Reflection of Waves in Micropolar Cubic Medium with Voids (Previous Part)
Wave Propagation in Micropolar Cubic Material with Voids
Formulation of the problem
Equation of motion
(1) ![]()
Field equation
(2) ![]()
For micropolar
(3) ![]()
Wave Propagation in Micropolar Cubic Material with Voids
The modified void equation
(4) ![]()
Solution of the problem
Where we consider a
plane having the displacement vector
and micro-rotation vector ![]()
(5) ![]()
For i=1 equation (1) give us
(6) ![]()
Similarly for i=2, equation (1) become,
(7) ![]()
For the micropolar equation using (3)
(8) ![]()
For void equation, we used (4)
(9) ![]()
Where
,
, ![]()
For non-trivial solution, equations (6) to (9) implies
(10) 
Solving this determinant, we have following fourth-order secular equation.
![]()
where
. Solving this determinant we have four roots. So there exist four waves.
Reflection of Waves in Micropolar Cubic Material with Voids
Since there exist four waves (QLD-wave, QCLD-wave, QCTM-wave and QTD-wave due to voids), against the incident QLD-wave.
Formulation of the problem
Using free boundary conditions we have
,
and
at ![]()
For
in first boundary condition becomes
(11) ![]()
For
in first boundary condition we have
(12) ![]()
For micropolar equation we used second boundary condition
(13) ![]()
for void equation we have,
(14) ![]()
Let the components of displacement and microrotation vectors are following.
(15) ![]()
(16) ![]()
(17) ![]()
(18) ![]()
Where
and ![]()
Using equations (6)-(8) , we derived the following values:
![Rendered by QuickLaTeX.com \[G^{(\alpha)} = \frac{-[p_1^{(\alpha)} (D_1^{(\alpha)} - \rho v_{\alpha}^2) + A_5 p_1^{(\alpha)} p_2^{(\alpha)2} - i(\beta_1 p_1^{(\alpha)2} + \beta_2 p_2^{(\alpha)2}) \varphi_0]}{[p_2^{(\alpha)} (D_2^{(\alpha)} - \rho v_{\alpha}^2) + A_5 p_1^{(\alpha)2} p_2^{(\alpha})]}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-ef69a0732fcc41c051ef656349af2dab_l3.png)
![Rendered by QuickLaTeX.com \[H^{(\alpha)} = \frac{A_6 G^{(\alpha)} p_1^{(\alpha)} - A_6 p_2^{(\alpha)}}{jk_{\alpha}^2 (D_3^{(\alpha)} - \rho v_{\alpha}^2) + 6A_6}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-36aafe75268561c2776c88f883a1e61c_l3.png)
where
![]()
![]()
![]()
![]()
Now by using the components of displacement and microrotation vector in equations (11)-(14)
(19) ![]()
(20) ![]()
(21) ![]()
(22) ![]()
Now by using Snell’s law in the equations (19)-(22). Where Snell’s law is
![]()
![]()
Using Snell’s law in equation (19)
![Rendered by QuickLaTeX.com \[\frac{[A_3 G^{(1)} p_1^{(1)} + A_4 p_2^{(1)} - A_6 H^{(1)}]k_1 R^{(1)} d_1^{(1)}}{[A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}]k_0 R^{(0)} d_1^{(0)}} + \frac{[A_3 G^{(2)} p_1^{(2)} + A_4 p_2^{(2)} - A_6 H^{(2)}]k_2 R^{(2)} d_1^{(2)}}{[A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}]k_0 R^{(0)} d_1^{(0)}} +\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-2ad9330899780242d61b717410111c21_l3.png)
![Rendered by QuickLaTeX.com \[\frac{[A_3 G^{(3)} p_1^{(3)} + A_4 p_2^{(3)} - A_6 H^{(3)}]k_3 R^{(3)} d_1^{(3)}}{[A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}]k_0 R^{(0)} d_1^{(0)}} + \frac{[A_3 G^{(4)} p_1^{(4)} + A_4 p_2^{(4)} - A_6 H^{(4)}]k_4 R^{(4)} d_1^{(4)}}{[A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}]k_0 R^{(0)} d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-abe55fa82a3570cae315dfcdb68dc273_l3.png)
![]()
Let
![Rendered by QuickLaTeX.com \[a_{11} = \frac{k_1 [A_3 G^{(1)} p_1^{(1)} + A_4 p_2^{(1)} - A_6 H^{(1)}] d_1^{(1)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-7fd02ded9f25b27899ec0d0b9e2b9be4_l3.png)
![Rendered by QuickLaTeX.com \[a_{12} = \frac{k_2 [A_3 G^{(2)} p_1^{(2)} + A_4 p_2^{(2)} - A_6 H^{(2)}] d_1^{(2)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-9a2472abd57fdda420ee6a2f018a0c81_l3.png)
![Rendered by QuickLaTeX.com \[a_{13} = \frac{k_3 [A_3 G^{(3)} p_1^{(3)} + A_4 p_2^{(3)} - A_6 H^{(3)}] d_1^{(3)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-719da9eda9ef17ae4956fd5a67fa5113_l3.png)
![Rendered by QuickLaTeX.com \[a_{14} = \frac{k_4 [A_3 G^{(4)} p_1^{(4)} + A_4 p_2^{(4)} - A_6 H^{(4)}] d_1^{(4)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-c2fa6583a8aca4379fc1e62ef407467e_l3.png)
Now we have
(23) ![]()
Similarly using Snell’s law in equation (20)
![Rendered by QuickLaTeX.com \[\frac{[A_1 G^{(1)} p_2^{(1)} + A_2 p_1^{(1)} + (\beta_2^{(0)} \varphi_0^{(0)})/i]k_1 R^{(1)} d_1^{(1)}}{[A_1 G^{(0)} p_2^{(0)} + A_2 p_1^{(0)} + (\beta_2^{(0)} \varphi_0^{(0)})/i]k_0 R^{(0)} d_1^{(0)}} + \frac{[A_1 G^{(2)} p_2^{(2)} + A_2 p_1^{(2)} + (\beta_2^{(2)} \varphi_0^{(2)})/i]k_2 R^{(2)} d_1^{(2)}}{[A_1 G^{(0)} p_2^{(0)} + A_2 p_1^{(0)} + (\beta_2^{(0)} \varphi_0^{(0)})/i]k_0 R^{(0)} d_1^{(0)}} +\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-53e56c002e90836748aa7442d516a58b_l3.png)
![Rendered by QuickLaTeX.com \[\frac{[A_1 G^{(3)} p_2^{(3)} + A_2 p_1^{(3)} + (\beta_2^{(3)} \varphi_0^{(3)})/i]k_3 R^{(3)} d_1^{(3)}}{[A_1 G^{(0)} p_2^{(0)} + A_2 p_1^{(0)} + (\beta_2^{(0)} \varphi_0^{(0)})/i]k_0 R^{(0)} d_1^{(0)}} + \frac{[A_1 G^{(4)} p_2^{(4)} + A_2 p_1^{(4)} + (\beta_2^{(4)} \varphi_0^{(4)})/i]k_4 R^{(4)} d_1^{(4)}}{[A_1 G^{(0)} p_2^{(0)} + A_2 p_1^{(0)} + (\beta_2^{(0)} \varphi_0^{(0)})/i]k_0 R^{(0)} d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-4eefb4775b99cfa00d94b2268858cf0f_l3.png)
![]()
Let
![Rendered by QuickLaTeX.com \[a_{21} = \frac{k_1 [A_3 G^{(1)} p_1^{(1)} + A_4 p_2^{(1)} - A_6 H^{(1)}] d_1^{(1)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-879d9d31e06f8aaa46ba2f2e5e5234c1_l3.png)
![Rendered by QuickLaTeX.com \[a_{22} = \frac{k_2 [A_3 G^{(2)} p_1^{(2)} + A_4 p_2^{(2)} - A_6 H^{(2)}] d_1^{(2)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-f40bf5944f172deb1341e11f0d6e571c_l3.png)
![Rendered by QuickLaTeX.com \[a_{23} = \frac{k_3 [A_3 G^{(3)} p_1^{(3)} + A_4 p_2^{(3)} - A_6 H^{(3)}] d_1^{(3)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-6308492809fc7d5247ffc96c5d553731_l3.png)
![Rendered by QuickLaTeX.com \[a_{24} = \frac{k_4 [A_3 G^{(4)} p_1^{(4)} + A_4 p_2^{(4)} - A_6 H^{(4)}] d_1^{(4)}}{k_0 [A_3 G^{(0)} p_1^{(0)} + A_4 p_2^{(0)} - A_6 H^{(0)}] d_1^{(0)}}\]](https://ranamaths.com/wp-content/ql-cache/quicklatex.com-2a820d09ec601e1d8bfd2b29383af952_l3.png)
Now we have
(24) ![]()
To study the effect of voids on wave propagation, we use a micropolar cubic material (crystal)
| Material | Stiffness | Density | Micropolar constants | Voids Parameters | |||||||
| J | |||||||||||
| Crystal | 13.97 | 13.75 | 3.2 | 2.2 | 7.87 | 0.056 | 0.047 | 0.019 | 0.01 | 1.28 | 0.1 |
Conclusion
As with the increase in the angle of propagation, the amplitude ratio of the waves are also increasing, so reflection of the waves is just increasing with the presence of voids effect in micropolar cubic material .