Eq. (2) with pespest to θ.

$$
\begin{equation*}
K_{, 22}^{\prime}+n^{2} K_{912}^{2}=0 \tag{4}
\end{equation*}
$$

$\overline{O R} \quad A, Q \theta+n^{2} K_{, 12}^{2}=0$

$$
\begin{equation*}
E q \cdot(3) \Rightarrow K_{92}^{2}=\frac{-1}{1} A(c) \tag{5}
\end{equation*}
$$

Diff. wr.t n

$$
\begin{aligned}
& K_{, 21}^{2}=\frac{1}{n^{2}} A(\theta) \\
& \text { Eq(4) } \Rightarrow A, \theta \theta+A^{2}\left[\frac{1}{n^{2}} A(0)\right]=0 \\
& A_{,}, \theta \theta+A(\theta)=0 \quad D^{2}+1=0 \\
& \Rightarrow K_{1}=A(\theta)=C_{1} \cos \theta+C_{2} \sin \theta \\
& E_{\text {q. }}(5) \Rightarrow K_{2,2}^{2}=\frac{-1}{n}\left(C_{1} \cos \theta+C_{2} \sin \theta\right)
\end{aligned}
$$

Integnating wirt θ.

$$
\begin{aligned}
& \text { Integnating } \\
& K^{2}=-\frac{1}{n}\left[c_{1} \sin \theta-c_{2} \cos \theta\right]+B(n) \longrightarrow \text { (7) }
\end{aligned}
$$

Dit子 wrt Ω

$$
K_{1}^{2}=\frac{1}{n^{2}}\left[C_{1} \sin \theta-C_{2} \operatorname{con} \theta\right]+B^{\prime}(n)
$$

Dit7. Eq.(6) wrut 0 .

$$
k^{\prime}, 2=-c_{1} \sin \theta+c_{2} \cos \theta
$$

So, equation (2) becomes.

$$
\begin{gathered}
-c_{1} \sin \theta+c_{2} \cos \theta+n^{2}\left[\frac{1}{n^{2}}\left(c_{1} \sin \theta-c_{2} \cos \theta\right)+B^{\prime}(n)\right]=0 \\
-c_{1} \sin \theta+c_{2} \cos \theta+c_{1} \sin \theta-c_{2} \cos \theta+n^{2} B^{\prime}(n)=0 \\
\Rightarrow n \neq 0, B^{\prime}(n)=0 \\
\Rightarrow B=c_{3}
\end{gathered}
$$

So, equation (7) \Rightarrow

$$
K^{2}=-\frac{1}{2}\left[c_{1} \sin \theta-c_{2} \cos \theta\right]+c_{3}
$$

So

$$
K^{a}=\binom{c_{1} \cos \theta+c_{2} \sin \theta}{\frac{-1}{2}\left[c_{1} \sin \theta-c_{2} \cos \theta\right]+c_{3}}
$$

Q:- Worb out the killing equation for the tollowing inetrice,

$$
\begin{aligned}
& g_{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & n^{2} & 0 \\
0 & 0 & x^{2} \theta
\end{array}\right), g_{a b}=\left(\begin{array}{cc}
p & -q \\
-q & p
\end{array}\right) \\
& g_{a b}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & - \\
0 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right)
\end{aligned}
$$

Q:- uberront the killing Eq for

$$
g_{a b}=\left(\begin{array}{cc}
a^{2} & 0 \\
0 & a^{2} \sin ^{2} \theta
\end{array}\right), \quad x^{a}=(0, \phi)
$$

and find

$$
k^{a}=\binom{k^{\prime}}{k^{2}}
$$

Solution:- we bow that the Killing equation;

$$
K_{a b}: g_{a b, c} K^{c}+g_{a c} k_{, b}^{c}+g_{b c} k_{, a}^{c}=0
$$

First we find three independent killing equations

$$
\begin{aligned}
& k_{11}: g_{11}, k^{c}+g_{1 c} k_{11}^{c}+g_{1 c} k_{, 1}^{c}=0 \\
& g_{11} k_{, 1}^{\prime}+g_{11} k_{91}^{\prime}=0 \\
& \Rightarrow 2 a^{2} k_{, 1}^{\prime}=0 \\
& \Rightarrow k_{, 1}^{\prime}=0 \longrightarrow \text { (I). }
\end{aligned}
$$

Integnating it ant θ.

$$
\begin{equation*}
K^{\prime}=A(\phi) \tag{2}
\end{equation*}
$$

Now

$$
\begin{gathered}
k_{21}=k_{12}: g_{2} / 2, c^{c}+g_{1 c} k_{22}^{c}+g_{2 c} k_{21}^{c}=0 \\
g_{11} k_{, 2}^{\prime}+g_{22} k_{31}^{2}=0
\end{gathered}
$$

$$
\begin{align*}
& a^{2} k_{92}^{\prime}+a^{2} \sin ^{2} \theta k_{01}^{2}=0 \\
\Rightarrow & k_{, 2}^{\prime}+\sin ^{2} \theta k_{, 1}^{2}=0 \tag{3}
\end{align*}
$$

Now

$$
\begin{aligned}
k_{22}: g_{22, c} k^{c}+g_{2 c} k_{, 2}^{c}+g_{2 c} k_{, 2}^{c} & =0 \\
g_{22,1} k^{\prime}+g_{22} k_{, 2}^{2}+g_{22} k_{22}^{2} & =0 \\
2 a^{2} \sin \theta \cos \theta k^{\prime}+2 a^{2} \sin ^{2} \theta k_{2}^{2} & =0
\end{aligned}
$$

Dividing by $2 a^{2} \sin \theta \cos c e$ $\cos \theta K^{\prime}+\sin \theta K^{2}, 2=0$

$$
\begin{align*}
& \Rightarrow k^{\prime}+\tan \theta k_{2}^{2}=0 \longrightarrow(4) \\
& \quad \tan ^{\prime} \theta k^{\prime}+K_{2}^{2}=0,1 \\
& \quad \Rightarrow k_{, 2}^{2}=-\frac{K^{\prime}}{\tan \theta} \tag{6}
\end{align*}
$$

Integnating Eq.(5) w.n.t ϕ we have

$$
\begin{equation*}
K^{2}=-\frac{1}{\tan \theta} \int A(\phi) d \phi+B(\theta) \tag{A}
\end{equation*}
$$

Diff. equation (3) wnt ϕ.

$$
\begin{align*}
& K_{, 22}^{\prime}+\sin ^{2} \theta K_{, / 2}^{2}=0 \\
& A, \phi \phi+\sin ^{2} \theta K_{, / 2}^{2}=0 \tag{7}
\end{align*}
$$

Di77. Eq. 5 wnt θ.
$-\tan ^{-2} \theta \cdot \sec ^{2} \theta A(\Phi)+k_{, 21}^{2}=0$

$$
-\frac{1}{\sin ^{2} \alpha} A(t)+k^{2}, 21=0
$$

$$
\Rightarrow-A(\phi)+\sin ^{2} \theta k^{2}, 21=0 \rightarrow \text {) }
$$

Subtracting Eque 7rom Ev. (7)

$$
\begin{align*}
& A, \phi \phi+A(\phi)=a \quad A(\phi)=c_{1} \cos \phi+c_{2} \sin \phi \\
& \Rightarrow m^{2} A=\theta \\
& \left.\Rightarrow k^{2}=c_{1} \cos \phi+c_{2} \sin \phi-\theta\right) \tag{7}
\end{align*}
$$

Putting Eov (9) in Equ (c)

$$
k_{, 2}^{2}=\frac{-1}{\tan \theta}\left[c_{1} \cos \phi+c_{2} \sin \phi\right]
$$

Integnating wnt of we zot,

$$
\begin{equation*}
K^{2}=-\frac{1}{\tan \theta}\left[c_{1} \sin \phi-c_{2} \sin \phi\right]+B(\theta) \tag{210}
\end{equation*}
$$

Diff. Eq(ia) Wit o

$$
\begin{align*}
& k_{21}^{2}=\tan ^{2} \theta \sec ^{2} \theta\left[c_{1} \sin \phi-c_{2} \cos \phi\right]+B^{\prime}(\theta) \\
& k_{21}^{2}=\frac{1}{\sin ^{2} \theta}\left[c_{1} \sin \phi-c_{2} \cos \phi\right]+B^{\prime}(\phi) \Longrightarrow(1) \tag{II}
\end{align*}
$$

Dif7. Eq(9) wnt ϕ, we have

$$
K_{, 2}^{\prime}=-c_{1} \sin \phi+c_{2} \cos \phi
$$

Putting Eq (12) \& (11) in (3) we have

$$
\begin{aligned}
&-C_{1} \sin \phi+C_{2} \cos \phi+\sin ^{2} \theta\left[\frac{1}{\sin ^{2} \theta}\left(c_{1} \sin \phi-c_{2} \cos \phi\right)\right. \\
&\left.+B^{\prime}(\theta)\right]=0 \\
& \Rightarrow-c_{1} \sin \phi+c_{2} \operatorname{cog} \phi+C_{1} \sin \phi-c_{2} \cos \phi+\sin ^{2} \theta B^{\prime}(\theta)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \sin ^{2} \theta B^{\prime}(\theta)=0 \\
& \Rightarrow \quad B^{\prime}(\theta)=0
\end{aligned}
$$

Integrating $w n t$.

$$
B\left(k=C_{3}\right.
$$

Pat Eq. B in Eq.

$$
K^{2}=-\cot \theta\left[c_{1} \sin \phi-c_{2} \cos \phi\right]+c_{3}
$$

So,

$$
k^{a}=\binom{k^{\prime}}{k^{2}}=\binom{c_{1} \cos \phi+c_{2} \sin \phi}{-\cot 0\left[c_{1} \sin \phi-c_{2} \cos \phi\right]+c_{3}}
$$

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SARGODHA BS-VI(A1 \& A2), MID Term Examination, Nov 17, 2014

Course Title: Riemannian Geometry
Time:60 min RO'L NO: \qquad
Q. 1.Define the surface give an example.

Q 2. For the metric tensor given by

$$
g_{000}=\left(\begin{array}{cc}
\frac{1}{x} & -y \\
-y & x
\end{array}\right)
$$

where " x " and " y " are the Cartesian coordinates,
a). Work out the Christoffel symbols with lower subscript same.
b). Transform its components (with different lower subscript) into polar coordinates.
23. Derive the extreme values of principal curvature and also find the conditions for extreme values of λ.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SARGODHA

M.S $\mathrm{G}-$ III \& BS-VII $(R+S S)$ Final Term Examination

Course Title: Riemannian Geometry
ROLL NO \qquad

Total Time: 2.0 hrs
Total Marks: 60

Q 1. De'ine the following terms:
i). Affine connection
ii). Geodesics.
iii). Ricci Tensor iv). Isometry
v). Write down the expression of Bianchi First Identity

Q 2. Derive the expression of Einstein's tensor using Bianchi second identity. Also, convert it in covariant and contravariant forms.

Q 3. After obtaining the expression for the function of several variables $f\left(x^{a}\right)$ by using generalized Taylor's theorem, explain Parallel and Lei Transports.

Q 4. Show that Christoffel symbol is not a tensor. Find the condition under which it becomes a tensor.

Q 5. Find the Ricci scalar R for the metric tensor, given by:

$$
g_{a b}=\left(\begin{array}{cc}
v^{2} & 0 \tag{10}\\
0 & u^{2}
\end{array}\right) \quad x_{a}=(u, V)
$$

6. Obtain and sol've geodesic equations for a sphere of radius 5 .
